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The multiple hypothesis tracker (MHT) is currently the preferred method for addressing data association problem in multitarget
tracking (MTT) application.MHT seeks themost likely global hypothesis by enumerating all possible associations over time, which
is equal to calculating maximum a posteriori (MAP) estimate over the report data. Despite being a well-studied method, MHT
remains challenging mostly because of the computational complexity of data association. In this paper, we describe an efficient
method for solving the data association problem using graphical model approaches. The proposed method uses the graph repre-
sentation to model the global hypothesis formation and subsequently applies an efficient message passing algorithm to obtain the
MAP solution. Specifically, the graph representation of data association problem is formulated as a maximum weight independent
set problem (MWISP), which translates the best global hypothesis formation into finding the maximumweight independent set on
the graph.Then, a max-product belief propagation (MPBP) inference algorithm is applied to seek the most likely global hypotheses
with the purpose of avoiding a brute force hypothesis enumeration procedure. The simulation results show that the proposed
MPBP-MHT method can achieve better tracking performance than other algorithms in challenging tracking situations.

1. Introduction

Multitarget tracking (MTT) is a crucial component for
surveillance systems which aimed to obtain the sequential
estimation of the number of targets and their states (positions,
velocities, etc.). The main task of MTT is to partition the
received observations into tracks that correspond to correct
targets, and this procedure is also known as the data asso-
ciation. The usual constraint is that each target at each scan
gives rise to atmost one observation.However, it is not known
which observation originates fromwhich target, and there are
as well false observations that are not originated by targets.
To address the data association problem, several methods,
including global nearest neighbor (GNN), joint probabilistic
data association (JPDA), and multiple hypothesis tracking
(MHT), were proposed. Among these methods, MHT is
widely regarded as the most prominent method for structur-
ing the data association problem in MTT systems. MHT is a
deferred decision logic method that allows a firm decision to
be postponed until more report data are available. Basically,

there are two types of MHT framework. The first, known as
hypothesis-oriented MHT (HOMHT), is proposed by Reid
in [1]. HOMHT directly maintains and propagates global
hypotheses, and the complexity of treating global hypothe-
ses makes it difficult to be implemented. The alternative
framework, which ismore favored currently, is track-oriented
MHT (TOMHT). Rather thanmaintaining global hypotheses
formed previously, TOMHT reforms global hypotheses using
newly updated tracks on each scan and typically maintains a
set of potential tracks using the track tree structure [2].

Even though TOMHT appears to be the most-preferred
tracking algorithm, it inherently suffers from the combi-
national explosion that exists in the hypothesis formation
step. To improve the efficiency of generating hypotheses, a
multidimensional assignment (MDA) method was proposed
and the computational feasibility has been greatly enhanced
by the use of Lagrangian relaxation [3].

In addition, graphical models, which have received a lot
of attention in recent years, were also introduced to tackle
the data association problem. Graphical models are powerful
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Figure 1: Basic elements of TOMHT algorithm.

tools to model the joint probability distribution of multiple
random variables, in which message passing algorithms can
be used to solve the inference problem efficiently. Several
graph approaches that emerge in the tracking literature were
reviewed in [4]. A factor graph aided multiple hypothesis
tracking approach was proposed to solve the association
probability using the sum-product algorithm [5]. A graph-
theoretic interpretation was introduced in [6] and specif-
ically, the data association problem was formulated as the
maximumweight independent set problem (MWISP), which
is a well-studied combinatorial optimization problem and
known to be NP-hard. To construct suboptimal solutions for
the MWISP, a greedy randomized adaptive search procedure
(GRASP) was developed and applied toMHT framework [7].
Despite the fact that GRASP based approach is not likely to
find the optimal solution, however, this approach provides a
compact and efficient representation of multiple hypotheses
in MHT framework.

In this paper, we utilize an efficient TOMHT implemen-
tation, referred to as MPBP-MHT, to solve the data associa-
tion problem by exploiting the graphical models andmessage
passing algorithms. In our approach, hypothesis generation
can be represented using a graph structure with nodes repre-
senting tracks and edges defining compatibility restrictions,
and in thisway finding the best hypothesis is transformed into
seeking the maximum weight independent set on the graph,
which is a maximum a posteriori (MAP) problem. Because
finding the maximum weighted independent set is known
to be NP-hard for an arbitrary graph and the nature equiv-
alence between MWISP and MAP assignment, as a result,
approximate algorithms are introduced to efficiently address
this problem. Max-product belief propagation (MPBP), as an
efficient inference algorithm, is generally used for finding the
MAP assignment in a joint probability distribution repre-
sented by a graphical model [8]. Therefore, this paper com-
bines the MWISP formulation and the MPBP inference algo-
rithmwith the purpose of generating the best hypothesis effi-
ciently. The effectiveness of the proposed approach is tested
over challenging tracking cases and a comparison with
GRASP-MHT algorithm is made to demonstrate the effi-
ciency of MPBP-MHT approach.

