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Segmentation of brain tissues is an important but inherently challenging task in that different brain tissues have similar grayscale
values and the intensity of a brain tissue may be confused with that of another one. The paper accordingly develops an ICKFCM
method based on kernelized fuzzy 𝑐-means clustering with ICA analysis for extracting regions of interest inMRI brain images.The
proposed method first removes the skull region using a skull stripping algorithm. Through ICA, three independent components
are then extracted frommultimodal medical images containing T1-weighted, T2-weighted, and PD-weightedMRI images. AsMRI
signals can be regarded as a combination of the signals from brain matters, ICA can be used for contrast enhancement of MRI
images. Finally, the three independent components are utilized as inputs by KFCM algorithm to extract different brain tissues.
Relying on the decomposition of a multivariate signal into independent non-Gaussian components and using a more appropriate
kernel-induced distance for fuzzy clustering, the proposed method is capable of achieving greater reliability in both theory and
practice than other segmentation approaches. According to the experiment results, the proposed method is capable of accurately
extracting the complicated shapes of brain tissues and still remaining robust against various types of noises.

1. Introduction

Along with the rapid advancement of medical imaging tech-
nologies, there has been a constant rise in the demand for
more sophisticated visual means for inspection of anatomic
structures, identification of disease, examination of the
characteristics in a region of interest, and registration and
reconstruction of images. Of the technologies developed to
meet the demand, image segmentation plays an indispensable
role. Medical images are mostly limited by low contrast, high
noise, intensity inhomogeneity, and other imaging ambigui-
ties greatly complicating the task of segmentation. In addi-
tion, compared with other types of images, medical images
tend to pose greater difficulty in shape recovery. More accu-
rate and effective techniques are therefore needed to assist
medical image segmentation. Image segmentation refers to
the technique that partitions an image into different regions
and is typically used to identify regions of interest. Several
algorithms have been reported in the literature for image
segmentation, such as independent component analysis [1, 2],
fuzzy clustering [3], level set method [4, 5], Markov random

field [6], and neural network [7], each of which has its
advantages and disadvantages.

Most medical images are acquired from special acqui-
sition modalities, including magnetic resonance imaging
(MRI), computed tomography (CT), single photon emission
tomography (SPECT), positron emission tomography (PET),
and ultrasounds (US). Because of its advantages over other
diagnostic imaging techniques [8],MRI has been extensively
used for image segmentation. To reduce the uncertainty
widely present in medical images, this study strives to
integrate independent component analysis (ICA), kernelized
fuzzy 𝑐-means clustering (KFCM), and image preprocessing
as a computational technique for use in medical image seg-
mentation.

A statistical and computational technique for revealing
hidden factors that underlie sets of random variables, mea-
surements, or signals, ICA defines a generative model for the
observed multivariate data, which is assumed to be mixtures
of some unknown latent variables. It was originally developed
as a means to solve the problem of blind source separation
(BSS) [9]. BSS refers to the problem of finding the original
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source signals from available mixtures, without having prior
knowledge of the mixing mechanisms. For performing unsu-
pervised classification, the data are modelled as a mixture of
classes described by linear combinations of independent non-
Gaussian densities. ICAhas been successfully used to separate
multivariate signals, yet two statistical limitations should be
met. Lee and his colleagues [10] proposed the ICA mixture
model (ICAMM) to overcome one of the ICA limitations,
which is the assumption that the signal sources are indepen-
dent. In such approach, the assumption is relaxed by using
the concept of mixture models. The ICAMM algorithm finds
the independent components and the mixing matrix for each
class and computes the class membership probability for each
pattern in the dataset.The learning rules for the ICAMMwere
derived using gradient ascent method to maximize the log-
likelihood data function. Attempting to improve the ICAMM
performance, Oliveira andRomero [1] proposed an enhanced
ICA mixture model (EICAMM), which implements some
modifications on the original ICAMM algorithm learning
rules. EICAMM algorithm is similar to the original ICAMM
algorithm as both are based on an information-maximization
approach proposed by Bell and Sejnowski [11].

ICA and its extension have been extensively applied in
many research fields [12]. Jenssen and Eltoft [2] used ICA
image model to generate a data dependent filter bank for
texture segmentation.The filter bank consists of the ICA basis
images which are learned from textured images. With the
basis images capable of capturing the inherent structure of
the texture, theirmethod is able to segment the texture image.
Tateyama et al. [13] proposed a method based on kernel
independent component analysis (KICA) for classification
of MRI datasets. KICA, a nonlinear approach for extracting
independent components of images, appeared to produce
significant enhancement in brain MRI datasets, and their
experiment found theKICA-based classificationmethod able
to effectively classify brain tissues.

