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For the SINS initial alignment problem under large misalignment angles and uncertain noise, two novel nonlinear filters, referred
to as transformed unscented quadrature Kalman filter (TUQKF) and robust transformed unscented quadrature Kalman filter
(RTUQKF), are proposed in this paper, respectively. The TUQKF sets new deterministic sigma points to address the nonlocal
sampling problem and improve the numerical accuracy.TheRTUQKF is the combination of𝐻∞ technique andTUQKF. It improves
the accuracy and robustness of state estimation. Simulation results indicate that TUQKF performs better than traditional filters
whenmisalignment angles are large. Turntable and vehicle experiments results indicate that, under the condition of uncertain noise,
the performances of RTUQKF are better than other filters and more robust. These two methods can effectively further increase
precision and convergence speed of SINS initial alignment.

1. Introduction

Initial alignment is one of the critical and difficult problems
for inertial navigation system (INS). The essential purpose of
initial alignment for strapdown INS (SINS) is to determine
the attitudematrix between body frame and navigation frame
[1, 2]. The Kalman filter (KF) is the mostly used technique
to solve the problem of initial alignment. However, it can
only deal with initial alignment under small misalignment
angles [3]. Largemisalignment angles and uncertain noise are
two main problems existing in initial alignment in different
application environments [4, 5].Thenonlinearmodel of SINS
and nonlinear methods are developed to solve the alignment
problem. In [6], a modeling method of nonlinear model
of SINS was proposed. The widely used nonlinear filtering
method in engineering is extended KF (EKF). The principle
of EKF is simple and it has high computationally efficient
[7]. However, the performance of EKF would decrease if the
system has strong nonlinear characters [8].The unscentedKF
(UKF) and cubature KF (CKF) were developed to overcome
this problem [9, 10]. These two algorithms were applied to

SINS initial alignment and got better effects than EKF [11, 12].
Although the derivation method of CKF is different from
standard UKF, it is virtually a special case of the UKF [13].
It has pointed out that CKF has better precisions than UKF
for high-dimensional problem [10]. However, it has proved
that CKF suffers from nonlocal sampling problem which will
lead to estimation errors in high-dimensional and strong
nonlinear situations [14]. From [6] and Section 5, it is shown
that nonlinear model of SINS includes a lot of trigonometric
operations and the state dimensions are more than 10, so
the SINS initial alignment problemunder largemisalignment
angles is the high-dimensional problem coupled with strong
nonlinear model. Therefore, in [14], new set of sigma points
was designed to solve this problem and the novel algorithm is
known as transformed unscented KF (TUKF). In this paper,
in order to further increase accuracy of SINS initial align-
ment, the transformed unscented quadrature KF (TUQKF)
was proposed based onTUKF.TUQKF is an extended version
of TUKF. It is proved that, under single Gauss-Laguerre
quadrature rule, TUQKF degenerates to TUKF and TUQKF
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exhibits better numerical characteristics than TUKF when
using high-order Gauss-Laguerre rule.

For the other problem, SINS initial alignment with uncer-
tain noise, if environment noise is not Gaussian white noise,
the traditional nonlinear filtering method mentioned above
will produce a greater estimation error. One solution for this
problem is to use the𝐻∞ technique to improve the robustness
of filter.The𝐻∞ filter is more robust and has better precision
than standard KF under uncertain noise [15, 16]. However,
standard 𝐻∞ filter can only fulfill the linear filtering prob-
lems. In the recent two decades, 𝐻∞ filter was extended to
nonlinear problems by combingwith nonlinear filters. In [17],
the𝐻∞ filter was combined with EKF and the new algorithm
known as robust extended KF (REKF) was proposed. In this
framework, the𝐻∞ filter was combined with UKF and CKF.
These two new algorithms are known as robust unscented
KF (REKF) and cubature 𝐻∞ filter (C𝐻∞F) [16, 18]. In [18],
the RUKF was applied to the SINS initial alignment with
colored noise and achieved better accuracy than UKF. In this
paper, in order to further increase the performance of filter
for SINS initial alignment,𝐻∞ filter has been combined with
TUQKF and a novel algorithm named as robust transformed
unscented quadrature KF (RTUQKF) was proposed. The
proposed TUQKF and RTUQKF were used for SINS initial
alignment, respectively, and compared with the square-root
cubature KF (SRCKF) in mathematical simulation, turntable
experiment, and vehicle experiment.

The rest of paper is organized as follows. Section 2
reviews the conventional nonlinear filters. Section 3 derives
the TUQKF algorithm. The RTUQKF algorithm is derived
in Section 4. The nonlinear model of SINS is established in
Section 5. Three experiments are conducted in Section 6 to
verify the effectiveness of TUQKF and RTUQKF. Finally,
Conclusions are drawn in Section 7.

2. Conventional Nonlinear Filters

The general discrete nonlinear model is given by

x𝑘 = 𝑓 (x𝑘−1) + 𝜔𝑘−1
z𝑘 = ℎ (x𝑘) + k𝑘, (1)

where x𝑘 ∈ 𝑅𝑛 and z𝑘 ∈ 𝑅𝑚 are state andmeasurement,𝑓(⋅) is
nonlinear state function, and ℎ(⋅) is nonlinear measurement
function. 𝜔𝑘−1 and k𝑘 are uncorrelated zero-mean white
Gaussian noise with variancesQ𝑘 and R𝑘, respectively.

The state vector x𝑘 can be estimated by general Gaussian
approximation filter. The heart of the Gaussian approxima-
tion filter is to evaluate the integral as follows [19]:

𝐼 (𝑓) = ∫
𝑅𝑛
𝐹 (x) × 𝑁 (x; x̂,P) 𝑑x𝑘, (2)

where 𝐹(x) is an arbitrary nonlinear function.

Gauss–Hermite quadrature rule [20], unscented transfor-
mation method [8], and the cubature rule [10] are generally
used to approximate the above integral:

∫
𝑅𝑛
𝐹 (x) × 𝑁 (x; x̂,P) 𝑑x
= ∫
𝑅𝑛
𝐹 (Sx + x̂) × 𝑁 (x; 0, I) 𝑑x

≈ 𝑁𝑠∑
𝑖=1

𝑊𝑖𝐹 (S𝛽𝑖 + x̂) ,
(3)

where 𝛽𝑖 is quadrature points,𝑊𝑖 is corresponding weights,
and S is square root of P; namely, P = SS𝑇.

Therefore, the main purpose of evaluating integral (2) is
to obtain quadrature points 𝛽𝑖 and weights𝑊𝑖.

Using Gauss–Hermite quadrature rule to approximate
the integral (2), the total number of points increases expo-
nentially with the dimension 𝑛 and it leads to the curse of
dimensionality problem [21]. So, it is not suitable for SINS
initial alignment which is the high-dimensional problem.
The unscented transformationmethod and cubature rule also
bear the problem of accuracy decline for high-dimensional or
strong nonlinear problems [10, 14]. To solve these problems,
the TUKF selects novel sigma points to approximate the
integral (2); the 𝛽𝑖 and𝑊𝑖 are given by [14]

Υ𝑖 = (𝛾𝑖,1, 𝛾𝑖,2, . . . , 𝛾𝑖,𝑛)𝑇 ; 𝑖 = 1, 2, . . . , 2𝑛,
𝛽𝑖 = √𝑛Υ𝑖; 𝑖 = 1, 2, . . . , 2𝑛,
𝑊𝑖 = 12𝑛 ; 𝑖 = 1, 2, . . . , 2𝑛,

(4)

where

𝛾𝑖,2𝑟−1 = √2𝑛 cos (2𝑟 − 1) 𝑖𝜋𝑛
𝛾𝑖,2𝑟 = √2𝑛 sin (2𝑟 − 1) 𝑖𝜋𝑛 ,

(5)

where 𝑖 = 1, 2, . . . , 2𝑛, 𝑟 = 1, 2, . . . , [𝑛/2], and [𝑛/2] denotes
the greatest integer less than 𝑛/2. 𝑟𝑖,𝑛 = (−1)𝑖−1 when 𝑛 is
odd.