The rest of this paper is organized as follows: Section 2
briefly reviews the standard TOMHT framework and several
techniques to maintain track hypotheses. Section 3 gives the

definition of MWISP and also basic concepts of the graphical
models. In particular, we introduce a case of graphicalmodels
named Markov Random Field (MRF). Additionally, we also
review an efficient inference algorithm called max-product
belief propagation, which is used in graphical models for cal-
culatingMAP assignment. Section 4 outlines theMWISP for-
mulation of data association problem and presents in detail
the MPBP algorithm applied in the proposed MPBP-MHT
method. Section 5 shows the empirical results of several algo-
rithms about tracking performance over challenging situa-
tions, followed by concluding comments in Section 6.

2. Track-Oriented Multiple
Hypothesis Tracker

The proposed method is based on the TOMHT framework,
which takes advantage of the track tree structure to manage
and maintain hypotheses sets. Figure 1 shows the basic ele-
ments of a typical TOMHT system. Hypotheses are reformed
from tracks at each scan and the tracks that survive pruning
are predicted to the next scan where the process continues.
An overview of the core components of TOMHT framework
given in Sections 2.1 and 2.2 provides some efficient strategies
for limiting the number of hypotheses.

2.1. Background. In the TOMHT approach, tracks are
updated using all newly received observationswithin the gate.
Each track is defined by a sequence of observations with the
restriction that at most one observation is included at each
scan. Let {𝑧𝑘𝑖𝑘 }

𝑚𝑘
𝑖𝑘=1

denote the set of observations received at
scan 𝑘, where 𝑚𝑘 is the total number of observations and𝑧𝑘𝑖𝑘 represents the 𝑖𝑘th observation in scan 𝑘. Then the 𝑗𝑘th
track is denoted as T𝑘𝑗𝑘 = {𝑧1𝑖𝑘 , . . . , 𝑧𝑘𝑖𝑘}. For instance, in Fig-
ure 2, track 2 can be represented as {𝑧𝑘−21 , 𝑧𝑘−13 , 𝑧𝑘2}. Dummy
observation in scan 𝑘 is denoted as 𝑧𝑘0 with the purpose of
introducing tracks with missed detection. Tracks are defined
as compatible if they do not share common observations; that
is, one observation can be associated with at most one track.
For the convenience of clustering and solving the MWISP,
an incompatibility list (ICL) for each track is maintained,
which contains all existing tracks with which a given track
is incompatible.

TOMHT uses a track tree structure to store all possible
track hypotheses. A track tree represents all possible track
hypotheses of the corresponding target. A family of tracks is
composed of multiple tracks corresponding to the same tar-
get, i.e., a set of tracks all emanating from a single root obser-
vation. Figure 2 shows the growth of track trees with scan
time and the process of global hypotheses generation. When
new scans arrive, the track trees are extended to include new
observations. As the track tree is formed by a set of tracks that
share a common root node, all these tracks are incompatible.
A global hypothesis is the subset of all possible tracks that
are compatible. As a result, a global hypothesis can only
include nomore than one track from each track tree (see, e.g.,
Figure 2).

In order to evaluate a certain track hypothesis, a track
score, which is used to describe the validity of a track, is
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Figure 2: Formation of hypotheses from tracks in track trees.

associated with each track. A track score is generally defined
as the log likelihood ratio of the probability of the track being
generated from true target returns to the probability of all
observations being false alarms [9]. A recursive formula for
the track score 𝐿(𝑘) at scan 𝑘 is

𝐿 (𝑘) = 𝐿 (𝑘 − 1) + Δ𝐿 (𝑘) , (1)

where the track score increment Δ𝐿(𝑘) is
Δ𝐿 (𝑘) = {{{

ln (1 − 𝑃𝐷) if no update on scan 𝑘
Δ𝐿𝑢 (𝑘) if track update on scan 𝑘. (2)

As the detection probability 𝑃𝐷 is less than unity, it is obvious
that ln(1 − 𝑃𝐷) < 0. Therefore, the track score suffers from a
decrease when the track is not updated.When an observation
is used to update the track on scan 𝑘, however, the track
score increases by the amount Δ𝐿𝑢(𝑘). The magnitude of the
increment Δ𝐿𝑢 is the sum of kinematic and signal-related
terms [10]. Assuming the tracker to be a Kalman filter with
Gaussian innovations, the explicit formof the incrementΔ𝐿𝑢,
in the case where the only signal-related datum is that a
detection or a miss occurred, is given by

Δ𝐿𝑢 = ln[ 𝑃𝐷(2𝜋)𝑀/2 𝜆𝑓𝑎√|S|] − 𝑑22 , (3)

where the time index 𝑘 has been dropped and the following
notations are used:

𝑀: observation dimension
𝜆𝑓𝑎: false target density
S: observation residual covariance matrix
𝑑2: normalized statistical distance for the observation
defined in terms of observation residual vector z̃ and
covariance matrix S.