Among the other methods developed for MRI image
segmentation, fuzzy clustering is of considerable benefits
thanks to its ability to retainmuchmore information from the
original image than hard segmentation methods. Clustering
algorithms attempt to classify a pixel to a tissue class by
applying the notion of similarity to the class; they can thus be
adopted for image segmentation. Unlike the crisp 𝐾-means
clustering algorithm [14], the fuzzy 𝑐-means (FCM) algo-
rithm allows pixels to belong tomultiple clusters with varying
degrees of membership; algorithms based on fuzzy clustering
are therefore particularly suitable for handling an uncertainty
problem concerning segmentation of multimodal medical
images. Masulli and Schenone [15], after conducting a review
of different clustering algorithms containing FCM algorithm,
maximum entropy principle-based fuzzy clustering (MEP-
FC) [16], and two versions of possibilistic 𝑐-means algorithms
(PCMs) [17, 18], introduced their clustering algorithm named
possibilistic neurofuzzy 𝑐-means algorithm (PNFCM). The
KFCM algorithm [19, 20] was realized by replacing the orig-
inal Euclidean distance in the FCM algorithm with a kernel-
induced distance and a spatial penalty on the membership
functions. Kannan et al. [21] proposed a kernel-induced fuzzy𝑐-means based on hypertangent function for segmenting

breast MRI. The algorithm was developed by integrating
kernel, hypertangent function, and Lagrangianmethods with
the basic objective function of the FCM algorithm to obtain
proper effective segmentation. Gupta et al. [3] presented a
hybrid segmentation method utilizing both features of Gaus-
sian kernel-induced fuzzy 𝑐-means (GKFCM) clustering [22]
and active contour model driven by region scalable fitting
(RSF) energy function [23] for ultrasoundmedical images. In
this method, the result obtained from the GKFCM method
is used to initialize the contour that spreads to identify
the estimated regions. GKFCM also helps to estimate the
controlling parameters used in the curve evolution process
and achieve better results with the kernel-induced distance
replaced by the Euclidean distance. The RSF formulation
is responsible for attracting the contour toward the object
boundaries and it does not require the reinitialization process
when the level set curve is evolving. Gong et al. [24] proposed
an improved FCM, called KWFLICM, by introducing a
tradeoff weighted fuzzy factor and a kernel metric.The trade-
off weighted fuzzy factor depending on the space distance
of all neighboring pixels and their gray-level difference is
introduced into its objective function to guarantee noise
insensitiveness and image detail preservation. To enhance
segmentation robustness to noise and outliers, KWFLICM
algorithm further incorporates a kernel distance measure in
its objective function. The KWFLICM algorithm, which can
accurately estimate the damping extent of neighboring pixels,
yields good results in many cases of image segmentation and
maintains fine robustness to various types of noises.

Despite their advantages in yielding regions more homo-
geneous than other crisp methods, reducing spurious blobs,
and removing noisy spots, most of the fuzzy methods men-
tioned above still require prior knowledge about the number
of clusters in the data that may not be known for new data.
Instead of improving segmentation accuracy via enhancing
the kernel function, eighteen different validity criteria [25]
have been implemented to estimate the number of clusters
to help achieve high-accuracy segmentation of a given image
when they are performed with KFCM or SKFCM algorithm
[26, 27].

2. Method

As shown in Figure 1, the proposed segmentation method
comprises three stages: skull stripping, independent compo-
nent analysis, and kernelized fuzzy 𝑐-means clustering.

2.1. Skull Stripping. An essential step in most quantitative
analyses of brain structure is removing the skull region, that
is, the bones of skull and meninges, from the original image.
To complete the task, a threshold that can separate brain
and nonbrain tissues is calculated according to the histogram
computed by image grayscale. With the thresholding, a
binary image can be created. After creating the binary image,
we eliminate isolated fake objects and holes bymorphological
operations from the binary image to produce another binary
image, called binary morphological image (i.e., we remove
the isolated fake objects outside the white portion and fill the
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Figure 1: The proposed segmentation method integrating skull stripping, ICA, and KFCM algorithm.

holes inside the white portion in the first binary image). To
remove the region boundaries from foreground pixels (i.e.,
white pixels), erosion operation is performed in the binary
morphological image to obtain a binary eroded image. The
last step is to mask the grayscale image using the binary
eroded image.Themask operation leads to the creation of the
skull stripped image; the skull image can then be obtained.
The skull stripping algorithm is summarized as follows.

Step 1. Calculate a threshold that can separate brain and
nonbrain tissues based on the histogram computed by image
grayscale.

Step 2. Apply the threshold to create a binary image.

Step 3. Eliminate isolated fake objects and holes from the
binary image to create a binary morphological image.

Step 4. Remove 𝑝 layers of pixels to obtain a binary eroded
image, where parameter 𝑝 is a constant and 10 ≤ 𝑝 ≤ 12.
Step 5. Mask the grayscale image using the binary eroded
image to achieve the skull stripped image.