In this paper, we propose a new sigma point selection
strategy based on cubature rule andTUKF to further improve
the performance of filter for high-dimensional problem.

3. Transformed Unscented
Quadrature Kalman Filter

3.1. Cubature Rule and Transformed Cubature Points. Putting
Gaussian probability density function into (2) yields

𝐼 (𝑓) = 1√P (2𝜋)𝑛 ∫𝑅𝑛 𝑓 (x) 𝑒−(x−𝜇)(x−𝜇)
𝑇/2P𝑑x, (6)

where 𝜇 and P are the mean and variance of state vector x,
respectively.
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Equation (6) can be transformed by spherical-radial
cubature rule [10, 22]:

𝐼 (𝑓)
= 1√(2𝜋)𝑛 ∫

∞

𝑟=0
∫
𝑈𝑛

[𝑓 (S𝑟Z + 𝜇) 𝑑𝑠 (Z)] 𝑟𝑛−1𝑒−𝑟2/2𝑑𝑟, (7)

where x = S𝑟Z + 𝜇, S denotes Cholesky decomposition of P,
namely P = SS𝑇, ‖Z‖ = 1, and 𝑈𝑛 denotes surface of unit
hypersphere.

First, compute integral

∫
𝑈𝑛

[𝑓 (S𝑟𝑍 + 𝜇) 𝑑𝑠 (Z)] . (8)

Integral (8) can be approximated by [10]

∫
𝑈𝑛

[𝑓 (S𝑟𝑍 + 𝜇) 𝑑𝑠 (Z)] ≈ ( 𝑘∑
𝑖=1

𝑓 (S𝑟𝛼𝑖 + 𝜇))𝑤, (9)

where 𝛼𝑖 are space points and ‖𝛼𝑖‖ = 1, 𝑘 denotes number of
space points, and 𝑤 denotes corresponding weights.

It can be seen that the computational precision of integral
(7) depends on 𝛼𝑖 and 𝑤. Performance of filters is also
influenced by 𝛼𝑖 and 𝑤.

The 𝛼𝑖 can be selected by

𝛼𝑖 = (𝛼𝑖,1, 𝛼𝑖,2, . . . , 𝛼𝑖,𝑛)𝑇 , (10)

where

𝛼𝑖,2𝑟−1 = √2𝑛 cos (2𝑟 − 1) 𝑖𝜋𝑛 ,
𝛼𝑖,2𝑟 = √2𝑛 sin (2𝑟 − 1) 𝑖𝜋𝑛 ,

(11)

where 𝑖 = 1, 2, . . . , 2𝑛 and 𝑟 = 1, 2, . . . , [𝑛/2]. If 𝑛 is odd, 𝑟𝑖,𝑛 =(−1)𝑖−1.
In [14], it has been proved that 𝛼 = [𝛼1,𝛼2, . . . ,𝛼2𝑛] is an

orthogonal matrix, so ‖𝛼𝑖‖ = 1.
The 𝑤 can be calculated by [10]

𝑤 = 2√𝜋𝑛2𝑛Γ (𝑛/2) . (12)

3.2. Gauss-Laguerre Quadrature Rule. Bringing (9) and (12)
into (6) and letting 𝜆 = 𝑟2/2 result in
𝐼 (𝑓)
≈ 12𝑛Γ (𝑛/2) ∫

∞

𝜆=0

2𝑛∑
𝑖=1

𝑓 (S√2𝜆𝛼𝑖 + 𝜇) 𝜆(𝑛/2−1)𝑒−𝜆𝑑𝜆. (13)

Define 𝑔(𝜆) as
𝑔 (𝜆) = 2𝑛∑

𝑖=1

𝑓 (S√2𝜆𝛼𝑖 + 𝜇) . (14)

Computing integral (6) is transformed into computing
integral (13). First, calculate the integral

∫∞
𝜆=0
𝑔 (𝜆) 𝜆(𝑛/2−1)𝑒−𝜆𝑑𝜆. (15)

Gauss-Laguerre quadrature rule can be used to approxi-
mate integral (15) [10, 22]:

∫∞
𝑥=0
𝑔 (x) x𝛾𝑒−𝑥𝑑x ≈ 𝑚∑

𝑖=1

𝐴 𝑖𝑔 (𝜆𝑖) , (16)

where 𝜆𝑖 is quadrature point and𝐴 𝑖 is corresponding weight.𝜆𝑖 can be calculated from

𝐿𝛾𝑚 (𝜆) = (−1)𝑚 𝜆−𝛾𝑒𝜆 𝑑𝑚𝑑𝜆𝑚 𝜆𝛾+𝑚𝑒−𝜆 = 0. (17)

The weights can be determined as

𝐴 𝑖 = 𝑚!Γ (𝛾 + 𝑚 + 1)𝜆𝑖 [𝐿̇𝛾𝑚 (𝜆)]2 . (18)

The precision of the integral depends on the number
of quadrature points. The higher the number of quadrature
points is the better the precision would be [22]. In addi-
tion, the quadrature points and weights of Gauss-Laguerre
quadrature are independent of nonlinear function 𝑓(x),
so quadrature points and weights always exist and can be
computed and stored offline.

Bringing approximate results of integral (15) into (13)
yields

𝐼 (𝑓) ≈ 𝑚∑
𝑗=1

2𝑛∑
𝑖=1

𝑓 (S𝜉𝑗 + 𝜇)𝑊𝑗, (19)

where

𝜉𝑗 = √2𝜆𝑗𝛼𝑖,
𝑊𝑗 = 𝐴𝑗2𝑛Γ (𝑛/2) ,

(20)

where 𝜉𝑗 is sigma points and𝑊𝑗 is corresponding weight of
TUQKF.

If integral (15) is solved with 𝑚 order Gauss-Laguerre
quadrature rule, the TUQKF is named as 𝑚-order TUQKF
(TUQKF-𝑚).
3.3. Analyses of TUQKF. If using first-order Gauss-Laguerre
quadrature rule, quadrature point and weight are 𝜆1 = √𝑛/2
and 𝐴1 = Γ(𝑛/2). Putting 𝜆1 and 𝐴1 into (20) yields

𝜉𝑖 = √𝑛𝛼𝑖; 𝑖 = 1, 2, . . . , 2𝑛,
𝑊𝑖 = 12𝑛 ; 𝑖 = 1, 2, . . . , 2𝑛. (21)

Comparing (4) and (21), it can be seen that the sigma
points and weights of the TUKF and the TUQKF-1 are the
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same.This means TUQKF-1 coincides with TUKF. So, TUKF
is also derived in this paper from another point of view and
TUQKF is an extended version of the TUKF. The precision
of the filter is influenced by the order of Gauss-Laguerre rule.
The higher the number of quadrature points is the higher the
calculation precision of integral (2) would be. The higher the
calculation accuracy of integral (2) the better the accuracy of
the filter would be. So, mathematically, the performance of
the TUQKF-𝑚 is better than the TUKF when𝑚 > 1.

