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RCl is a novel superresolution staring imaging technique based on the idea of wavefront modulation and temporal-spatial stochastic
radiation field. For RCI, the reference matrix should be known accurately, and the imaging performance depends on the incoherence
property of the reference matrix. Unfortunately, the modeling error, which degrades the performance significantly, exists generally.
In this paper, RCI using frequency-hopping waveforms (FH-RCI) is considered, and a FH code design method aiming to increase
the robustness of RCI to modeling error is proposed. First, we derive the upper bound of imaging error for RCI with modeling error
and conclude that the condition number of the reference matrix determines the imaging performance. Then the object function for
waveform design which minimizes the condition number of the reference matrix is achieved, and the quantum simulated annealing
(QSA) is employed to optimize the FH code. Numerical simulations show that the optimized FH code could decrease the condition

number of the reference matrix and improve the imaging performance of RCI with modeling error.

1. Introduction

Radar coincidence imaging (RCI) is a novel staring imag-
ing technique without the limitation of the target relative
motion [1, 2]. Originated from the optical coincidence
imaging, RCI imitates the randomly fluctuant optical-field
by constructing temporal-spatial stochastic radiation field
in the imaging area. Then focused high-resolution imaging
and instantaneous imaging can be achieved by RCI; other
significant potentials include interference and jamming sup-
pression. Thus RCI can be used in some important applica-
tions, for example, high-resolution earth observation on the
static/quasi-stationary platform and disaster monitoring.

For RCI, its essential principle is to form the temporal-
spatial stochastic radiation field by transmitting stochastic
waveforms, while the frequency-hopping (FH) waveforms
are good candidates because they are easily generated and
have constant modulus [3, 4]. Besides, FH waveforms
can suppress the range ambiguity, decouple the range and
Doppler [5], and give immunity from interference with low
probabilities of interception and detection. Thus, we consider
RCI using FH waveforms (FH-RCI).

RCI can be formed as a linear inverse problem which
reconstructs the scattering coeflicients from the reference
matrix and the measurements. Solving such a problem
strongly depends on the perfect incoherence property of the
reference matrix, while the reference matrix is closely related
with the transmitted waveforms. Thus designing an optimal
waveform could be helpful in forming a well-structured
reference matrix. Various studies have been presented on
waveform design. Most of these methods concentrate on
radar ambiguity function based design [3, 6-8] and covari-
ance matrix based design [9-11], where the waveform is
optimized to have a good autocorrelation or cross-correlation
property sharpening the ambiguity function or optimizing
the waveform covariance matrix. Applying information the-
oretic to waveform design, two optimal waveforms, based
on mutual information maximization and Kullback-Leibler
divergence maximization, respectively, are studied for MIMO
radar target recognition [12]. Benefiting from a significant-
ly lower computational complexity as compared to an ambi-
guity-based design method, a cost function based on
the hit-matrix is used to design the FH code for MIMO radar
(13].
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In recent years, sparse recovery and compressive sensing
(CS) have been a hot topic and applied to radar imaging
including RCI, by considering the sparse prior of target [2,
14-16]. The sparse recovery accuracy is determined by the
correlations between the columns of the dictionary matrix
[4]; thus minimizing the coherence measure ensures theo-
retical guarantee for sparse support recovery of signals with
potentially higher sparsity level. Based on this conclusion, the
CS radar waveform design was investigated by minimizing
the cross correlations between different target responses [17].
Similarity, Subotic examined the waveform and position
impacts by considering the sparsity of the target scene and
the restricted isometry property (RIP) [18]. In [19, 20], the
transmission waveform and sensing matrix are optimized
by minimizing the difference between the Gram matrix of
sensing matrix and the identity matrix. To minimize the
Cramér-Rao bound (CRB) of sparse recovery, an adaptive
waveform design approach was presented to design the
carrier frequencies [5]. Based on the sparse recovery model,
Gogineni considered the optimal waveform design of MIMO
radar by reducing the block coherence measure of the sensing
matrix and selecting the FH codes of all the transmitters [4].
Comparably, Han proposed a joint optimization algorithm
using game theory to compute the FH code matrix and
amplitude matrix for FH waveform, based on two objective
functions derived by using the ambiguity function and sparse
recovery [21].