2.2. Independent Component Analysis. In this section, we first
briefly review the principle of the independent component
analysis and then apply the ICA algorithm to analyze the
multimodal MRI images, for extracting three independent
components.

When the ICA algorithm is applied to the segmentation
of brain tissues, three types of images, T1-weighted, T2-
weighted, and PD-weighted images, are regarded as the
observed signals and represented by 𝑥𝑛, 𝑛 = 1, 2, 3, respec-
tively. The set of these images is described as

𝑋 = [𝑥1, 𝑥2, 𝑥3]𝑇 . (1)

Brain tissues containing WM, GM, and CSF can be
regarded as the source signals, respectively, represented by𝑠𝑝, 𝑝 = 1, 2, 3. The set of these brain tissues is described as

𝑆 = [𝑠1, 𝑠2, 𝑠3]𝑇 . (2)

The relation between images 𝑋 and brain tissues 𝑆 can then
be represented as

𝑋 = 𝐴𝑆, (3)

where𝐴 is an unknownmixing matrix of size 3 × 3. If we can
obtain thematrix𝐴, then the brain tissues can be obtained by
the calculation of inverse matrix 𝐴 as

𝑆 = 𝐴−1𝑋. (4)

However, according to the known condition, matrix 𝐴 is
still unknown. By measurement, analysis of statistical inde-
pendence of observed signals 𝑋, and through mathematical
operation, an approximation matrix 𝐴 can be estimated.
With the inverse matrix𝑊 = 𝐴−1 (called demixing matrix)
calculated, the approximation of 𝑆, denoted by �̂�, can be
predicted, and �̂� stands for the components of brain tissues.
The approximation of 𝑆 (i.e., the components of brain tissues
to be segmented) is presented as

𝑆 ≈ �̂� = 𝑊𝑋. (5)

In the paper, the FastICA algorithm is adopted to calculate
the matrix 𝑊 and to further analyze each pixel in the mul-
tispectral image for correct classification of brain tissue.

FastICA [12, 28] uses a gradient descent method to maxi-
mize a measure of non-Gaussianity, thus accelerating the
estimation of the independent components of source signals.
Before applying this algorithm, two preprocessing steps,
centering and whitening, are usually necessary.

(i) Center the Data. The first step is to center the observed
data, that is, to subtract the mean 𝐸{𝑋} from the observed
data 𝑋 = 𝐴𝑆, where 𝐴 is a mixing matrix and 𝑆 is a latent
source signal (data), so it has zero mean.

(ii) Whiten the Data Using Principal Components Analysis
(PCA). After centering, PCA is performed on the zero-mean
data to constrain the search of weights to an orthogonal
space, that is, to transform observed data 𝑋 so that they are
uncorrelated and have unit variance. Whitening is necessary
as it makes it possible to search the independent components
one by one and prevents the estimated weight vectors from
converging to the same optimum. Moreover, finding the
weight vectors one by one greatly improves the convergence
speed.

The FastICA algorithm uses a gradient descent method to
optimize the negentropy equation:

𝐽 (𝑦) = [𝐸 (𝐺 (𝑦)) − 𝐸 (𝐺 (V))]2 , (6)

where 𝑦 is a normalized random variable with zeromean and
unit variance; 𝐸 is a mean function; 𝐺 is any nonquadratic



4 Mathematical Problems in Engineering

function; and V is a standard Gaussian variable with zero
mean and unity variance. In the paper, the algorithm for
FastICA is described as follows.

Step 1. Choose an initial random weight vector 𝑤.
Step 2. Update demixingmatrix𝑊 by𝑤𝑛+1 = 𝐸(𝑋𝑔(𝑤𝑇𝑛𝑋))−𝐸(𝑔(𝑤𝑇𝑛𝑋))𝑤𝑛, where 𝑔(𝑥) = tanh(𝑥).
Step 3. Normalize weight matrix 𝑤 by 𝑤𝑛+1 = 𝑤𝑛+1/‖𝑤𝑛+1‖.
Step 4. Set 𝑛 ← 𝑛+1, and go back to Step 2 if ‖𝑤𝑛+1−𝑤𝑛‖ ≥ 𝜀,
where 𝜀 ≥ 0 is the smallest constant.

After applying the FastICA algorithm to analyze the mul-
timodal MRI images (a linear combination of T1-weighted,
T2-weighted, and PD-weightedMRI images), we can extract
three independent components. Compared with the original
multimodal images, signals in two of the three independent
components have been contrast enhanced.Therefore, the first
independent component is used for the segmentation ofWM
and GM, while the second one is used for the segmentation
of CSF to obtain more accurate segmentation results.