Compared to EKF, TUQKF does not need to calcu-
late Jacobian matrices and is more suitable for the system
which has strong characters of nonlinear. Compared to UKF,
TUQKF maintains the positive definiteness of the weight
and the covariance matrix for high-dimensional problem.
Compared to CKF, TUQKF also solves the nonlocal sampling
problem. So, TUQKF is suitable for high-dimensional prob-
lem coupled with strong nonlinear model.

Finally, discuss the computational efficiency. TUQKF-𝑚
requires 𝑀 = 2 nm sigma points, so it is computation-
ally more efficient than the Gauss–Hermite filter which
requires 𝑚𝑛 sigma points. However, the computational cost
of TUQKF-𝑚 is slightly higher than CKF and TUKF when𝑚 > 1.

When using the TUQKF-𝑚, the balance between the
accuracy and the computational cost should be considered. If
the dimension of state vector is high,𝑚 should not be chosen
very large. In addition, in practice, the assumption that the
posterior density functions obey the Gauss distribution is
hardly met. So, a large value of 𝑚 would cause the problems
such as “over fitting.” Considering the above problems,𝑚was
set to 2 in this paper.

3.4. TUQKF Algorithm Flow

3.4.1. Initial Filter

(i) Initial x̂0 and P0 by

x̂0 = 𝐸 (x0) ,
P0 = 𝐸 ((x̂0 − x0) (x̂0 − x0)𝑇) . (22)

(ii) Compute sigma point 𝜉𝑖 and weight𝑊𝑖 (𝑖 = 1, 2, . . . ,𝑀).

3.4.2. Time Update

(i) Factorize

P𝑘−1|𝑘−1 = S𝑘−1|𝑘−1S
𝑇
𝑘−1|𝑘−1. (23)

(ii) Evaluate and update transformed unscented quadra-
ture points

X𝑖,𝑘−1|𝑘−1 = S𝑘−1|𝑘−1𝜉𝑖 + x̂𝑘−1|𝑘−1 𝑖 = 1, 2, . . . ,𝑀,
X∗𝑖,𝑘−1|𝑘−1 = 𝑓 (X𝑖,𝑘−1|𝑘−1) 𝑖 = 1, 2, . . . ,𝑀. (24)

(iii) Estimate predicted state and error covariance

x̂𝑘|𝑘−1 = 𝑀∑
𝑖=1

𝑊𝑖X∗𝑖,𝑘−1|𝑘−1,

P𝑘|𝑘−1 = 𝑀∑
𝑖=1

𝑊𝑖X∗𝑖,𝑘−1|𝑘−1X∗𝑇𝑖,𝑘−1|𝑘−1 − x̂𝑘|𝑘−1x̂
𝑇
𝑘|𝑘−1

+Q𝑘−1.

(25)

3.4.3. Measurement Update

(i) Factorize

P𝑘|𝑘−1 = S𝑘|𝑘−1S
𝑇
𝑘|𝑘−1. (26)

(ii) Evaluate and update transformed unscented quadra-
ture points

X𝑖,𝑘|𝑘−1 = S𝑘|𝑘−1𝜉𝑖 + x̂𝑘−1|𝑘−1 𝑖 = 1, 2, . . . ,𝑀,
Z𝑖,𝑘|𝑘−1 = ℎ (X𝑖,𝑘−1|𝑘−1) 𝑖 = 1, 2, . . . ,𝑀. (27)

(iii) Estimate predicted measurement

ẑ𝑘|𝑘−1 = 𝑀∑
𝑖=1

𝑊𝑖Z𝑖,𝑘−1|𝑘−1. (28)

(iv) Estimate innovation covariance and cross-covariance
matrix

P𝑧𝑧,𝑘|𝑘−1 = 𝑀∑
𝑖=1

𝑊𝑖Z𝑖,𝑘−1|𝑘−1Z𝑇𝑖,𝑘−1|𝑘−1 − ẑ𝑘|𝑘−1ẑ
𝑇
𝑘|𝑘−1,

P𝑥𝑧,𝑘|𝑘−1 = 𝑀∑
𝑖=1

𝑊𝑖X𝑖,𝑘−1|𝑘−1Z𝑇𝑖,𝑘−1|𝑘−1 − x̂𝑘|𝑘−1ẑ
𝑇
𝑘|𝑘−1.

(29)

(v) Estimate the gain

K = P𝑥𝑧,𝑘|𝑘−1 (P𝑧𝑧,𝑘|𝑘−1 + R𝑘)−1 . (30)

(vi) Estimate updated state and corresponding error cova-
riance

x̂𝑘|𝑘 = x̂𝑘|𝑘−1 + K (z𝑘 − ẑ𝑘|𝑘−1) , (31)

P𝑘|𝑘 = P𝑘|𝑘−1 − K (P𝑧𝑧,𝑘|𝑘−1 + R𝑘)K𝑇. (32)

Measurement function described in (1) can be simplified
as the following linear function:

z𝑘 = H𝑘x𝑘 + k𝑘, (33)

whereH𝑘 is the measurement matrix.
Measurement-update steps (26)∼(29) can be simplified as

ẑ𝑘|𝑘−1 = H𝑘x̂𝑘|𝑘−1, (34)

P𝑧𝑧,𝑘|𝑘−1 = H𝑘P𝑘|𝑘−1H
𝑇
𝑘 , (35)

P𝑥𝑧,𝑘|𝑘−1 = P𝑘|𝑘−1H
𝑇
𝑘 . (36)
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4. Robust Transformed Unscented
Quadrature Kalman Filter

The discrete nonlinear model can be expressed as

x𝑘 = 𝑓 (x𝑘−1) + 𝜔𝑘−1,
z𝑘 = ℎ (x𝑘) + k𝑘,
y𝑘 = L𝑘x𝑘,

(37)

where x𝑘 ∈ 𝑅𝑛 and z𝑘 ∈ 𝑅𝑚 are the state and measurement.𝑓(⋅) is nonlinear state function, andℎ(⋅) is nonlinearmeasure-
ment function.𝜔𝑘−1 and k𝑘 are noisewith uncertain statistical
properties. y𝑘 ∈ 𝑅𝑛 is the signal to be estimated and L𝑘 is
known.

Nonlinear filters discussed above are derived under the
condition of zero-mean Gaussian white noise. However,
statistical properties of 𝜔𝑘−1 and k𝑘 are uncertain in (37).
We can assume that the noise is zero-mean Gaussian white
noise with variances Q and R. However, if the assumption
is false, the nonlinear filters discussed above will produce
greater estimation errors. Combining nonlinear filters with𝐻∞ technique can improve the performance of filters under
the different noise with different statistical properties.