In this paper, we focus on the waveform design (more
precisely, FH code design) for FH-RCI with modeling error,
since the modeling error generally exists, for example, gain-
phase error [2, 14], oft-grid error [15, 16, 22], and array
position error [23]. Modeling error would destroy the ideal
assumption that the reference matrix is accurately known;
thus the performance of RCI degrades significantly [24, 25].
Although the aforementioned mutual coherence provides
a sufficiency measure to ensure sparse support recovery,
it cannot measure the incoherence of the reference matrix
exactly when most of the coherence values are small. Thus,
a new design criterion should be proposed to optimize the
reference matrix.

In matrix analysis, the condition number of a matrix
measures the sensitivity of the solution of a linear system
to errors in the data [26]. It gives an indication of the
accuracy of the results from matrix inversion and the linear
equation solution. The condition number near 1 indicates
a well-conditioned matrix, which means a small modeling
error induces a small imaging error. On the contrary, an ill-
conditioned matrix will make the solution of the imaging
equation sensitive to the modeling error. Furthermore, we
derive the analytical expression for the upper bound of
relative imaging error (RIE) in the present of modeling
error and conclude that the RIE highly depends on both
the modeling error and the condition number of refer-
ence matrix. As the condition number of reference matrix
is closely related to FH code, minimizing the condition
number is utilized as the design criterion to optimize
the FH code. Accordingly, we derive the Gram matrix of
reference matrix and optimally design the FH code using
the quantum simulated annealing (QSA) algorithm [13].
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Results of numerical simulations show our proposed FH
code design method optimizes the reference matrix and
improves the imaging performance by reducing the condition
number.

The rest of the paper is organized as follows. Section 2
presents the FH-RCI model with modeling error. In Section 3,
the sensitivity of RCI to modeling error is analyzed by both
theoretical derivations and numerical simulations. Then the
Gram matrix $’S is derived, and the FH code optimization
method is proposed in Section 4. In Section 5, the proposed
optimization method is verified by numerical simulations.
Finally, Section 6 concludes the paper.

Notations used in this paper are as follows. We use
boldface lowercase letters for vectors and boldface uppercase
letters for matrices. (+), ()™, and (+)" denote the conjugate
transpose, inverse, and pseudo-inverse of a vector or matrix,
respectively. || « || denotes the norm of a vector. Finally, ()
denotes the expectation of a variable.

2. Signal Model

Originated from the classical optical coincidence imaging,
RCI is a superresolution method within the beam based
on the innovative idea of random radiation and wavefront
random modulation. The essence of RCI is to produce
the random-modulated wavefront by transmitting specific
modulated waveforms, and that would increase the variety
of temporal-spatial stochastic radiation field. Then the target
information within the beam can be obtained by the coinci-
dence processing between the target scattering echo and the
stochastic radiation field [1]. Thus RCI can achieve higher
resolution than the conventional radars whose resolution is
limited by the Rayleigh principle.

Transmitting independent stochastic waveforms by radar
array is a realizable way to generate the temporal-spatial
stochastic radiation field in the imaging plane [1], as illus-
trated in Figure 1. In this paper, a RCI system with M trans-
mitters and one receiver is considered. The mth transmitter
emits a constant modulus FH waveform St,,(t) [3, 4] shown
in Figure 2. The waveform is comprised by L pulses

L-1

St ()= ¢, (t-1T), 0))

=0

where T denotes pulse repetition interval. ¢,,(f) =
Zqu_Ol el fetanghDty (¢ — qAt), where f. denotes the carrier
frequency and

1 0<t<At
u(t) = (2)

0 otherwise,

where At and Af denote FH duration and FH interval,
respectively. ¢, , € {0,...,G — 1} is the FH code which
specifies the transmitted frequency during each hopping
interval, where G is a positive integer. ¢, ; can be arranged
into a M x Q dimensional code matrix C specifying the
transmitted frequencies. Q is the length of the code, that is,
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FIGURE 1: Geometry of radar coincidence imaging.
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FIGURE 2: Frequency-hopping waveforms.

the total number of hopping intervals. Thus the duration of
each pulse is T, = QA

For FH waveform, the synthetic bandwidth of the pulses
is approximately [3]

Bz(G—l)Af+Ait. (3)

The target scene is considered to be a 2D range-azimuth
space. Before coincidence processing, the continuous imag-
ing plane needs to be discretized to generate K grid-cells (i.e.,
imaging cells), and the scatterers are assumed to be located at
these prediscretized grid-cell centers, that is, r;. The scatterers
possess nonzero complex scattering coefficient f;, and 3, =
0 when there is no scatterer at grid-cell center. Denote by
Q the index set of scatterer locations; that is, Q = {k |
B # 0, k € {1,2,...,K}}. The receiving signal is a linear
combination of all the scatterers reflected waveforms from all
the transmitters.