𝑑2 = z̃𝑇S−1z̃. (4)

Having defined a score for each track, one can determine
the score of a global hypothesis and prunes a track once its
track score falls below a given threshold.

2.2. Efficient Mechanisms for Implementation. Due to the
fact that the global hypothesis is made by a combination
of multiple tracks, the TOMHT may suffer from a heavy
computational burden as there is a potential combination
explosion in the number of hypotheses with the growth of
track trees. As a result, several mechanisms are needed to
suppress the number of hypotheses in real-time systems.

One crucial technique for limiting the growth of track
trees is to apply the n-scan pruning strategy. Upon finding
the best global hypothesis, then-scan pruning strategy prunes
all tracks belonging to a track tree with depth more than 𝑛
and tracks that fail to share a common root observation with
any track included in the best global hypothesis. Another
important strategy to reduce the complexity is clustering,
which successfully divides a large problem into independent
small problems. A cluster is composed of several track trees
that share one or more common observations. By clustering,
the global hypothesis formulation step can be realized in
individual clusters, which in turn greatly reduce the size of
track hypotheses and computing complexity. Other standard
techniques used in TOMHT framework, including gating,
Shiryayev sequential probability ratio test (SSPRT), hypothe-
sis pruning, and track merging, could be referred to [11, 12].

3. Mathematical Preliminaries

Graphical models provide a common structure on which
generic inference algorithms can operate. In this section,
firstly we give a brief review of MWISP, which will be
used to construct the graphical model in the proposed
method. Then we give some basic concepts of graphical
models. Particularly, we are interested in a special graphical
model, namely, the Markov Random Field (MRF), as it is
the prototype on which we develop our graphical model for
tracking applications. Furthermore, we review the standard
message passing algorithm for inference problems in graph-
ical models. Specifically, we introduce in detail the max-
product belief propagation (MPBP) inference which can be
used in the loopy graph situations.

3.1. MaximumWeight Independent Set Problem. MWISP is a
well-studied combinatorial optimization problem. Let 𝐺 =(𝑉, 𝐸) be an undirected graph with a vertex set 𝑉 and an
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Figure 3: A graph fragment showing the updating rule of the
message sent from node 2 to node 1.

edge set 𝐸. The edge (𝑖, 𝑗) is included in the graph only if two
nodes 𝑖 and 𝑗 are connected to each other. The independent
set on the graph is defined as a subset of 𝑉 that has no edge
between any twonodes. A binary vector x, the length ofwhich
equals the cardinality of𝑉, that is, |𝑉|, is defined to represent
an independent set of the graph 𝐺. 𝑥𝑖 takes value 1 if node 𝑖
belongs to the independent set and 0 otherwise. Define 𝑤𝑖 as
the weight on node 𝑖; then MWISP is to find an independent
set of𝑉 that the sum of corresponding weights is largest; that
is,

max
𝑥

∑
𝑖∈𝑉

𝑤𝑖𝑥𝑖,
s.t. 𝑥𝑖 + 𝑥𝑗 ≤ 1, ∀ (𝑖, 𝑗) ∈ 𝐸.

(5)

3.2. Graphical Models. The core component of graphical
models is the representation of a probability distribution
using a graph as a data structure. A graphical model is
denoted as a graph 𝐺 = (𝑉, 𝐸) with a probability distribution𝑝(x), in which nodes represent the variables x = {𝑥𝑖 | 𝑖 ∈𝑉}, and edges represent the probabilistic interaction between
the neighboring variables. Basically there are two types of
graphical representation of distributions. One is the Bayesian
network which utilizes a directed graph; and the other is the
Markov Random Field (MRF) using an undirected graph.
As the graph model used in the MPBP-MHT approach is
the undirected graph, in this paper we focus on the MRF. A
graph is called an MRF if every variable 𝑥𝑖 is independent
of nonneighboring variables in the graph given the value
of its neighbors. For instance, in Figure 3, the lack of an
edge between nodes 𝑥1 and 𝑥3 means they are conditionally
independent under a given 𝑥2.