2.3. Kernelized Fuzzy 𝑐-Means Clustering. A kernelized FCM
(KFCM) algorithm [20, 25] is constructed with the following
objective function as

𝐽𝑚 = 𝑛∑
𝑖=1

𝑐∑
𝑗=1

𝑢𝑚𝑖𝑗 Φ (𝑥𝑖) − Φ (𝑐𝑗)2 , 1 ≤ 𝑚 ≤ ∞, (7)

where fuzzifier 𝑚 is a real number greater than 1, Φ is an
implicit nonlinear mapping, and 𝑥𝑖 and 𝑐𝑗 are, respectively,
the 𝑖th measured data and center of the 𝑗th cluster in the
original space. The implicit nonlinear mapping is defined as
follows. From the data space to the mapped 𝑑 feature space,Φ: 𝑋 → 𝐹 (𝑥 ∈ 𝑅𝑝 → Φ(𝑥) ∈ 𝑅𝑑, 𝑑 > 𝑝), a dataset{𝑥1, 𝑥2, . . . , 𝑥𝑛} ⊆ 𝑋 (input data has low 𝑑-dimensional
vector space) is mapped into a potentially much higher 𝑝-
dimensional feature space or inner product 𝐹. The purpose
of this mapping is to turn the original nonlinear problem in
the input space into a potentially linear one in a rather high
dimensional feature space. A kernel 𝐾(𝑥, 𝑦) in the feature
space can be represented as

𝐾(𝑥, 𝑦) = ⟨Φ (𝑥) , Φ (𝑦)⟩ , (8)

where ⟨Φ(𝑥), Φ(𝑦)⟩ = Φ𝑇(𝑥)Φ(𝑦) denotes the inner prod-
uct operation. In the study, Gaussian radial basis function
(GRBF) kernel [29] is adopted and described as

𝐾(𝑥, 𝑦) = exp(−𝑥 − 𝑦2𝜎2 ) , (9)

where 𝜎 is a parameter of Gaussian kernel.
Based on the kernel substitution trick, we have

Φ (𝑥𝑖) − Φ (𝑐𝑗)2 = 𝐾 (𝑥𝑖, 𝑥𝑖) − 2𝐾 (𝑥𝑖, 𝑐𝑗)
+ 𝐾 (𝑐𝑗, 𝑐𝑗) .

(10)

Since 𝐾(𝑥, 𝑐) = exp(−‖𝑥 − 𝑐‖2/𝜎2), 𝐾(𝑥𝑖, 𝑥𝑖) = 1, 𝐾(𝑐𝑗, 𝑐𝑗) =1, and Φ𝑇(𝑥𝑖)Φ(𝑐𝑗) = Φ(𝑥𝑖)Φ𝑇(𝑐𝑗), (7) can be rewritten as

𝐽𝑚 = 2 𝑛∑
𝑖=1

𝑐∑
𝑗=1

𝑢𝑚𝑖𝑗 (1 − 𝐾 (𝑥𝑖, 𝑐𝑗)) , 1 ≤ 𝑚 ≤ ∞. (11)

As shown in a previous study [30], theGRBF kernel tends
to achieve better segmentation results on simulated MRI
images corrupted by noise and other artifacts than polyno-
mial kernel. Thus, the GRBF kernel is adopted as a distance
metric replacing the standard Euclidean distance for reliable
KFCM clustering.

Like the FCM algorithm, the objective function 𝐽𝑚 in (11)
can be minimized under the constraint of 𝑈 (i.e., ∑𝑐𝑗=1 𝑢𝑖𝑗 =1). The fuzzy membership matrix 𝑈 can thus be obtained by

𝑢𝑖𝑗 = ∑
𝑐
𝑘=1 (1 − 𝐾 (𝑥𝑖, 𝑐𝑘))1/(𝑚−1)
(1 − 𝐾 (𝑥𝑖, 𝑐𝑗))1/(𝑚−1) , (12)

where 𝑐 is the number of clusters; 𝑐𝑗 and 𝑐𝑘 are the cluster
centers of fuzzy groups 𝑗 and 𝑘, respectively; and the para-
meter 𝑚 (fuzzifier) is a weighting exponent on each fuzzy
membership. The cluster center 𝑐𝑗 can be obtained by

𝑐𝑗 = 𝑛∑
𝑖=1

𝑢𝑚𝑖𝑗𝐾(𝑥𝑖, 𝑐𝑗) 𝑥𝑖
𝑢𝑚𝑖𝑗𝐾(𝑥𝑖, 𝑐𝑗) . (13)

3. Results and Discussion

All the algorithms were implemented in MATLAB and C#
programming language. SimulatedMRI images downloaded
from BrainWeb website [31] were used as the test images.
To obtain more realistic experiment results, medical images
provided by the National Library of Medicine [32] and the
Department of Medical Imaging and Radiological Technology
at YPU (the Yuanpei University of Medical Technology) [33]
had also been used.