M
y®) =Y Y BSt, (t-1y), (4)

keQ m=1

where Tfn = (It = R, + Ity — Ryll)/c is the propagation
delay corresponding to the mth transmitter and the receiver

with respect to the kth scatterer. R, and R, are the position
vectors of the receiver and the mth transmitter, respectively.
¢ is the speed of wave propagation.

For the sake of simplicity, the RCI formula needs a
detecting signal [1], which can be simply structured as

M
S(tx) = Y S, (t-1). (5)
m=1

The detecting signal S(t,r;) can be interpreted as the
signal reflected by the kth grid-cell center. Then, the echo can
be expressed as the superposition of the detecting signals

y(t) = Z BiS (t. 1) - (6)

keQ

After sampling the echo, the imaging equation can be
given as follows:

y:s.ﬁ,

y(t) S(try) S(try) S(tyrg)
y(t,) ~ S(tyr) S(tyry) S(ty 1)
y (ty) S(tns1y) S(tan1y) - S(tnp1k) (7)

Py
B

Bx

where y and f are the receiving signal and scattering coef-
ficient vector, respectively. t5; denotes the sampling time. S
is the reference matrix comprised by the detecting signals
at different grid-cell centers. The columns and the rows of §
basically represent the detecting signals at different positions
and different instants, respectively, which could present
the temporal-spatial stochastic characteristics of radiation
field.



Consequently, target reconstruction reduces to a linear
inverse problem which recovers 8 from the measurement
vector y and reference matrix S. First of all, the reference
matrix should be calculated accurately, and the imaging
performance depends on the incoherence property of S.
However, the reference matrix obtained from practical appli-
cations is inevitably perturbed by the modeling error which
cannot be known accurately in practice. Consider the mod-
eling error, the true reference matrix is expressed as S =
S + AS, where S is the known nominal reference matrix and
AS represents the unknown matrix perturbation. Then the
true coincidence imaging equation can be decomposed as
follows:

y=SeB=SB+ASB. (8)

Thus, the multiplicative term AS « f is introduced into
the perturbed RCI, which is difficult to analyze since it is
correlated with the signal of interest [27].

3. Sensitivity Analysis of RCI to
Modeling Error

3.1. Target Reconstruction. There are several approaches to
retrieve 8 from y. The simplest one is named matched-
filtering and consists in performing the following matrix
multiplication:

B=s.y. )

This approach works decently by maximizing the post-
processing signal-to-noise ratio (SNR) in radar echoes. Thus,
matched-filtering is less sensitive to measurement noise.
However, only the correlation between y and S cannot gen-
erate a high-resolution image for RCI, because the practical
microwave waveform cannot generate complete temporal-
spatial stochastic radiation field due to the limited bandwidth
and array aperture. Fortunately, the linear inverse model in
(7) can be also solved using optimization algorithms, while
ly—Sep ||§ is used as the objective function. An intuitionistic
approach is to employ the least square (LS) estimation, which
is expressed as

B= arg min ly-s-Bl;. (10)

The solution of LS estimator is 8 = S'y, where 8" =
(S78)71SH is the pseudo-inverse of S. Based on the LS
principle, the target image can be reconstructed. It is worthy
noticing that the LS estimator is optimal when the noise is
Gaussian. By simply calculating the pseudo-inverse of S, the
LS method is easy to implement with potential in high-
resolution imaging. However, the LS method is still con-
strained by the temporal-spatial stochastic characteristics of
radiation field, and it has a low tolerance to the modeling
error and noise especially when the reference matrix is ill-
conditioned. Once the imaging equation (7) is perturbed
by the modeling error, the optimization process would be
obviously disturbed, and the error will be directly presented
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in the solution. Herein, the sensitivity of the LS method to
the modeling error would make the target reconstruction
unstable.

By adding the regularization terms, the target recon-
struction would become more stable, and the Tikhonov
regularization algorithm emerges [28, 29]. When the target
image is sparse, sparse reconstruction algorithm can be used
to achieve superresolution, denoising, and feature extraction,
by exploiting the sparse prior [30].