A clique of a graph is a subset of this graph in which all
the nodes are fully connected. A pairwise Markov network
is an undirected graphical model that only takes the edges
as cliques, which means that the potentials are over single
variables or pairs of variables. More precisely, let x denote
the values of all unobserved variables in the graph and we
assume that each unobserved node 𝑥𝑖 is associated with an
observation 𝑧𝑖. Then the probability distribution 𝑝(x | z)
of a pairwise MRF is expressed in terms of the product of
potentials on edges and nodes

𝑝 (x | z) = 1𝑍∏
𝑖,𝑗

𝜓𝑖𝑗 (𝑥𝑖, 𝑥𝑗)∏
𝑖

𝜙𝑖 (𝑥𝑖, 𝑧𝑖) , (6)

where 𝑍 is the normalization constant, 𝜙𝑖(𝑥𝑖, 𝑧𝑖) is the node
potential at the node 𝑖, and 𝜓𝑖𝑗(𝑥𝑖, 𝑥𝑗) is the edge potential
between the nodes 𝑖 and 𝑗.
3.3. Belief Propagation. The task of inference is to determine
the underlying state of the random variables in the graphical
model. A key problem in designing algorithms for inference
is finding an efficient way to reason about the large number
of possible assignments to the variables in the model. One
fundamental inference problem is to find the most likely
configuration of the probability distribution, which is known
as the MAP assignment. Many NP-hard combinatorial opti-
mization problems (e.g., MWISP) can be posed as finding
the MAP inference problem in pairwise Markov random
fields with binary variables. There are many ways to solve
the MAP inference problem. The belief propagation (BP)
algorithm, specifically the max-product belief propagation
(MPBP) algorithm, is an efficient way to solveMAP inference
problems in graphical models.

MPBP is an approximate inference algorithm that is
simple to code and scales very well with problem size. By
taking advantage of the statistical independence in the graph
structure, MPBP algorithm can break the global inference
problem into localized operations, which is generally faster
thanmanipulating the joint distribution explicitly.TheMPBP
algorithm operates by a message passing mechanism which
is implemented by iteratively passingmessages along edges of
the graph that summarize each variable’s beliefs. After receiv-
ing messages from its neighbors, the node updates its belief
and propagates it to the rest of the graph. An assignment can
then be decided from the beliefs by choosing the most likely
state according to each node’s belief. The MPBP algorithm
makes direct use of the graph structure in constructing and
passing messages, making it simple to implement and run
quickly. As a result, the review will primarily focus on the
MPBP algorithm, which approximates the MAP inference
problem, as it will be used in the proposed approach.

The update equations forMPBP algorithm can be derived
from the probability distribution. The messages are updated
as follows: each node sends messages to its neighbors and
receives messages from them and the messages are updated
according to the received messages from neighbors at the
previous iteration

𝑚𝑖→𝑗 (𝑥𝑗)
= max
𝑥𝑖

𝜓𝑖𝑗 (𝑥𝑖, 𝑥𝑗) 𝜙𝑖 (𝑥𝑖, 𝑧𝑖) ∏
𝑥𝑘∈𝑁(𝑥𝑖)\𝑥𝑗

𝑚𝑘→𝑖 (𝑥𝑖) , (7)

where 𝑚𝑖→𝑗(𝑥𝑗) represents the message passed from node 𝑥𝑖
to node 𝑥𝑗 and𝑁(𝑥𝑖) is the set of all the neighbors of node 𝑥𝑖.

At any iteration, once a node has received all messages
from its neighbor nodes, the belief at node 𝑥𝑖 can be
computed by

𝑏𝑖 (𝑥𝑖) = 𝜙𝑖 (𝑥𝑖, 𝑧𝑖) ∏
𝑥𝑘∈𝑁(𝑥𝑖)

𝑚𝑘→𝑖 (𝑥𝑖) , (8)

and the output of (8) should be normalized. Initially, themes-
sages are initialized with constant functions. As the observed
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nodes are localized and do not receive messages, generally we
denote 𝜙𝑖(𝑥𝑖, 𝑧𝑖) as 𝜙𝑖(𝑥𝑖) for notation simplicity.

4. Efficient Multitarget Tracking Using
Graphical Models

The main reason for constructing graphical model repre-
sentation for data association is to utilize efficient inference
algorithms, specifically, the max-product belief propagation
algorithm, to seek the best global hypothesis. In this section,
we first present the approach we take to construct graphical
models for data association problem in MTT applications.
Then we describe the detailed formulation of the proposed
MPBP-MHT method. Specific process of defining potential
functions and running message passing algorithms is also
given.