Five parts of the experiments are reported: preprocessing
for skull stripping, extraction of independent components
by ICA, qualitative comparison with state-of-the-art segmen-
tation methods, quantitative comparison of segmentation
accuracy, and image segmentation using real medical images.

Figure 2 presents three types of original simulated T1-
weighted, T2-weighted, and PD-weightedMRI brain images,
and the image size is 181 × 217 pixels. At first, the skull
stripping algorithm was used to strip the skull region of the
brain image. Original T1-weighted MRI brain image, binary
image, binary morphological image, binary eroded image,
skull region image, and skull stripped image are shown in
Figures 3(a)–3(f), respectively. As indicated, the approach can
accurately strip the skull region from the examined brain
image. Moreover, when applied to other types of medical
images, the skull stripping was also capable of achieving fine
results.
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(a) (b) (c)

Figure 2: T1-weighted, T2-weighted, and PD-weightedMRI brain images.

(a) (b) (c)

(d) (e) (f)

Figure 3: The skull stripping. (a) Original T1-weighted MRI brain image. (b) Binary image. (c) Binary morphological image. (d) Binary
eroded image. (e) Skull region image. (f) Skull stripped image.
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To demonstrate that ICA can be adopted for contrast
enhancement of MRI images, the FastICA algorithm was
used to extract the independent components in multimodal
medical images (a linear combination of T1-weighted, T2-
weighted, and PD-weighted MRI images). Figures 4(a)–4(c)
present three simulated images, T1-weighted, T2-weighted,
and PD-weighted MRI brain images of the 94th slice, where
image size = 181 × 217, slice thickness = 1mm, and noise =
0% (the noise was calculated relative to the brightest tissue),
with intensity nonuniformity (“RF”) with 0%. Figures 4(d)–
4(f) show the results of the images without skull region after
centering and whitening. Visual inspection finds only a slight
difference between these two sets of images (two rows in
Figure 4). Using the FastICA algorithm to extract the inde-
pendent components and then rescaling the intensity range of
the independent components, we obtained three independent
components as shown in Figures 4(g)–4(i). It can be seen
that the contrast of WM is enhanced in the first component
(Figure 4(g)), while the contrast of CSF is enhanced in the
second component (Figure 4(h)). Similarly, as in the previous
experiment, the three simulated images were added by differ-
ent noises with 3% and 5% as shown in Figures 5 and 6, resp-
ectively; the FastICA algorithm was then used to extract the
independent components. As indicated by the results of app-
lying the FastICA algorithm, ICA can enhance the contrast of
images despite the presence of noise corruption. Moreover,
after the algorithmwas applied, a small part of the noise in the
independent components disappeared as shown in Figures
5(g), 5(h), 6(g), and 6(h).

Before the experiments of qualitative and quantitative
comparisons of different methods, we listed the ground truth
of brain tissue segmentation of the simulatedMRI images of
the 94th slice obtained from the same BrainWeb website [31]
in Figure 7. It presents the several different anatomical regions
in the human brain in terms ofWM, GM, CSF, muscle/skin,
skin, skull, connective tissue, fat, glial matter (glial matter is a
connective tissue in the brain and a CSF-WM interface with
an image intensity intermediate betweenWM and GM), and
background. To qualitatively compare segmentation perfor-
mance, a total of sixmethodswere used for the simulatedMRI
images: 𝑘-means, FCM, KFCM, KWFLICM, FCM with ICA
analysis (ICFCM), and the proposedKFCMwith ICA analysis
(ICKFCM).

In our experiments, a brain image was segmented into
only four major regions:WM,GM, CSF plus glial matter, and
the skull region. Figure 8 illustrates the case of tissue segmen-
tation when the simulated MRI images do not suffer noise
corruption. The segmentation results are reported in Figures
8(a)–8(c) using 𝑘-means algorithm, Figures 8(d)–8(f) using
FCM algorithm, Figures 8(g)–8(i) using KFCM algorithm,
Figures 8(m)–8(o) usingKWFLICM algorithm, Figures 8(p)–
8(r) using ICFCM algorithm, and Figures 8(s)–8(u) using
ICKFCM algorithm.The three independent components ext-
racted from multimodal medical images are also shown in
Figures 8(j)–8(l) for visual inspection.