3.2. Sensitivity Analysis. To explore the characteristics of the
reference matrix S, singular value decomposition (SVD) is
employed as

S =UzVvH, (11)

where U and V are unitary singular vector matrices and X =
diag(0,,05,...,0,,0,...) consists of the nonnegative, nonin-
creasingly ordered singular values on its diagonal entries. r is
the number of nonzero singular values. Then the scattering
coeflicient vector can be estimated as

B

ST (SB + ASB)

r T r
( Zukakvf> ( (Zukakvf> B+ ASﬁ)
k=1 k=1

.
H -1 H
ViV B+ kacrk u, ASP

1 k=1

K r
= <I - Z vkka> B+ kaa,zlugASﬁ.

k=r+1 k=1

(12)

R

=~
Il

The first term (I — ZkK:r " vkvf )B in (12) represents
the approximate of f, indicating that the LS estimation of
underdetermined problem results in the approximation of
actual value. The second term, Y}_, v,0; ufASB, is the
perturbation resulting from the modeling error. Due to the
limited bandwidth of transmissions and array aperture, the
temporal-spatial incoherence of radiation field is not perfect;
therefore some singular values tend to be quite small, which
means s small modeling error AS would induce a terrible
perturbation of 8. Accordingly, the singular value should be
increased to depress the effect of modeling error AS.

In matrix analysis, the condition number is commonly
used as a measure of numerical stability for the linear
equation; that is, y = Se B. Intuitively speaking, the condition
number depicts the perturbation degree that B is scaled by the
perturbation AS, a small condition number will weaken the
impact of the perturbation AS, and a large one will enhance
this impact. The condition number of S is defined as the ratio
of the maximum to minimum singular values of S [31]

o
cond (S) = 2%, (13)

min
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where 0,,,,, and o0,,;, denote the maximum and minimum
singular values, respectively.

Next, the condition number is employed to define the
upper bound of imaging error in the presence of modeling
error.

In practice RCI applications, the true reference matrix S
cannot be employed in practice, as the prior knowledge of
the imaging model is hardly to be known accurately. Then the
estimated imaging equation actually employed in practice is

y=S+B (14)

where S is the estimated scattering coefficient vector. Denote
by € = B — B the imaging error, where § is true scattering
coeflicient vector. Deriving from (8) and (14), we have (S +
AS) e« B =S (B —¢). Then the imaging error can be expressed
as

e=-S"eAS. . (15)

If the number of measurements is equal to that of grid-
cells, that is, N = K, S is a square matrix, and (15) reduces to
£ = —S7'« AS+ B. Taking norms according to the matrix norm
consistent, we have

_ _ A
Je = 5] s« 181 = [~ st - S < gl o
The term ||S™}||||S]| in (16) is also defined as the condition

number of S, that is, cond(S) = [|S[||IS]| [31]. So the relative
imaging error (RIE) can be obtained as

llell _ lasj
< cond (S) e
el = ISt
When N > K, the number of equations is more than that

of unknown parameters, and (7) becomes an overdetermined
problem. The Eseudo inverse of S in (15) is then defined as

17)

St = ($7S)7'$". Thus & becomes
el < | (s"s)” - (18]
157 st S
5751 as)
]
con (S S) "SHS" -[8]-
Because [|S7'S|| = [|S||*, the RIE can be obtained as
llell IIASII
“ﬁ” cond ($7s) ~—= S 19)

Note that, for positive semidefinite Hermitian matrix
S8, its condition number doubles cond(S); that is,

cond (SHS) = (cond (S))*. (20)

The right side of (17) and (19) defines the upper bound
of RIE, which could be used as an indication to analyze the

influence factors. Obviously, two key factors determine the
upper bound of the RIE, that is, the condition number and
modeling error.

(1) Modeling Error. The norm of modeling error [AS| is
an important factor degrading the imaging performance.
Certainly, a smaller modeling error AS means a minor
difference between S and S and will generate a smaller RIE
when the condition number of reference matrix is fixed.
Unfortunately, even a small system error, for example, gain-
phase error and array position error, will generate a large
modeling error [2, 14, 23]. To minimize the modeling error,
we should decrease the RCI system error or obtain the system
parameters accurately. Otherwise, the target reconstruction
algorithm should be implemented to compensate the model-
ing error [2, 14-16, 22, 23].

(2) Condition Number. As shown in (17) and (19), cond(S)
or cond($™S) can be viewed as the amplification factor
of |AS||/|ISIl. A small condition number will weaken the
impact of AS, and contrarily, a large one will enhance this
impact. Besides, as presented in (20), the condition number
of an overdetermined equation is doubled; thus the condition
number shows more significant influence on the RIE for an
overdetermined system.

In RCI formulation, the condition number cond(S)
measures the incoherence of the reference matrix S. The
bigger the condition number, the weaker the incoherence
degree the row/column vectors of the matrix present. Thus,
the condition number cond(S) essentially depends on the
temporal-spatial stochastic characteristics of radiation field.
The radiation field of higher temporal-spatial stochastic
degree leads to a more incoherent matrix S, resulting in a
smaller cond(S) to decrease the RIE.