4.1. GraphicalModel Representation. TOMHT seeks and gen-
erates the best global hypothesis by enumerating all possible
associations over time which, as we can see, is equal to
seeking maximum a posteriori (MAP) assignment over the
report data. Let T and z denote the set of all tracks and
observations up to the present scan, respectively. A binary
vector h, the length of which equals the cardinality of T,
that is, |T|, is used to denote the global hypothesis whereℎ𝑖 = 1 if the 𝑖th track is included in the global hypothesis andℎ𝑖 = 0 otherwise. In this way, the process of finding the best
hypothesis h∗ is equivalent to computing the MAP solution
of the posterior probability distribution 𝑝(h | z)

h∗ = argmax
h

𝑝 (h | z) . (9)

The specific logarithmic formula of𝑝(h | z) is given byKurien
in [13]

log𝑝 (h | z) = 𝐶 + |T|∑
𝑖=1

ℎ𝑖𝑠𝑖, (10)

where 𝐶 is a constant and 𝑠𝑖 is the track score of the 𝑖th track.
Therefore, the process of computing the MAP solution of𝑝(h | z) can be formulated as an integer linear programwhich

is subject to the restriction that no common observation is
shared by tracks included in the same global hypothesis

h∗ = argmax
h

h ⋅ s = argmax
h

|T|∑
𝑖=1

ℎ𝑖𝑠𝑖. (11)

Due to the equivalence of the integer linear program
problem in (11) and MWISP described in (5), the graph
representation for data association can be constructed by
utilizing the graphical model in MWISP so that efficient
inference algorithms can be used to calculate the MAP
assignment in MTT application.

In individual clusters, we construct the graph 𝐺𝑘 =(𝑉𝑘, 𝐸𝑘) at scan 𝑘. Every node represents a possible track and
is associated with a hypothesis variable ℎ𝑖.The variable ℎ𝑖 = 1
if the track is included in the global hypothesis and ℎ𝑖 = 0
corresponds to absence.Theweight of a node is defined as the

Track 1

Track 5

Track 2Track 3Track 4

1

5

234

Figure 4: Graphical model for data association problem in Figure 2.

track score and in our approach we only use the tracks that
have positive track scores. An edge is added between nodes
if the corresponding tracks are incompatible. Therefore, the
process of seeking the best global hypothesis can be translated
to finding the maximum weight independent set on the
graph.

Taking the track trees in Figure 2 as an example, it is
clear that 5 track hypotheses are formulated up to scan 𝑘.
All tracks that share one or more common observations are
connected to each other with edges in the corresponding
graph in Figure 4. Assuming the track score of track 1 to track
5 is one to five, respectively (the score is labeled within the
cycles), in this case the best global hypothesis with the largest
sum of weights consists of tracks 2, 3, and 4.

4.2. MPBP-MHT Algorithm for Data Associations. Once a
graphical model is constructed, the specific form of the
potential functions and the update equations for the max-
product belief propagation algorithm can be calculated. As
the joint probability distribution is consistent with a pairwise
MRF, it can be factored into a product of potential functions
and thus the probability distribution 𝑝(h | z) of hypothesis
variable h given an observation set z is

𝑝 (h | z) = 1𝑍 ∏
(𝑖,𝑗)∈𝐸

𝜓𝑖𝑗 (ℎ𝑖, ℎ𝑗)∏
𝑖

𝜙𝑖 (ℎ𝑖) , (12)

where the edge potentials𝜓𝑖𝑗(ℎ𝑖, ℎ𝑗) between nodes 𝑖 and 𝑗 are
𝜓𝑖𝑗 (ℎ𝑖, ℎ𝑗) = {{{

0 if ℎ𝑖 = 1, ℎ𝑗 = 1
1 otherwise. (13)

Assume 𝑠𝑖 is the track score of the 𝑖th track; then the potential
function 𝜙𝑖(ℎ𝑖) at node 𝑖 is

𝜙𝑖 (ℎ𝑖) = {{{
𝑒𝑠𝑖 if ℎ𝑖 = 1
1 otherwise. (14)

It is clear that if h is an independent set, then 𝑝(h | z) =(1/𝑍) exp(∑𝑖 ℎ𝑖𝑠𝑖); otherwise, 𝑝(h | z) equals zero. If h∗ =
argmaxh𝑝(h | z), then the MAP assignment corresponds
to a maximum weight independent set in the graph. It is
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clear that finding theMWIS is equivalent to finding theMAP
assignment on the corresponding graphicalmodel.Therefore,
the max-product belief propagation algorithm can be used
as an iterative strategy for finding the MWIS solution on the
graph.

The main idea of max-product belief propagation is to
convert messages between nodes iteratively, which aims to
maximize the joint probability by finding the most likely
assignment to all of the variables. In each iteration, each
node sends messages to its neighbors and the belief can be
updated by exploiting the incoming messages at each node.
This procedure is repeated until convergence.