4.1. REKF Algorithm. The robust extended Kalman filter
(REKF) is the combination of 𝐻∞ filter and EKF [17]. It
contains the following two steps:

Time update:

x̂𝑘|𝑘−1 = 𝑓 (x̂𝑘−1|𝑘−1) ,
P𝑘|𝑘−1 = F𝑘−1P𝑘|𝑘−1F

𝑇
𝑘−1 +Q𝑘−1, (38)

where F𝑘−1 is Jacobian matrix of 𝑓(⋅) computed at x̂𝑘−1|𝑘−1.
Measurement update:

x̂𝑘|𝑘 = x̂𝑘|𝑘−1 + K [z𝑘 − ℎ (x̂𝑘|𝑘−1)] , (39)

K = P𝑘|𝑘−1H
𝑇
𝑘 (H𝑘P𝑘|𝑘−1H𝑇𝑘 + R𝑘)−1 , (40)

P𝑘|𝑘 = P𝑘|𝑘−1

− P𝑘|𝑘−1 [H𝑇𝑘 L𝑇𝑘 ]R−1𝑒,𝑘 [H𝑇𝑘 L𝑇𝑘 ]𝑇 P𝑘|𝑘−1,
(41)

R𝑒,𝑘 = [R 0
0 −𝛾2I] + [H𝑇𝑘 L𝑇𝑘 ]𝑇 P𝑘|𝑘−1 [H𝑇𝑘 L𝑇𝑘 ] , (42)

where H𝑘 is Jacobian matrix of ℎ(⋅) computed at x̂𝑘|𝑘−1. 𝛾 is
the bound which can be chosen by designer.

If, and only if, the condition is satisfied,

P𝑘|𝑘 − 𝛾−2L𝑇𝑘L𝑘 > 0 0 ≤ 𝑘 ≤ 𝑁, (43)

the filter can be designed to achieve the desired accuracy by
iterating 𝛾 to arrive at a suboptimal solution [23, 24].

It can be easily shown that REKF reverts to EKF with𝛾 → ∞. Thus, 𝛾 can be thought as a tuning parameter
to control the trade-off between performance of 𝐻∞ and

minimum variance performance [17, 25]. Equation (43) will
be satisfied easily with a large value of 𝛾, but the large value
of 𝛾 reduces the robustness of the filter. If we set 𝛾 to a small
value, there is no guarantee that (43) will be satisfied during
the process of filtering. So, the selection of the parameter 𝛾 is
very important. One method to choose parameter 𝛾 will be
given in the next part.

4.2. Robust TransformedUnscentedQuadratureKalmanFilter.
In this part, the RTUQKF algorithm will be derived based on
REKF framework.

Equations (38) in timing update of REKF can be replaced
by the (23)∼(25) in timing update of TUQKF and the Jacobian
matrix H𝑘 can be replaced by the method based on the
following two approximations [26]:

P𝑧𝑧,𝑘|𝑘−1 ≈ H𝑘P𝑘|𝑘−1H
𝑇
𝑘 ,

P𝑥𝑧,𝑘|𝑘−1 ≈ P𝑘|𝑘−1H
𝑇
𝑘 .

(44)

For SINS initial alignment, the signal which needs to be
estimated is state x𝑘, so L𝑘 can be set to I. Putting L𝑘 = I, (44)
into (41)∼(42), results in

P𝑘|𝑘 = P𝑘|𝑘−1 − [P𝑘|𝑘−1H𝑇𝑘 P𝑘|𝑘−1]R−1𝑒,𝑘 [H𝑘P𝑘|𝑘−1P𝑘|𝑘−1
]

≈ P𝑘|𝑘−1 − [P𝑥𝑧,𝑘|𝑘−1 P𝑘|𝑘−1]R−1𝑒,𝑘 [[
P𝑇𝑥𝑧,𝑘|𝑘−1
P𝑘|𝑘−1

]
]

R𝑒,𝑘 = [[
R 0

0 −𝛾2I]]
+ [
[
H𝑘P𝑘|𝑘−1H𝑇𝑘 H𝑘P𝑘|𝑘−1

P𝑘|𝑘−1H𝑇𝑘 P𝑘|𝑘−1
]
]

≈ [
[
R + P𝑧𝑧,𝑘|𝑘−1 P𝑇𝑥𝑧,𝑘|𝑘−1

P𝑥𝑧,𝑘|𝑘−1 −𝛾2I + P𝑘|𝑘−1
]
]
.

(45)

P𝑧𝑧,𝑘|𝑘−1 and P𝑥𝑧,𝑘|𝑘−1 can be calculated by (29) or (35)∼
(36). The RTUQKF algorithm can be summarized as follows:

(1) Initial x̂0 and P0 by (22).
(2) Time update: compute (23)∼(25).
(3) Measurement update: compute (26)∼(31) and (45).
If measurement function described in (37) can be sim-

plified as linear function (33), the measurement-update steps
(26)∼(29) can be simplified as (34)∼(36).

If 𝐻∞ filter is combined with TUQKF-𝑚, the proposed
RTUQKF is named as𝑚-order RTUQKF (RTUQKF-𝑚).

One way to choose parameter 𝛾 was proposed in [27].
Applying the matrix inversion lemma for (41) and P𝑘|𝑘

should maintain the positive definiteness during the process
of filtering, so it can be easily shown that

P−1𝑘|𝑘 = P−1𝑘|𝑘−1 +H𝑇𝑘R
−1H𝑘 − 𝛾2I > 0. (46)

Thus, 𝛾 can be selected as

𝛾2 = 𝛼max {eig (P−1𝑘|𝑘−1 +H𝑇𝑘R
−1H𝑘)−1} , (47)
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where max {eig(𝐴)−1} denotes the maximum eigenvalue of
the matrix 𝐴−1 and 𝛼 is a scalar larger than one.

Putting (44) into (47), 𝛾 in RTUQKF can be selected as

𝛾2 = 𝛼max{eig (P−1𝑘|𝑘−1
+ P−1𝑘|𝑘−1P𝑥𝑧,𝑘|𝑘−1R

−1 [P−1𝑘|𝑘−1P𝑥𝑧,𝑘|𝑘−1]𝑇)−1} .
(48)

4.3. A Comparison of TUQKF with RTUQKF. Comparing
RTUQKF and TUQKF, it can be found that their essential
distinction is that P𝑘|𝑘 is different. The parameter 𝛾 is added
in the RTUQKF and K is adjusted by changing the value of
P𝑘|𝑘. So, RTUQKF improves the robustness of system by the
parameter 𝛾. Similarly, the RTUQKF reverts to TUKF with𝛾 → ∞.

TUQKF can also be used under the condition of uncer-
tain noise, although its performance may not be better
than RTUQKF. However, RTUQKF is more complex than
TUQKF and its computational cost is also slightly higher
than TUQKF. In particular, a false parameter 𝛾 would lead
to filter divergence. So, in this paper, these two new methods
were proposed and in practice, one of them can be selected
according to demand and actual situation.

5. Nonlinear Model of SINS

The auxiliary external information such as velocity reference
is necessary when using nonlinear filters to solve the problem
of SINS initial alignment.The velocity reference can be given
by GPS in most case. If the navigation system is underwater,
the velocity reference can be given by DVL. In this paper, the
nonlinear model of SINS is established based on [6].