3.3. Numerical Simulations. The following example concerns
how the condition number of S and the modeling error AS
affect the imaging performance. The imaging experiment will
be performed in the scenarios where the modeling error and
condition number are different. For the sake of discussion,
we quantify the modeling error with the relative modeling
error (RME): RME = 201og,,(I1ASII/[ISI)), which represents
the relative perturbation error between [|AS| and [|S|. The
imaging quality is indicated by the RIE, which is expressed
as RIE = 20log,,(ll€ll/I BlD.-

In the simulations, the RCI system works at the X-
band with carrier frequency of 10 GHz. The transmitters
are configured as a uniform linear array (ULA) with 16
transmitters. A range-azimuth imaging plane is discretized
to 40 x 40 grid-cells. The transmitters emit independent FH
waveforms comprised by 2500 hopping frequencies with the
minimum FH interval 1 MHz and FH duration 10 ns.

Although we focus on the design of FH code in order to
minimize the condition number, it would be meaningful to
show numerically the condition number behavior in terms
of signal bandwidth, grid-cell size, and array aperture. The
result is presented in Figure 3, where signal bandwidth
B € {0.25GHz, 0.5 GHz, 1 GHz}, grid-cell size changes from
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FIGURE 3: Condition number in terms of signal bandwidth, grid-cell size, and array aperture. (a) Condition number versus grid-cell size for
different signal bandwidths. (b) Condition number versus array aperture for different signal bandwidths.

0.5m x 0.5m to 1.5m x 1.5 m, and the array aperture varies
from 15m to 15m by changing the interelement spacing.
As shown in Figure 3, increasing the bandwidth of FH
waveform makes the reference matrix more incoherent and
accordingly the condition number become small. Similarly,
the incoherence between the detecting signals at neighboring
grid-cell centers is enhanced when the grid-cell size and array
aperture increase, which induces a smaller condition number
of reference matrix.

The first example is to investigate the influence of con-
dition number on the imaging quality. The bandwidth of
FH waveforms is changed to generate different incoherence
degrees of the reference matrix; thus the condition number
varies. The RCI results are depicted in Figure 4, where the
modeling error AS is a Gaussian process with RME = -20 dB.
Figure 4(a) is the target with 77 scatterers; Figures 4(b)-
4(d) are the RCI results of LS method for different condition
numbers. Obviously, the performance of LS method degrades
as the condition number of § becomes larger, because
the imaging equation (7) tends to be ill-posed and the
solution of LS estimation becomes unstable which means
even a small modeling error would induce a large imaging
error.

To investigate the distributions of singular values for
different condition numbers, we plot the histogram of the
normalized singular values, as depicted in Figure 5. As seen
from the figure, increasing the bandwidth would make the
singular centralized; thus the condition number o, /o0
becomes small. Besides, a large signal bandwidth results in
the increasing number of large singular values, which means
the incoherence of the detecting signals is improved.

Next, we simulate the influence of modeling error AS
on the imaging quality. The condition number of § is fixed
at 33.11dB, while the RME varies from —-10dB to —40 dB.
Figure 6 depicts the imaging results. We can conclude that
RCI has a low tolerance to modeling error, and small mod-
eling error exhibits significant performance improvement
with high-resolution enhancement. Contrarily, increasing the
modeling error would obtain blurred reconstructed images
with many spurious scatterers.

4. Waveform Optimization for RCI

Based on the discussion in Section 3, we conclude that the
imaging performance depends on the incoherence property
of the reference matrix, that is, the temporal-spatial stochastic
characteristics of the detecting signals. In this section, the FH
code is designed by optimizing the reference matrix S.

4.1. Optimization Criterion. As discussed in Section 3, the
condition number could measure the numerical stability
of the linear equation (7). Small condition number means
that the reference matrix is well-conditioned and is often
desired with respect to numerical robustness regarding
matrix inverse and decomposition. Furthermore, when there
exists modeling error, the performance of RCI with large con-
dition number is degraded significantly. Thus, decreasing the
condition number of S would improve the robustness of RCI.
Unfortunately, the matrix incoherence or cond(S) depends
on the temporal-spatial stochastic characteristics of detecting
signals, which is determined by many factors, for instance, the
FH code, signal bandwidth, array aperture size, and grid-cell
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FIGURE 4: RCI results for different condition numbers when RME = —20 dB. (a) Target model; (b) cond(S) = 54.49 dB, RIE = -3.03 dB; (¢)
cond(S) = 33.29dB, RIE = —11.02dB; (d) cond(S) = 28.22 dB, RIE = —14.05 dB.

size. Herein, the detecting signals are incompletely temporal-
spatial stochastic in practical microwave imaging. Thus the
real-world reference matrix is often ill-conditioned or even
rank-deficient, resulting in serious numerical difficulties and
performance losses.