Define 𝑚𝑛𝑖→𝑗 = [𝑚𝑛𝑖→𝑗(0), 𝑚𝑛𝑖→𝑗(1)]𝑇 as the messages
passed from the node 𝑖 to its neighbor node 𝑗 in the 𝑛th itera-
tion. Initialize the iteration by setting 𝑛 = 0 and 𝑚0𝑖→𝑗 =
[𝑚0𝑖→𝑗(0), 𝑚0𝑖→𝑗(1)]𝑇, where

𝑚0𝑖→𝑗 (𝑟) = {{{
exp (𝑠𝑖) if 𝑟 = 0
1 otherwise. (15)

For 𝑛 ≥ 1, in each iteration, the message in a node is updated
according to the messages from its neighbors recursively,
where the updating rule is

𝑚𝑛𝑖→𝑗 = max
ℎ𝑖

𝜓𝑖𝑗 (ℎ𝑖, ℎ𝑗) 𝜙𝑖 (ℎ𝑖) ∏
𝑘∈𝑁(𝑖)\𝑗

𝑚𝑛−1𝑘→𝑖. (16)

Specifically, by combining (13), (14), and (16), the updating
rule can be rewritten as

𝑚𝑛𝑖→𝑗 (0)
= max[

[
∏
𝑘∈𝑁(𝑖)\𝑗

𝑚𝑛−1𝑘→𝑖 (0) , exp (𝑠𝑖) ∏
𝑘∈𝑁(𝑖)\𝑗

𝑚𝑛−1𝑘→𝑖 (1)]]
,

𝑚𝑛𝑖→𝑗 (1) = ∏
𝑘∈𝑁(𝑖)\𝑗

𝑚𝑛−1𝑘→𝑖 (0) .
(17)

Each node 𝑖 maintains a belief 𝑏𝑛𝑖 = [𝑏𝑛𝑖 (0), 𝑏𝑛𝑖 (1)], which is
computed as follows:

𝑏𝑛𝑖 = 𝜙𝑖 (ℎ𝑖) ∏
𝑘∈𝑁(𝑖)

𝑚𝑛𝑘→𝑖, (18)

where in the same way the specific form is

𝑏𝑛𝑖 (0) = ∏
𝑘∈𝑁(𝑖)

𝑚𝑛𝑘→𝑖 (0) ,
𝑏𝑛𝑖 (1) = exp (𝑠𝑖) ∏

𝑘∈𝑁(𝑖)

𝑚𝑛𝑘→𝑖 (1) . (19)

At the end of the 𝑛th iteration, the maximum weight inde-
pendent set h𝑛 is estimated as

ℎ𝑛𝑖 = 1{𝑏𝑛𝑖 (1)>𝑏𝑛𝑖 (0)}. (20)

The track hypothesis will be included in the MWIS if its
belief satisfies 𝑏𝑛𝑖 (1) > 𝑏𝑛𝑖 (0). The iteration process will repeat

until h𝑛 converges or the number of iterations exceeds a given
threshold.

The specific pseudocode of the MPBP-MHT algorithm
is shown in Algorithm 1. The hypothesis generation step is
executed in independent cluster. Input parameters include
the current graph𝐺 and scan index 𝑘 is omitted for simplicity.

In the practical tracking application, the graphicalmodels
corresponding to the track trees can be singly connected
graphs (i.e., there is only one path between any two given
nodes and in this case the graph structure resembles a
tree) or graphs with cycles. For a tree-structured graph, the
max-product belief propagation algorithm is guaranteed to
converge in a finite number of iterations and the assignment
based on the messages at convergence is guaranteed to give
the optimal assignment values corresponding to the MAP
solution [14]. As for a graph with cycles, its performance has
not been well studied and the algorithm may not converge.
Nevertheless, max-product algorithms often show remark-
able performances even on graphs with cycles. Recently
several good empirical performances have been obtained by
running the max-product algorithm on loopy graphs [15–18]
and progress has been made to understand the mechanism
behind its empirical success. For loopy graph with a single
loop, [19] demonstrated that the algorithm converges to the
correct marginal or MAP probabilities. For arbitrary graphs,
[20] proved that the assignment based on a fixed point is a
neighborhood maximum of the posterior probability.

5. Experimental Results

In this section, we conduct an empirical evaluation of the
proposed MBPB-MHT algorithm over a challenging situa-
tion using simulated data.We present the setup and scenarios
under which we operate our experiments. The performance
of the proposed approach was evaluated with several per-
formance metrics. To further demonstrate its superiority,
comparisons were made with GRASP-MHT algorithm in
correlation quality, overall cardinality, and state estimation.