Figure 9 illustrates the case of tissue segmentation with
the simulated MRI images at a noise level of 3%. The seg-
mentation results are reported in Figures 9(a)–9(c) using 𝑘-
means algorithm, Figures 9(d)–9(f) using FCM algorithm,

Figures 9(g)–9(i) using KFCM algorithm, Figures 9(m)–9(o)
using KWFLICM algorithm, Figures 9(p)–9(r) using ICFCM
algorithm, and Figures 9(s)–9(u) using ICKFCM algorithm.
The three independent components extracted from multi-
modal medical images are also shown in Figures 9(j)–9(l)
for visual inspection. Figure 10 presents another case of
tissue segmentation when the simulated MRI images have
a 5% noise level. The segmentation results are reported in
Figures 10(a)–10(c) using 𝑘-means algorithm, Figures 10(d)–
10(f) using FCM algorithm, Figures 10(g)–10(i) using KFCM
algorithm, Figures 10(m)–10(o) using KWFLICM algorithm,
Figures 10(p)–10(r) using ICFCM algorithm, and Figures
10(s)–10(u) using ICKFCM algorithm.The three independent
components extracted from multimodal medical images are
also shown in Figures 10(j)–10(l) for visual inspection. In
all the equations of segmentation methods based on fuzzy
clustering, 𝑚 = 2, 𝜀 = 0.00001, and maximum iteration =
80. In addition, Gaussian kernel parameter 𝜎 = 150, and 𝑐
(i.e., the number of clusters) is normally not known in adva-
nce. However, as a brain image without skull region is usually
delineated into three regions, 𝑐 was set at 3. As indicated by
the results of the qualitative comparison, no matter in the
noiseless or noise case, the proposed method (i.e., ICKFCM
algorithm) emerged to be capable of extracting the brain
tissues in a more accurate manner than the other four com-
parable methods.

For further visual comparison of segmentation results
(Figure 8) based on ICKFCM, KWFLICM, and KFCM algo-
rithms, Figure 11 presents an example illustrating the ability
of the proposed method for brain tissue extraction, where
red boxes denote the regions of interest (ROI). Figure 11(a)
shows the ground truth of GM. Figures 11(b)–11(d) show the
segmentation results of GM using ICKFCM, KWFLICM, and
KFCM algorithms. Figures 11(e) and 11(i) show the enlarge-
ment regions of ROI in ground truth of GM. Figures 11(f)
and 11(j) show the enlargement regions ofROI in Figure 11(b).
Figures 11(g) and 11(k) show the enlargement regions of ROI
in Figure 11(c). Figures 11(h) and 11(l) show the enlargement
regions of ROI in Figure 11(d). As indicated by the extraction
results, the proposed ICKFCMmethod can accurately extract
the complicated shapes of GM with the longitudinal fissure
clearly delineated. Moreover, when applied to extract other
brain tissues such asWM,CSF, and glial matter, the proposed
method can also achieve fine segmentation results compared
with other segmentation methods.

To quantitatively evaluate the accuracy of the segmen-
tation methods, Jaccard coefficient (measure similarity) [34]
was used as a measure of similarity between the region deli-
neated by the computerized method and the ground truth,
and it is defined as

𝐽 (𝑆𝑔, 𝑆𝐶) =
𝑆𝑔 ∩ 𝑆𝐶𝑆𝑔 ∪ 𝑆𝐶 , (14)

where 𝑆𝑔 refers to the binary mask of the ground truth, 𝑆𝐶
indicates the region segmented by the computerizedmethod,
and | ⋅ | denotes the cardinality of a set. The value of this
measure varies between 0 and 1, and a higher value of Jaccard
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Extracted independent components by FastICA algorithm. ((a) to (c)) Original T1-weighted, T2-weighted, and PD-weighted
images. ((d) to (f)) Results of images without skull region after centering and whitening. ((g) to (i)) Three independent components are
extracted by FastICA algorithm.
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Figure 5: Extracted independent components by FastICA algorithm when the images are corrupted by 3% noise. ((a) to (c)) Original T1-
weighted, T2-weighted, and PD-weighted images. ((d) to (f)) Results of images without skull region after centering and whitening. ((g) to (i))
Three independent components are extracted by FastICA algorithm.
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Figure 6: Extracted independent components by FastICA algorithm when the images are corrupted by 5% noise. ((a) to (c)) Original T1-
weighted, T2-weighted, and PD-weighted images. ((d) to (f)) Results of images without skull region after centering and whitening. ((g) to (i))
Three independent components are extracted by FastICA algorithm.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

Figure 7: Ground truth of the brain tissue of simulatedMRI image of the 94th slice. (a)WM. (b) GM. (c) CSF. (d) Muscle/skin. (e) Skin. (f)
Skull. (g) Connective tissue. (h) Fat. (i) Glial matter. (j) Background.

coefficient indicates a better match between the segmented
region and the ground truth.