However, it is worthy noticing that each column of S
corresponds to all transmitters and all FH codes; the RCI
system with different FH codes would generate the radia-
tion field with diverse incoherence degrees. Consequently,
the FH codes can be designed to optimize the reference
matrix with large singular values downwards and small ones
upwards; then the condition number decreases. Thus the
minimization of the condition number of $S is considered
as the design criterion, and the object function can be written
as f(C) = cond(SS). The corresponding optimization
problem is expressed as

Cope =argmin  f (C)
c

(21)
st. Ce{0,1,...,G-1}.

The element of Gram matrix ST'S is the mutual coherence
of detecting signals with respect to different grid-cells. Next,
the relation of Gram matrix $S and FH code C will be
derived to show how FH code affects the mutual coherent.

4.2. Derivation of Coherence Measure. To calculate the con-
dition number of S¥S, we should first derive the correlation
between the different columns of the reference matrix S, that
is, Sy +Sys. S,/ S, is the summation over time samples, which
is difficult to compute its analytical expression. Alternatively,

we make the integral (22), which approximates S’ « S,/ well
especially in case of high sampling rate.

(Sp.Sp) = J S(tr,)S" (bry)dt

(22)

0o M '
:J > Sty (t-1,) Sty (t—r,’;,) dt.
1

mym' =
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FIGURE 5: Histogram of the normalized singular values for different condition numbers. (a) cond(S) = 54.49 dB; (b) cond(S) = 33.29 dB; (¢)
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Define X, (15, 75) 2 [© St (t — 75)St2,(t — 5))dt.

!
For FH waveforms, x,,, . (Tfn, TZ,) becomes

X! (r:;, TZ:) £ i qu’m, (lT + T:;, I'T + T:;::) » o (23)

LI'=1

kK T k K :
where Xi,,mr(Tm’Tm’) = jo¢¢m(t - 1,)¢,(t — T, )dt is
the cross-correlation function. Assume that the maximum
expected delay difference is less than the time interval
between any two consecutive pulses of each transmitter
waveform as they are collocated [13]. This assumption implies
that no reflections occur at the second trip ranges and |T:; -
‘r:l,l <T-T, due to Xﬁ;,m’(lT + Tfn,l'T + T:l,) =0, forl+1'.
Hence

Yot (Tho T ) = X (7o) (24)

After some derivations, the cross-correlation between
two individual pulses of different waveforms ¢,,(t) and ¢, (¢)
can be expressed as

X:i B (T) _ QEI ejznqute_jzn(fC+Cm’,q’Af)TXreCt (T
=0 (25)
- (4’ -q)atv),

!
lV)vhere T= ‘L‘fn —‘ry};, and v = (G, =G g)AS. x"(r, v) is given
Y

At _
K () 2 J u®)u(t+1)e*™dt. (26)
0

When 7 > 0, x"“(z, v) becomes

At—1

Xrect (T, V) — J
0

ejvatdt
(27)

= (At - 1) sinc (v (At — 1)) /™A,
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For 7 < 0, x**“(z, v) becomes Combining (27) and (28), "z, v) is given by
Xrect (T, V)
At .
K (T, v) = J ™ gy (At — |7]) sinc (rv (At — |7])) ™Dzl < At (29)
N (28) o otherwise.
_ : imv(At-1)
= (At + ) sinc (v (At + 7)) 577 Finally, (S, Si/) can be expressed as
YooY (Pt Ut ama AT AT o (At — 1)) sinc (v (At - [7)))  |7] < At
<Sk’ sk’> = VY mm'=1 99’ =0 (30)
0 otherwise.
Equation (30) implies that the correlation between the with the FH code C. Since (S;,Sy) (k, K = 1,...,K)

different columns of the reference matrix $ is closely related  comprises the Gram matrix $™S, it can be concluded that
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the choice of FH code C determines the singular of S¥S.
The preceding analysis shows how the problem of waveform
design should be approached.

4.3. FH Code Optimization. In this part, we presenta FH code
design method, where the entries of C are design variables
that can be optimized to achieve a desired condition number.