5.1. Target Motion and Measurement Models. The accelera-
tion model with a white Gaussian noise is considered and
the linear Kalman filter is used in our experiments. Targets
move in a 2D surveillance area. The true state of a target at
scan 𝑘 is x𝑘 = [𝑥(𝑘), 𝑦(𝑘), 𝑥̇(𝑘), ̇𝑦(𝑘)]𝑇. 𝑥(𝑡𝑘) and 𝑦(𝑡𝑘) are,
respectively, the positions of this target in the𝑋-𝑌 coordinate
system, while 𝑥̇(𝑡𝑘) and ̇𝑦(𝑡𝑘) are, respectively, the velocities
of this target. The movement of each target is modeled as the
following target motion model:

x𝑘 = Fx𝑘−1 + k𝑘, (21)

where the state transition matrix F is expressed as

F = [[[[[
[

1 0 𝑇 0
0 1 0 𝑇
0 0 1 0
0 0 0 1

]]]]]
]
, (22)
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Input: graph 𝐺, including a cluster of family, track score and track ICL.
Output: best global hypothesis
(1) initialization: set𝑚0𝑖→𝑗 = [𝑚0𝑖→𝑗(0), 𝑚0𝑖→𝑗(1)]𝑇 with (15).
(2) iteration: At iteration n for all nodes 𝑖 ∈ 𝑉

(a) Calculate new message𝑚𝑛𝑖→𝑗 which is sent by the node 𝑖 to all its neighbors with (17).
(b) Calculate the belief at each node with (19).
(c) Decision: for each node 𝑖 ∈ 𝑉, compare 𝑏𝑛𝑖 (1) and 𝑏𝑛𝑖 (0); if 𝑏𝑛𝑖 (1) > 𝑏𝑛𝑖 (0), set ℎ𝑛𝑖 = 1.

(3) if h𝑛 converges, finish the iteration and output h∗; else set 𝑛 = 𝑛 + 1 and go to step (2)

Algorithm 1: MPBP-MHT algorithm. Note. For computational stability, it is often recommended that messages should be normalized in
each iteration.

and the sampling period T = 2 s.The covariancematrix of the
white Gaussian noise k𝑘 is

Q =
[[[[[[[[[[[
[

𝑇33 0 𝑇22 0
0 𝑇33 0 𝑇22𝑇22 0 𝑇 0
0 𝑇22 0 𝑇

]]]]]]]]]]]
]

𝑞, (23)

where the process noise intensity 𝑞 = 100m2/s3. The meas-
urement model is given as

z𝑘 = Hx𝑘 + w𝑘, (24)

where

H = [1 0 0 0
0 1 0 0] , (25)

and the zero-mean Gaussian measurement noise w𝑘 has a
covariance matrix R = diag{𝜎2𝑥, 𝜎2𝑦}, where 𝜎2𝑥 = 𝜎2𝑦 = 50m2.
5.2. Simulation Scenarios. We employ two scenarios for
verifying the performance of the proposed method. All the
estimation results were based on 100 Monte Carlo runs and
the depth of TOMHT equals 5. The tracking performance
is then compared with the GRASP-MHT algorithm in the
same scenario, respectively. In the GRASP-MHT algorithm,
the maximum number of tuples is set to 30 and the number
of randomized iterations for each tuple is set to 3. All other
parameters were shared with MPBP-MHT algorithm.

5.2.1. Scenario A. In the scenarioA, the number of scans is set
to 80. At the beginning, two closely spaced targets aremoving
parallelly with a separation of 30m and a speed of 30m/s over
a period of 30 s. In the later 50 s, there is an intersect at 32 s
and after that two targets are moving separately. Figure 5(a)
shows the real tracks of the two targets, and Figure 5(b) shows
the real observations with clutters. The observation errors of
azimuth and range are 0.002 rad and 20m, respectively. The

standard deviation of the process noise is 10m. The target
detection probability is 0.9 and the false alarm density is set
as 10−8/m2.
5.2.2. Scenario B. The scenario B consists of ten closely
spaced targets and the targets are moving in formation with
a separation of 900m and a speed of 300m/s over a period
of 120 s. The start and stop positions are marked with ∘ and×, respectively. Each target performs three turns with an
acceleration of 3𝑔 at 22 s, 42 s, and 72 s, where 𝑔 is the gravita-
tional acceleration and each turn lasts for 8 s with a course
change of 45o. The target detection probability is set as 0.9
and the false alarm density is 10−8/m2. Figure 6(a) shows the
true target trajectories in the scenario B used for performance
evaluation and Figure 6(b) provides the true observations
with clutter. The number of clutter is Poisson distributed
and their locations in the observation space are uniformly
distributed.

5.3. Results and Evaluation. In this part, we provide the
empirical results in the simulation. In order to obtain a quan-
titative assessment of the performance of two algorithms, a set
of performance metrics, including miscorrelation rate, cor-
rect correlation rate, average time for hypothesis per scan, and
the optimal subpattern assignment distance, are introduced
and the detailed description could be found in [21].