5.1. Subsection Establishment of the State Equation. In the
model of SINS, the navigation frame (𝑛 frame) is usually
chosen as the geographic coordinate system (ENU) and the

SINS calculation platform coordinate can be described as𝑛󸀠 frame. The body frame (𝑏 frame) is fixed at the center
of body, the right direction is defined as 𝑥-axis, and the
front and the upward directions are defined as 𝑦-axis and 𝑧-
axis, respectively. Three Euler angles, yaw, pitch, and roll, are
denoted as 𝜓, 𝜃, and 𝛾, respectively. Misalignment angles can
be denoted by𝜙𝑢,𝜙𝑒, and𝜙𝑛.C𝑛𝑏 is the rotation transformation
matrix from 𝑛 frame to 𝑏 frame. The true attitude angles can
be denoted as 𝜑 = [𝜃 𝛾 𝜓]𝑇. The true velocity information
can be denoted as k𝑛𝑠 = [V𝑛𝑒 V𝑛𝑛 V𝑛𝑢]𝑇. The attitude angles
calculated by SINS can be denoted as 𝜑̃ = [𝜃̃ 𝛾̃ 𝜓̃]𝑇. The
velocity information calculated by SINS can be denoted as
k̃𝑛𝑠 = [Ṽ𝑛𝑒 Ṽ𝑛𝑛 Ṽ𝑛𝑢]𝑇. Denote the vector 𝜙 = 𝜑 − 𝜑̃ =
[𝜙𝑢 𝜙𝑒 𝜙𝑛]𝑇. The velocity error can be denoted as 𝛿k𝑛 = k𝑛𝑠−
k̃𝑛𝑠 = [𝛿V𝑛𝑒 𝛿V𝑛𝑛 𝛿V𝑛𝑢]𝑇. The nonlinear error equations can be
described by

𝜙̇ = C−1𝜔 [(𝐼 − C𝑛
󸀠

𝑛 ) 𝜔̃𝑛𝑖𝑛 + C𝑛
󸀠

𝑛 𝛿𝜔𝑏𝑖𝑛 − C𝑛
󸀠

𝑏 (𝜀𝑏 + w𝑏𝑔)] ,
𝛿k̇𝑛
= [(I − C𝑛𝑛󸀠)]C𝑛󸀠𝑏 f̃𝑏 − (2𝛿𝜔𝑛𝑖𝑒 + 𝛿𝜔𝑛𝑒𝑛) × k̃𝑛

− (2𝜔̃𝑛𝑖𝑒 + 𝜔̃𝑛𝑒𝑛) × 𝛿k𝑛 + C𝑛𝑛󸀠C
𝑛󸀠

𝑏 (∇𝑏 + w𝑏𝑎) ,

(49)

where 𝜀𝑏 = [𝜀𝑏𝑥 𝜀𝑏𝑦 𝜀𝑏𝑧] and w𝑏𝑔 are the gyroscope constant
errors and gyroscope random errors in 𝑏 frame. ∇𝑏 =
[∇𝑏𝑥 ∇𝑏𝑦 ∇𝑏𝑧]𝑇 and w𝑏𝑎 are the accelerometer constant errors

and random errors in 𝑏 frame. f̃
𝑏
is the specific force mea-

sured by accelerometer. 𝜔̃𝑛𝑒𝑛 is the angular velocity of the rota-
tion of a navigation coordinates frame relative to the earth. 𝜔̃𝑛𝑖𝑒
is the rotation projection of the earth. 𝛿𝜔𝑛𝑖𝑛, 𝛿𝜔𝑛𝑖𝑒, and 𝛿𝜔𝑛𝑒𝑛
are the slow variations of 𝜔̃𝑛𝑖𝑛, 𝜔̃𝑛𝑖𝑒, and 𝜔̃𝑛𝑒𝑛, respectively.C−1𝜔
is the inverse matrix of C𝜔. With the large misalignment, C𝜔
and C𝑛

󸀠

𝑛 can be described as

C𝑛
󸀠

𝑛 = [[[
[

cos𝜙𝑛 cos𝜙𝑢 − sin𝜙𝑛 sin𝜙𝑒 sin𝜙𝑢 cos𝜙𝑛 sin𝜙𝑢 + sin𝜙𝑛 sin𝜙𝑒 sin𝜙𝑢 − sin𝜙𝑛 cos𝜙𝑒
− cos𝜙𝑒 sin𝜙𝑢 cos𝜙𝑒 cos𝜙𝑢 sin𝜙𝑒

sin𝜙𝑛 cos𝜙𝑢 + cos𝜙𝑛 sin𝜙𝑒 sin𝜙𝑢 sin𝜙𝑛 sin𝜙𝑢 − cos𝜙𝑛 sin𝜙𝑒 sin𝜙𝑢 cos𝜙𝑛 cos𝜙𝑒
]]]
]
,

C𝜔 = [[[
[

cos𝜙𝑛 0 − sin𝜙𝑛 cos𝜙𝑒
0 1 sin𝜙𝑒

sin𝜙𝑛 0 cos𝜙𝑛 cos𝜙𝑒
]]]
]
.

(50)

The state vector is selected as

x = [𝛿V𝑛𝑒 𝛿V𝑛𝑛 𝜙𝑒 𝜙𝑛 𝜙𝑢 ∇𝑏𝑥 ∇𝑏𝑦 𝜀𝑏𝑥 𝜀𝑏𝑦 𝜀𝑏𝑧] . (51)

On a moving base, the nonlinear state equation of SINS
can be obtained as

𝜙̇ = C−1𝜔 [(𝐼 − C𝑛
󸀠

𝑛 ) 𝜔̃𝑛𝑖𝑛 + 𝛿𝜔𝑛𝑖𝑛 − C𝑛
󸀠

𝑏 𝜀
𝑏] + w𝑛𝑔,

𝛿k̇𝑛 = (I − C𝑛𝑛󸀠) f𝑛󸀠 − (2𝛿𝜔𝑛𝑖𝑒 + 𝛿𝜔𝑛𝑒𝑛) × k̃𝑛

− (2𝜔̃𝑛𝑖𝑒 + 𝜔̃𝑛𝑒𝑛) × 𝛿k̃𝑛 + C𝑛𝑛󸀠C
𝑛󸀠

𝑏 ∇
𝑏 + w𝑛𝑎,
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Table 1: Simulation conditions of swing base.

Roll Pitch Yaw
Swaying amplitude (∘) 9 12 14
Swaying oscillation cycles (s) 8 10 6

Table 2: Simulation conditions of sensor precision.

Gyroscope Accelerometer
Constant drift 0.01∘/h Constant bias 50 ug
Random drift 0.001∘/√h Random deviation 50 ug

𝜀̇𝑏 = 0,
∇̇
𝑏 = 0.

(52)

5.2. Establishment of the Measurement Equation. In this
paper, we choose the east velocity and north velocity to
establish the measurement equation.The velocity differential
equation of SINS can be described as

z = k̃𝑛𝑠 − C𝑛
󸀠

𝑛 k̃
𝑏 = 𝛿k𝑛 − [𝐼 − (𝐶𝑛󸀠𝑛 )𝑇]𝐶𝑛󸀠𝑏 k𝑏 + k, (53)

where k̃𝑛𝑠 and k𝑏 are velocity calculated by SINS and the true
value, respectively (only contains the east and north velocity
components). k̃𝑏 includes the east and north external velocity
information. k is the measurement noise.

If the external velocity information in 𝑛 frame k̃𝑛 is
known, the measurement equation can be simplified as

z = k̃𝑛𝑠 − k̃𝑛 = Hx + k, (54)

where k̃𝑛 is the external velocity vector.H is themeasurement
matrix andH = [I2×2 02×8].
6. Experiments and Analysis

6.1. Mathematical Simulation. In this part, the navigation
system is placed on a simulated swing base and the initial
misalignment angles are set to large values: Δ𝜃 = 10∘, Δ𝛾 =10∘, and Δ𝜓 = 15∘, 20∘, 35∘, 40∘, respectively. The simulation
conditions of swing base and sensors are in Tables 1 and 2.
Set system noise as zero-mean Gaussian white noise. Also
assume that velocity of navigation system is 5m/s and the
external information only includes the velocity in 𝑏 frame.
TheSRCKF, TUKF, andTUQKF-2 are used to solve this initial
alignment problem. Simulation time is 700 s. A comparison
of these three methods is given in detail.