The results of the corresponding measured similarity for
Figures 8–10 using the six methods with three classes are
shown in Tables 1–3, and the level of noise varies from 0 to
5%. Note that the noise was calculated relative to the brightest
tissue with image size = 181 × 217, slice thickness = 1mm,
and intensity nonuniformity (“RF”) with 0%. In all cases with
different noise levels, the 𝑘-means method failed to correctly
classify the brain tissue, demonstrating the worst perfor-
mance especially for GM segmentation with a Jaccard coeffi-
cient lower than 0.13. As ICA analysis can be used for contrast
enhancement ofMRI images, the two methods (ICFCM and
ICKFCM) based on ICA signals decomposition are assumed

to be able to achieve better performance than a method with-
out ICA analysis.The assumptionwas confirmed by the quan-
titative evaluation of the experiments as the Jaccard coeffi-
cients evaluated by ICFCM and ICKFCM appeared to be
greater than those of FCM, KFCM, and KWFLICM. More-
over, in all tables, it can be observed that the proposed
ICKFCM algorithm reports the largest Jaccard coefficient
among the sixmethods; that is, the proposedmethod delivers
the best segmentation result.

To validate the suitability of the proposed method for
segmentation of multimodalMRI images, we also examined
the ability of brain tissue extraction when the original images
were degraded by several processes in terms of 3 × 3 averag-
ing, Gaussian smoothing of 𝜇 = 5 and 𝜎 = 5, and adding
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Figure 8: Continued.
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(s) (t) (u)

Figure 8: Segmentation comparisons when simulatedMRI images do not suffer noise corruption. ((a) to (c)) Segmented results ofWM,GM,
and CSF + glial matter using 𝑘-means algorithm. ((d) to (f)) Using FCM. ((g) to (i)) Using KFCM. ((j) to (l))The three extracted independent
components using FastICA. ((m) to (o)) Using KWFLICM. ((p) to (r)) Using ICFCM. ((s) to (u)) Using ICKFCM.

Table 1: Measured similarity for noiseless case (Figure 8) using six methods with three classes.

Tissues Methods𝑘-means FCM KFCM KWFLICM ICFCM ICKFCM
WM 0.3513 0.6379 0.6311 0.8305 0.8303 0.9116
GM 0.2744 0.5779 0.6938 0.8507 0.8454 0.8543
CSF + glial matter 0.6845 0.7241 0.7283 0.7244 0.7976 0.8350
Average 0.4367 0.6466 0.6844 0.8019 0.8244 0.8607
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Figure 9: Continued.
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Figure 9: Segmentation comparisons when simulatedMRI images have 3% noise. ((a) to (c)) Segmented results ofWM,GM, and CSF + glial
matter using 𝑘-means algorithm. ((d) to (f)) Using FCM. ((g) to (i)) Using KFCM. ((j) to (l)) The three extracted independent components
using FastICA. ((m) to (o)) Using KWFLICM. ((p) to (r)) Using ICFCM. ((s) to (u)) Using ICKFCM.

Table 2: Measured similarity for 3% noise (Figure 9) using six methods with three classes.

Tissues Methods𝑘-means FCM KFCM KWFLICM ICFCM ICKFCM
WM 0.3304 0.6008 0.6233 0.8496 0.8142 0.8572
GM 0.1841 0.5110 0.6392 0.6935 0.6937 0.7146
CSF + glial matter 0.6237 0.6462 0.7149 0.7707 0.7753 0.8232
Average 0.3794 0.5860 0.6590 0.7713 0.7611 0.7983
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Figure 10: Continued.
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(p) (q) (r)
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Figure 10: Segmentation comparisons when simulatedMRI images have 5% noise. ((a) to (c)) Segmented results ofWM,GM, andCSF + glial
matter using 𝑘-means algorithm. ((d) to (f)) Using FCM. ((g) to (i)) Using KFCM. ((j) to (l)) The three extracted independent components
using FastICA. ((m) to (o)) Using KWFLICM. ((p) to (r)) Using ICFCM. ((s) to (u)) Using ICKFCM.

Table 3: Measured similarity for 5% noise (Figure 10) using six methods with three classes.

Tissues Methods𝑘-means FCM KFCM KWFLICM ICFCM ICKFCM
WM 0.2928 0.5738 0.5499 0.5715 0.6013 0.6482
GM 0.1234 0.4532 0.4732 0.5839 0.6092 0.6194
CSF + glial matter 0.4022 0.4970 0.6234 0.6844 0.7372 0.7589
Average 0.2728 0.5080 0.5488 0.6133 0.6493 0.6755
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(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 11: Visual comparison of segmentation results based on ICKFCM,KWFLICM, andKFCM algorithms, where red boxes denote theROI
for visual inspection and qualitative comparison. (a)The ground truth of GM. (b)The segmentation result of GM using ICKFCM algorithm.
(c) Using KWFLICM algorithm. (d) Using KFCM algorithm. ((e) and (i)) The enlargement regions of ROI in ground truth of GM. ((f) and
(j)) The enlargement regions of ROI in Figure 11(b). ((g) and (k)) In Figure 11(c). ((k) and (l)) In Figure 11(d).