As the code matrix C is a discrete set, minimizing
the object function in (21) is NP-hard. Traditional greedy
optimization algorithms will easily get trapped into local
optima. As a statistical optimization technique, simulated
annealing (SA) algorithm [32] could find the global optimal
or nearly optimal solutions. The SA algorithm runs a Markov
chain Monte Carlo (MCMC) sampling on the discrete feasible
set. By running the MCMC and gradually decreasing the
temperature, the generated sample will have a high proba-
bility to have a small object function output. In this paper, a
slightly modified form of SA called QSA [13], which allows
faster convergence, is used to optimize the FH code C.
The parameters of QSA are temperature T, decrease rate of
temperature «, jump size J, and decrease rate of jump size f3.
QSA is initialized with values of T > 0 and J > 0, choosing «
and f3 from (0, 1). The basic steps to apply the QSA algorithm
to the FH code matrix design are summarized as follows.

(1) Randomly draw a code matrix C from the set
{0,1,...,G-1}.

(2) Randomly draw j from {1,2,...,[]]}.

(3) Set C' = C, and repeat the following operations j
times: Randomly draw m from {1,2,..., M} and ¢
from {0,1,...,Q — 1}; select g from {0, 1,...,G — 1} \
{Gn g Ym}; set c,'”)q =g.

(4) Compute the Gram matrix $HS from (30), and calcu-
late the condition number f(C) = cond(S™S).

(5) Randomly draw U from [0,1]. If U < exp((f(C) -
f(C)/T), C«C.

(6) SetT «— T and ] « fJ].

(7) If f(C) is small enough or nearly unchanged after
several iterations, terminate the algorithm. Else, go to
Step (2).

5. Simulations and Discussions

In this section, numerical examples are conducted to demon-
strate the performance improvement obtained by the pro-
posed FH code optimization method for RCI with modeling
error. First, an imaging scene is presented. An X-band
RCI system with carrier frequency of 10 GHz is considered.
The transmitters are configured as a ULA with M = 8
and interelement spacing d = 1m, respectively. The FH
waveforms are comprised by Q = 128 hopping frequencies
with At = 10ns, Af = 1 MHz, and G = 500. A range-azimuth
target space, covering 10 m x 10m, is discretized to 10 x 10
grid-cells.

5.1 Verification of the Proposed Method. First, we consider
the FH code optimization process. The decrease of the object
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FIGURE 7: Decrease of object function versus the number of
iterations.

function f(C) with respect to the iterations of QSA is shown
in Figure 7, which means that the condition number of the
Gram matrix 'S is reduced during the optimization process.
Besides, the decrease rate becomes slow as the iterations
increase, which means the object function f(C) converges.

Figure 8 presents the histograms of the normalized
singular values 0,/0,,,« (k = 1,...,K) for different FH
codes. Besides the optimized code and random code before
optimization, the other two pseudorandom codes, that is,
Costas code and Bernoulli code, are introduced for com-
parison. The random code, which is distributed uniformly
in [0,G — 1], is the initial code for our proposed design
method. Costas code [33] has the nearly ideal autocorrelation
property, but the cross-correlation property for any two or
more Costas codes cannot be guaranteed. Bernoulli code is a
chaotic sequence generated by Bernoulli map [34], which is
well orthogonal and can be flexibly and easily generated with
arbitrary code length for arbitrary number of transmitters. As
depicted in Figure 8, our proposed design method decreases
the condition number cond(SS) from 50.29 dB to 41.65 dB
by optimizing the FH code. Besides, the singular values are
centralized with the number of large singular values increased
and the number of small singular values decreased; thus
the condition number o,,,./0,,;, becomes small. Although
Bernoulli code and Costas code are good candidates for
FH-RCI, the condition numbers using the two codes are
larger than the optimized code since they are not optimized
according to the reference matrix.

Figures 9 and 10 show the auto- and cross-correlation
functions for the four FH codes, respectively. Although there
are M = 8 transmitters, each of them emits the same
type of FH waveform, for example, Costas code. Then we
randomly select one of the eight transmitters to plot the
autocorrelation function and two of them to plot the cross-
correlation function. As depicted in Figures 9 and 10, the
four types of FH codes which are all randomly distributed in
[0,G — 1] have good auto- and cross-correlation properties.
As expected, the autocorrelations are very close to the Dirac
delta function, and the cross-correlation functions are almost
zeros. However, the random code, Costas code, and Bernoulli
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FIGURE 8: Histogram of the normalized singular values for different FH codes. (a) Random code, cond(STS) = 50.29 dB; (b) optimized code,
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F1Gure 11: RIE as a function of RMEs for different FH codes.

code show inferior performance than the optimized code,
from the perspective of condition number. Besides the auto-
and cross-correlation properties, other factors, for example,
the grid-cell size, number of transmitters, and interelement
spacing, would also impact the condition number of the
Gram matrix SYS. This implies that the FH code should
be designed by considering both the FH waveform and the
system configuration.