The simulation results are shown in Table 3 and the curve
graphs of alignment errors with Δ𝜃 = 10∘, Δ𝛾 = 10∘, andΔ𝜓 = 40∘ are shown in Figure 1.

Analyze the accuracy of initial alignment first. In Figure 1,
when Δ𝜃 = 10∘, Δ𝛾 = 10∘, and Δ𝜓 = 40∘, after 600 s, the
error curves of horizontal alignment of 3 methods are
closed and errors are less than 0.01∘. The azimuth alignment
errors of TUQKF-2 and TUKF are less than 0.05∘ and 0.1∘,

respectively. Their precisions are much better than SRCKF of
which azimuth alignment error is more than 0.2∘. So, in this
simulation, the precision of TUQKF-2 is better than TUKF
and much better than SRCKF.

In Table 3, the same results can be seen. For different
azimuth misalignment angles, the average errors of horizon-
tal alignment of 3 methods are all less than 0.008∘ and the
average error of azimuth alignment of TUQKF-2 is better
than TUKF and SRCKF. So, the TUQKF-2 algorithm can
maintain the high accuracy of horizontal alignment and
remarkably improve the accuracy of azimuth alignment.

Next, analyze the convergence speed. In Figure 1, the
convergence speed of TUQKF-2 and TUKF are almost the
same.The horizontal alignment convergence time is less than
200 s and the azimuth alignment convergence time is less
than 500 s. Compared to these, the convergence speed of
SRCKF is very slow.

Owing to the convergence speed of azimuth alignment
which is faster than horizontal alignment, we calculated the
standard deviation of azimuth estimation errors in different
periods to quantitatively analyze the convergence speed of
azimuth alignment. The concrete data are shown in Table 4.

From Table 4, it can be seen that, in most of the time, the
standard deviation of azimuth estimation error of TUQKF-2
is a bit smaller than TUKF and much smaller than SRCKF.
So, the convergence speed of the azimuth of TUQKF-2 is a
bit faster than TUKF and much faster than SRCKF.

In a word, according to the mathematical simulation,
the accuracy of horizontal alignment of 3 methods is almost
same, less than 0.01∘. The precision of azimuth alignment of
TUQKF-2 is better than TUKF and SRCKF.The convergence
speed, especially the convergence speed of azimuth alignment
of TUQKF-2, is a little better than TUKF and much better
than the SRCKF.

6.2. Turntable Experiment. To verify the effectiveness of the
RTUQKF, turntable experiment is designed. In this turntable
experiment, one SINS named FOSN is placed on a three-axis
turntable. FOSN can provide gyroscope data and accelerome-
ter data.The sensor accuracy of FOSN is given in Table 5.The
precision of turntable is ±0.0001∘, so it can provide the true
attitude angles as a reference. In the experiment, the FOSN
is connected with the turntable; the turntable is controlled by
the computer and makes a fixed swaying motion.

In this experiment, the data are collected from the real
world, so the statistical properties of noise are uncertain
and the velocity of SINS is zero, so (54) can be used as
measurement equation.

Two tests with different initial attitudes, different swaying
amplitudes, and different oscillation cycles are made. The
SRCKF, TUQKF-2, and RTUQKF-2 are used to solve the
above initial alignment problem, respectively. The tests con-
ditions and results are as follows.

6.2.1. The First Turntable Test. In this test, 3 different kinds of
initial attitude angles are selected as 𝜃̃ = 15∘, 𝛾̃ = 10∘, and 𝜓̃ =35∘ and 𝜃̃ = 15∘, and 𝛾̃ = 10∘, 𝜓̃ = 30∘, and 𝜃̃ = 10∘, 𝛾̃ = 5∘,
and 𝜓̃ = 30∘. True initial attitude angles are 𝜃 = 6.9443∘,
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Table 3: Statistical properties of alignment errors in mathematical simulation.

Algorithm Δ𝜓 (∘) Pitch error (∘) Roll error (∘) Yaw error (∘)
Mean Standard deviation Mean Standard deviation Mean Standard deviation

SRCKF
15

0.0023 0.00031 −0.0017 0.00042 0.0945 0.0202
TUKF 0.0078 0.00047 −0.0026 0.0014 0.0594 0.0068
TUQKF 0.0035 0.00045 −0.0025 0.00064 0.0130 0.0090
SRCKF

20
0.0021 0.00032 −0.0011 0.00039 0.1264 0.0235

TUKF 0.0080 0.00071 −0.0041 0.0015 0.0538 0.0064
TUQKF 0.0034 0.00058 −0.0033 0.00066 0.0188 0.0096
SRCKF

35
0.0033 0.00063 0.0016 0.0006 0.2019 0.0359

TUKF 0.0075 0.00068 −0.0040 0.0014 −0.0713 0.0062
TUQKF 0.0043 0.00064 −0.0037 0.00079 −0.0090 0.0081
SRCKF

40
0.0026 0.00094 0.0035 0.0005 0.3270 0.0503

TUKF 0.0073 0.00074 −0.0043 0.0013 −0.0726 0.0070
TUQKF 0.0044 0.00072 −0.0042 0.00082 −0.0138 0.0070
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Figure 1: Alignment errors of mathematical simulation.

𝛾 = −0.5263∘, and 𝜓 = −5.7903∘, so initial misalignment
angles are large. The swaying amplitudes of inner frame
(roll), intermediate frame (pitch), and outer frame (yaw) are10∘, 12∘, and 6∘, respectively. The corresponding oscillation
frequencies are 0.2Hz, 0.125Hz, and 0.15Hz, respectively.
Simulation time is also 700 s. The experiment results are
shown in Table 6 and the curve graphs of alignment errors
with 𝜃̃ = 15∘, 𝛾̃ = 10∘, and 𝜓̃ = 35∘are shown in Figure 2.

In Figure 2, when 𝜃̃ = 15∘, 𝛾̃ = 10∘, and 𝜓̃ = 35∘, after
600 s, the initial errors of pitch and roll angles of 3 methods
are also closed and less than about 0.04∘ and 0.05∘. It is

obviously that azimuth alignment error of RTUQKF-2 is
better than TUQKF-2 and much better than SRCKF.

In Table 6, for different initial attitude angles, mean errors
of horizontal alignment of 3 methods are all very small and
in the same level. The average error of azimuth alignment of
RTUQKF-2 is around 0.03∘ and much less than the TUQKF-
2 and SRCKF if which the mean of azimuth alignment error
is around 0.05∘ and 0.5∘, respectively. So, the RTUQKF-
2 algorithm can maintain the high accuracy of horizontal
alignment and remarkably improve the accuracy of azimuth
alignment when the misalignment angles are large and the
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Table 4: Standard deviation of azimuth estimation errors in mathematical simulation.