15% uniform random noise to the original images. Figures
12(a)–12(c) show the simulated MRI images, T1-weighted,
T2-weighted, and PD-weighted images of the 98th slice.
The segmentation results of averaging operation, Gaussian
smoothing, and adding uniform random noise are shown,
respectively, in Figures 12(d)–12(f), Figures 12(g)–12(i), and
Figures 12(j)–12(l).The ground truth, segmentation on noise-
less original images, and skull region of the T1-weighted
image are shown in Figures 12(m)–12(t) for qualitative
comparison. The quantitative performance of the proposed
method was also calculated when the original images were
corrupted by the processes mentioned above. As indicated

in Table 4, the proposed method can extract the complicated
shape of brain tissues and suppress various types of noise.

In addition to segmenting the simulatedMRI images, the
proposed method was further applied to real medical images
as shown in Figures 13(a)–13(c). Figures 13(d)–13(f) show the
images after skull stripping. Figures 13(g)–13(i) show the three
independent components extracted by the FastICA algo-
rithm. Figures 13(j)–13(m) show that the skull region, WM,
GM, and CSF plus glial matter were segmented by the
proposed method. Finally, real MRI images, provided by
the Yuanpei University of Medical Technology as shown in
Figures 14(a)–14(c), were used to verify the performance of
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)
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(s) (t)

Figure 12: Segmentation comparisons when simulated MRI images have degraded by several processes. ((a) to (c)) Original images of T1-
weighted, T2-weighted, and PD-weighted images of the 98th slice without skull regions. ((d) to (f)) By 3 × 3 averaging. ((g) to (i)) By Gaussian
smoothing of 𝜇 = 5 and 𝜎 = 5. ((j) to (l)) By adding 15% uniform random noise. ((m) to (p)) Ground truth of segmentations:WM, GM, CSF,
and glial matter. ((q) to (t)) Segmented result on original images without any noise corruption.

Table 4: Measured similarity of the proposed method, where OI
(original image) is degraded by A3 (3 × 3 averaging filter), G5
(Gaussian smoothing of 𝜇 = 5 and 𝜎 = 5), and UR (adding 15%
uniform random noise).

Tissues Images
OI A3 G5 UR

WM 0.9214 0.8970 0.8473 0.7241
GM 0.8472 0.8218 0.8147 0.6848
CSF + glial matter 0.8300 0.7534 0.7015 0.6273
Average 0.8662 0.8241 0.7878 0.6787

the proposed method. The skull stripped images and the
independent components extracted by the FastICA algorithm
are, respectively, shown in Figures 14(d)–14(i). As indicated
by the segmentation results presented in Figures 14(j)–14(m),
the brain tissues were correctly extracted by the proposed
ICKFCM algorithm.

4. Conclusions

The study proposes an ICKFCM method integrating skull
stripping, ICA, and KFCM clustering for brain MRI image
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l) (m)

Figure 13: Segmentation on real medical images using the proposed method. ((a) to (c)) T1-weighted, T2-weighted, and PD-weightedMRI
brain images. ((d) to (f)) Skull stripped images. ((g) to (i)) Three independent components extracted by FastICA algorithm. ((j) to (m))
Segmented results of skull region,WM, GM, and CSF + glial matter.

segmentation.The skull region of the original images is firstly
removed by a skull stripping algorithm. Since MRI signals
can be considered as a combination of the signals from each
brain matter, with the FastICA algorithm, MRI images can
be transformed into contrast-enhanced images (the inde-
pendent components extracted by the FastICA algorithm).
KFCM is then used to segment the major brain tissues (WM,
GM, and CSF plus glial matter).

In the experiments, we discuss the segmentation per-
formance of six methods (𝑘-means, FCM, KFCM, ICFCM,
KWFLICM, and ICKFCM) for the simulated MRI images in
noiseless case, noise case, and real medical images. To quan-
titatively compare the six segmentation methods, we further
evaluate segmentation accuracy using JSI similarity measure.
The results of both qualitative and quantitative comparison
indicate that, compared to other segmentation methods, the



20 Mathematical Problems in Engineering

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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Figure 14: Segmentation on another real medical image using the proposedmethod. ((a) to (c)) T1-weighted, T2-weighted, and PD-weighted
MRI brain images. ((d) to (f)) Skull stripped images. ((g) to (i)) Three independent components extracted by FastICA algorithm. ((j) to (m))
Segmented results of skull region,WM, GM, and CSF + glial matter.
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proposed ICKFCM method can extract the complicated
shape of brain tissues and is robust against various types of
noise.
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