Next, we demonstrate the performance improvement due
to the FH design by plotting the RIE as a function of RME.
Figure 11 compares the curves of RIE with respect to RME for
different codes, where the condition numbers of S”S for the
four FH codes are 50.29 dB, 48.67 dB, 50.71 dB, and 41.65 dB,
respectively. We observe that, for all RMEs, random code,
Costas code, and Bernoulli code have similar performance,
and the optimized code provides a marked performance
improvement by about 1dB of RIE. The improvement proves
the effectiveness of the proposed FH code method.

5.2. Condition Number versus Code Length. In RCI, the tem-
poral diversity of radiation field is stochastic, which brings
additional information for resolving targets. Thus, we could
increase the code length to gain more independent equations
in (7), which would increase the temporal stochastic degree
of radiation field and decrease the condition number of the
Gram matrix S¥S. To verify the conclusion, we conduct a
numerical simulation where the code length varies in 110 <
Q < 200. For comparison, the condition numbers of random
code, Costas code, and Bernoulli code are presented.

The results are shown in Figure 12. The random code,
Bernoulli code, and Costas code have excellent properties
of autocorrelation and cross-correlation, and their condition
numbers under different code lengths are nearly the same
as shown in Figure 12. In addition, the condition number
decreases when the code length increases, which means the
incoherence of the reference matrix is improved. Because
the code is random, more FH codes would increase the
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independent equations and bring more information for
target reconstruction. Comparably, our proposed method can
provide a code with smaller condition number than other
types of code.

5.3. Condition Number versus Grid-Cell Size and Number of
Transmitters. In this subsection, we consider the influence
of grid-cell size and transmitter number M on the condition
number. As expressed in (30), the coherence of different
columns of the reference matrix S, that is, (S;, Sy, highly
depends on the grid-cell size and number of transmitters. To
provide further insight into the relationships, we conduct the
following experiments where the grid-cell size changes from
0.8m x 0.8m, Im x 1 m to 1.2m x 1.2 m and the number of
transmitters M varies from 2 to 16.

Figure 13 shows the optimized condition number of Gram
matrix by our proposed method. It can be concluded that
a larger grid-cell makes the condition number smaller. As

shown in (30), a larger grid-cell increases the delay difference

T=Tk

o~ Tfn, » which leads to the detecting signals S
and S less coherent. Therefore, increasing the grid-cell
size gains the stochastic degree of radiation field, and then
the imaging performance is improved and more robust to
modeling error. More transmitters emit more independent
waveforms, which results in a more incoherent radiation
field after being optimized by selecting an optimal FH code.
However, the waveform optimizing is more time-consuming
when the number of transmitters is increased. Besides, the
waveform design method is less efficient, and the incoherence
of S changes slightly after numerous QSA operations when
the condition number is small enough, as shown in Figure 13.
This means the FH code affects the condition number slightly
in this case. Accordingly, the simulation result could be a
guideline on the configuration of transmitters. On one hand,
increasing the number of transmitters makes the condition
number of reference matrix become small especially when
the radiation field is coherent. On the other hand, employing
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more transmitters further is meaningless when the condition
number is small enough and changes slightly, and the hard-
ware cost would be unacceptable in this case.

6. Conclusion

This paper considers the FH-RCI with modeling error and
focuses on FH code design method. For FH-RCI, the trans-
mitted FH waveforms play an important role in the shape of
an incoherence reference matrix, since different waveforms
could generate the detecting signals with different stochastic
degrees. To increase the numerical stability of RCI with
modeling error, we optimize the reference matrix by selecting
the FH codes for all the transmitters. In our method, the
design criterion of minimizing the condition number of
the reference matrix is proposed, which is different from
conventional waveform design criterions and could reduce
the imaging error of LS method. Based on this principle,
we first derive the analytical expression of the correlation
between the different columns of the reference matrix. Then
we optimally design the FH code using QSA algorithm.
Results of numerical experiments show that the proposed
method could generate a reference matrix with smaller
condition number and improve the imaging performance of
RCI with modeling error.
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