Algorithm Δ𝜓 (∘) Standard deviation of azimuth estimation errors in different periods (∘)
100∼200 s 200∼300 s 300∼400 s 400∼500 s 500∼600 s

SRCKF
15

1.4951 0.3025 0.0806 0.0473 0.0366
TUKF 0.4951 0.2337 0.1326 0.0325 0.0152
TUQKF 0.9351 0.1279 0.0737 0.0122 0.0175
SRCKF

20
2.0072 0.3769 0.0893 0.0580 0.0378

TUKF 0.7823 0.1854 0.1191 0.0268 0.0144
TUQKF 1.1878 0.1286 0.0712 0.0129 0.0183
SRCKF

35
3.6417 0.8143 0.2009 0.1136 0.0630

TUKF 1.6296 0.1776 0.1107 0.0224 0.0142
TUQKF 1.1948 0.1486 0.0858 0.0143 0.0164
SRCKF

40
4.8857 1.0047 0.2880 0.1618 0.0878

TUKF 1.0020 0.1902 0.1270 0.0286 0.0153
TUQKF 1.1915 0.1572 0.0978 0.0167 0.0149
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Figure 2: The alignment errors of first turntable test.

Table 5: The sensor accuracy of FOSN.

Gyroscope Accelerometer
Constant drift 0.006∘/h Constant bias 50 ug
Random drift 0.006∘/√h Random deviation 50 ug

noise is uncertain. In addition, the precision of TUQKF
declines when the actual noise is uncertain and the RTUQKF
is more robust than the TUQKF.

Next, analyze the convergence speed. In Figure 2, con-
vergence speed of 3 methods is almost the same; only the
convergence speed of azimuth alignment of SRCKF is slightly
slower than other two methods. We also calculated the
standard deviation of azimuth estimation errors in different
periods to quantitatively analyze the convergence rate of
alignment. The concrete data are shown in Table 7.

From Table 7, the standard deviation of azimuth esti-
mation errors of 3 methods are almost the same. It means
that convergence speeds of 3 methods are all fast. However,
when initial misalignment angles are very large, the standard
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Table 6: Statistical properties of alignment errors in first turntable test.

Algorithm 𝜃̃, 𝛾̃, 𝜓̃ (∘) Pitch error (∘) Roll error (∘) Yaw error (∘)
Mean Standard deviation Mean Standard deviation Mean Standard deviation

SRCKF
10, 5, 30

−0.0100 0.0039 −0.0322 0.0033 0.2472 0.0234
TUQKF −0.0101 0.0040 −0.0353 0.0033 0.0427 0.0221
RTUQKF −0.0079 0.0039 0.0327 0.0032 0.0257 0.0156
SRCKF

15, 10, 30
−0.0090 0.0039 0.0335 0.0032 0.2603 0.0238

TUQKF −0.0101 0.0039 0.0335 0.0033 −0.0560 0.0201
RTUQKF −0.0101 0.0038 0.0318 0.0033 0.0211 0.0162
SRCKF

15, 10, 35
−0.0059 0.0038 0.0295 0.0032 0.3515 0.0150

TUQKF −0.0093 0.0038 0.0311 0.0032 −0.0741 0.0182
RTUQKF −0.0096 0.0039 0.0318 0.0033 0.0344 0.0165

Table 7: Standard deviation of azimuth estimation errors in first turntable test.

Algorithm 𝜃̃, 𝛾̃, 𝜓̃ (∘) Standard deviation of azimuth estimation errors in different periods (∘)
100∼200 s 200∼300 s 300∼400 s 400∼500 s 500∼600 s

SRCKF
10, 5, 30

1.4738 0.1286 0.0428 0.0225 0.0251
TUQKF 2.7423 0.1286 0.0528 0.0332 0.0196
RTUQKF 1.3892 0.1481 0.0492 0.0190 0.0145
SRCKF

15, 10, 30
2.7479 0.1361 0.0339 0.0231 0.0299

TUQKF 2.3790 0.1729 0.0452 0.0283 0.0157
RTUQKF 1.5035 0.1410 0.0448 0.0186 0.0140
SRCKF

15, 10, 35
1.5865 0.1704 0.0520 0.0200 0.0320

TUQKF 2.3692 0.1637 0.0449 0.0214 0.0139
RTUQKF 2.3244 0.1371 0.0453 0.0187 0.0137

Table 8: Statistical properties of the alignment errors in second turntable test.

Algorithm Δ𝜃̃, Δ𝛾̃, Δ𝜓̃ (∘) Pitch error (∘) Roll error (∘) Yaw error (∘)
Mean Standard deviation Mean Standard deviation Mean Standard deviation

SRCKF
5, 5, 25

−0.0056 0.0045 −0.0216 0.0028 0.2789 0.0098
TUQKF −0.0074 0.0046 −0.0209 0.0027 0.0411 0.0051
RTUQKF −0.0069 0.0046 −0.0207 0.0027 0.0141 0.0050
SRCKF

5, 5, 40
−0.0042 0.0044 −0.0258 0.0028 0.4730 0.0310

TUQKF −0.0065 0.0045 −0.0235 0.0028 0.0859 0.0098
RTUQKF −0.0058 0.0045 −0.0218 0.0027 0.0361 0.0042
SRCKF

10, 10, 35
−0.0049 0.0045 −0.0236 0.0028 0.4346 0.0189

TUQKF −0.0061 0.0045 −0.0235 0.0027 0.0836 0.0117
RTUQKF −0.0068 0.0045 −0.0217 0.0027 0.0362 0.0042

deviation of azimuth misalignment angles estimation errors
of RTUQKF-2 is the smallest. So, the convergence speed
of RTUQKF-2 is better than other two methods with large
misalignment angles and uncertain noise.

6.2.2.The Second Turntable Test. In this test, initial misalign-
ment angles are set to large values: Δ𝜃 = 5∘, Δ𝛾 = 5∘,
and Δ𝜓 = 25∘ and Δ𝜃 = 5∘, Δ𝛾 = 5∘, and Δ𝜓 = 40∘,
and Δ𝜃 = 10∘, Δ𝛾 = 5∘, and Δ𝜓 = 40∘. The swaying
amplitudes of inner frame (roll), intermediate frame (pitch),
and outer frame (yaw) are 12∘, 8∘, and 6∘, respectively. The
corresponding oscillation frequencies are 0.2Hz, 0.125Hz,
and 0.15Hz, respectively. The corresponding rocking center

is 6∘, 8∘, and 75∘, respectively. Simulation time is 800 s. The
experiment results are shown in Table 8 and the curve graphs
of the alignment errors withΔ𝜃 = 10∘,Δ𝛾 = 5∘, andΔ𝜓 = 40∘
are shown in Figure 3. The standard deviations of azimuth
estimation errors in different periods are shown in Table 9.

From Figure 3 and Table 8, the precisions of horizontal
alignment of 3 methods are high and in the same level. The
precision of azimuth alignment of the SRCKF is the lowest of
the three methods. From Table 9, the convergence speed of
TUQKF-2 is slightly better than other two filters.

It can be found that the results of two turntable tests
are equally. In a word, according to the turntable experi-
ment, when the noise is uncertain, precision of horizontal
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Figure 3: The alignment errors of second turntable test.

Table 9: Standard deviation of azimuth estimation errors in second turntable test.

Algorithm Δ𝜃̃, Δ𝛾̃, Δ𝜓̃ (∘) Standard deviation of azimuth estimation errors in different periods (∘)
100∼200 s 200∼300 s 300∼400 s 400∼500 s 500∼600 s 600∼700 s

SRCKF
5, 5, 25

3.6450 0.2849 0.1276 0.0532 0.0316 0.0272
TUQKF 2.1568 0.2037 0.1623 0.0564 0.0264 0.0208
RTUQKF 2.1003 0.1842 0.1400 0.0512 0.0231 0.0191
SRCKF

5, 5, 40
6.2382 0.5436 0.0952 0.0681 0.0480 0.0513

TUQKF 3.5482 0.1717 0.1686 0.0709 0.0333 0.0288
RTUQKF 2.2171 0.1970 0.1509 0.0600 0.0219 0.0180
SRCKF

10, 10, 35
4.5488 0.3277 0.1279 0.0666 0.0403 0.0384

TUQKF 4.3622 0.2068 0.1619 0.0748 0.0414 0.0323
RTUQKF 1.6323 0.2280 0.1684 0.0612 0.0241 0.0191

alignment of 3 methods is all high and in the same level. The
RTUQKF can effectively increase the precision of azimuth
alignment. The convergence speed of azimuth alignment
of RTUQKF is better than the other algorithms when the
misalignment angles are sufficiently large. It can be seen that
the RTUQKF is more robust than the other two algorithms
with the uncertain noise.

6.3. Vehicle Experiment. In the last, to further verify the
effectiveness of RTUQKF, a vehicle experiment is conducted
with the FOSN and PHINS. In this experiment, IMU data
is given by FOSN. PHINS is a high precision SINS and
it can be integrated with the FlexPark 6 from NovAtel as
a SINS/GNSS integrated navigation system. The navigation
parameters from PHINS are used as reference.

In the vehicle experiment, from start time to about 30
seconds, the vehicle is at the starting state and its velocity

is zero. From about 30 seconds to about 780 seconds, the
vehicle is in the moving state. After about 780 seconds, the
vehicle stops moving. Alignment time is 800 s. Owing to the
external vehicle reference in 𝑛 frame which can be given, (54)
can be used asmeasurement equation. In this experiment, the
data are also collected from the real world, so the statistical
properties of noise are uncertain.

Select two different kinds of misalignment angles for
navigation system: Δ𝜃 = 10∘, Δ𝛾 = 10∘, and Δ𝜓 = 40∘ andΔ𝜃 = 5∘, Δ𝛾 = 5∘, and Δ𝜓 = 30∘. The SRCKF, TUQKF-2,
and RTUQKF-2 are used to solve the above initial alignment
problem, respectively. The vehicle experiment results are
shown in Table 10 and the curve graphs of alignment errors
withΔ𝜃 = 10∘,Δ𝛾 = 10∘, andΔ𝜓 = 40∘ are shown in Figure 4.

In Figure 4, whenΔ𝜃 = 10∘,Δ𝛾 = 10∘, andΔ𝜓 = 40∘, after
700 s, the error curves of horizontal alignment of 3 methods
are closed. It can also be seen obviously that error of azimuth
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Table 10: Statistical properties of the alignment errors in vehicle experiment.

Algorithm Δ𝜃̃, Δ𝛾̃, Δ𝜓̃ (∘) Pitch error (∘) Roll error (∘) Yaw error (∘)
Mean Standard deviation Mean Standard deviation Mean Standard deviation

SRCKF
5, 5, 30

0.0102 0.0035 −0.0134 0.0061 −0.3330 0.0118
TUQKF 0.0072 0.0033 −0.0123 0.0051 −0.2595 0.0116
RTUQKF 0.0073 0.0031 −0.0120 0.0050 −0.2258 0.0118
SRCKF

10, 10, 40
0.0144 0.0042 −0.0149 0.0074 −0.4795 0.0192

TUQKF 0.0086 0.0039 −0.0145 0.0059 −0.3736 0.0148
RTUQKF 0.0089 0.0034 −0.0133 0.0057 −0.2585 0.0131

Table 11: Standard deviation of azimuth estimation errors in vehicle experiment.

Algorithm Δ𝜃̃, Δ𝛾̃, Δ𝜓̃ (∘)
Standard deviation of azimuth estimation errors in different periods (∘)

100∼200 s 200∼300 s 300∼400 s 400∼500 s 500∼600 s 600∼700 s
SRCKF

5, 5, 30
0.6754 0.0514 0.0846 0.0273 0.0291 0.0230

TUQKF 0.1251 0.0399 0.0363 0.0203 0.0230 0.0118
RTUQKF 0.1176 0.0361 0.0360 0.0207 0.0232 0.0119

SRCKF
10, 10, 40

1.6544 0.0676 0.1785 0.0367 0.0533 0.0620
TUQKF 0.3962 0.0554 0.0350 0.0322 0.0323 0.0227
RTUQKF 0.3592 0.0594 0.0357 0.0153 0.0309 0.0154

alignment of RTUQKF-2 is better than TUQKF-2 and much
better than SRCKF.The data from Table 10 show that, for two
different misalignment angles, average errors of horizontal
alignment of 3 methods are very small and the average error
of azimuth alignment of RTUQKF-2 is around 0.25∘ and
much less than the TUQKF-2 and SRCKF. This means that,
for SINS in-motion alignment, RTUQKF-2 can maintain the
high horizontal alignment accuracy and remarkably improve
the accuracy of azimuth alignment when the misalignment
angles are large and noise is uncertain.

The convergence speed is also quantitatively analyzed
by the standard deviation of azimuth estimation errors in
different periods inTable 11. FromFigure 4 andTable 11, it can
be seen that the standard deviation of azimuth misalignment
angles estimation errors of SRCKF is larger than the other
two methods. In most of the time, the standard deviation of
azimuthmisalignment angles estimation errors of RTUQKF-
2 slightly is smaller than TUQKF-2. It means that conver-
gence speed of azimuth alignment of RTUQKF is slightly
faster than TUQKF and faster than SRCKF.

The results of vehicle experiment are similar to turntable
experiment. In conclusion, when misalignment angles are
large and the noise is uncertain, the precision of the hor-
izontal alignment of 3 methods is high. The superiority of
RTUQKF embodies several aspects that this method can
effectively increase the precision and convergence speed of
azimuth alignment and this method improves the robustness
of the algorithm when the noise is uncertain.

7. Conclusions

TheSINS initial alignment problem is discussed in this paper.
To solve the initial alignment problem under large misalign-
ment angles, TUQKF algorithm is proposed. The TUQKF

can maintain the positive definiteness of the weight and the
covariancematrix in the filtering process and solve the nonlo-
cal sampling problem for high-dimensional problem coupled
with strong nonlinear model. In this paper, to solve the
problem of uncertain noise in initial alignment, the RTUQKF
algorithm is proposed. The RTUQKF is the combination of𝐻∞ filtering and TUQKF. This method maintains the high
accuracy of filtering and further improves the robustness of
filtering.The performance of TUQKF is compared with other
filters in mathematical simulation. The results indicate that,
compared to traditional filters such as SRCKF and TUKF,
TUQKF can increase precision and convergence speed of
initial alignment. By means of the turntable experiment and
vehicle experiment, the performance of RTUQKF is analyzed
and compared with other filters. The results show that when
the noise is uncertain, RTUQKF can further increase the
precision and convergence speed of azimuth alignment and it
can also effectively improve the robustness of filter. Although
the computational cost of TUQKF and RTUQKF is slightly
higher than SRCKF and TUKF, their sigma points have
a linear relationship to state dimension and the order of
quadrature rule. These two algorithms will not surfer from
the curse of dimensionality problem.
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