(a) Miscorrelation rate of true tracks (𝑅MC): we use the
miscorrelation rate to measure the data association
quality. The miscorrelation rate is defined as the ratio
of average number of miscorrelation over the average
track life.

(b) Correct correlation rate of true tracks (𝑅CC): the
correct correlation rate is also used for evaluating
the correctness of data association. It is defined as
the ratio of total number of correctly associated
observations in true tracks to the total number of
target-originated observations.

(c) Average time for hypothesis per scan (𝑇𝐻): thismetric
is defined to evaluate the computational complexity of
different trackers with unity being second.
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Figure 5: Target trajectories and the real observations with clutters in scenario A. (a) Target trajectories; (b) real observations.
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Figure 6: Target trajectories and the real observations with clutters in scenario B. (a) Target trajectories; (b) real observations.

(d) The optimal subpattern assignment (OSPA) distance:
this metric is introduced to measure the quality of
cardinality and state estimation. The OSPA distance
between the two sets 𝑋 = {𝑥1, . . . , 𝑥𝑛} and 𝑌 = {𝑦1,. . . , 𝑦𝑚} is calculated by

𝑑(𝑐)ospa (𝑋, 𝑌)

= {{{{{
(1𝑛 (min
𝜋∈∏𝑛

max
1≤𝑖≤𝑛

𝑑(𝑐) (𝑥𝑖, 𝑦𝜋(𝑖))𝑝 + 𝑐𝑝 (𝑛 − 𝑚)))𝑝 𝑛 ≥ 𝑚
𝑑(𝑐)ospa (𝑌,𝑋) 𝑛 ≤ 𝑚,

(26)

where∏𝑛 denotes the set of all possible permutations
of {1, 2, . . . , 𝑛} and 𝑑(𝑐)(𝑥, 𝑦) = min(𝑐, 𝑑(𝑥, 𝑦)) is the
truncated Euclidean distance between the vectors 𝑥
and 𝑦. The cut-off distance 𝑐 is set as 5000 and the
order parameter 𝑝 is fixed at 2.

5.3.1. Scenario A. The performance of the two algorithms
in scenario A is shown in Table 1 and Figures 7 and 8. At
first glance, we can observe from Figure 7 that the estimated
trajectories produced by MPBP-MHT are smoother than

Table 1: Simulation results of the scenario A.

Tracker Performance metrics
𝑅MC 𝑅CC 𝑇𝐸 (𝑠)

MPBP-MHT 0.01 0.85 0.002
GRASP-MHT 0.24 0.67 0.001

trajectories by GRASP-MHT and have less track confusion.
Additionally, from Table 1, it can be seen that the correct
correlation rate 𝑅CC of MPBP-MHT is larger than that of
GRASP-MHT and the miscorrelation rate 𝑅MC of MPBP-
MHT is smaller than that of GRASP-MHT, which means
that the correctness of data association in MPBP-MHT is
better than GRASP-MHT. The quantitative difference of𝑇𝐻 between the two algorithms is merely 0.001 s, which
indicates that both algorithms can operate efficiently. Finally,
the overall tracking performance is compared in terms of
the OSPA distance. The OSPA distance is used to evaluate
both cardinality and state estimation. It can be seen that
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Figure 7: Estimated trajectories in scenario A. (a) MPBP-MHT; (b) GRASP-MHT.
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Figure 8: OSPA distance of the scene A.

Table 2: Simulation results of the scene B.

Tracker Performance metrics
𝑅MC 𝑅CC 𝑇𝐸 (𝑠)

MPBP-MHT 0.02 0.78 0.16
GRASP-MHT 0.17 0.69 0.04

although the OSPA distance of MPBP-MHT in some frames
is larger than that of GRASP-MHT, in general, the tracking
performance of MPBP-MHT outperforms GRASP-MHT in
terms of the OSPA distance with great priority.

5.3.2. Scenario B. The performance of the two algorithms
in scenario B is shown in Table 2 and Figures 9 and 10.
Figure 9 shows the estimated tracks obtained byMPBP-MHT
and GRASP-MHT in scenario B, respectively. It can be seen
that MPBP-MHT does better in tracking performance. The

tracker using the MPBP-MHT algorithm gets cleaner tracks
while the tracker using the GRASP-MHT algorithm exhibits
obvious track switching.

Table 2 summarizes the tracking performance of the two
algorithms in correlation quality and execution time. From
the statistics, the MPBP-MHT algorithm obtains a larger𝑅CC and a smaller 𝑅MC, which demonstrates that the MPBP-
MHT algorithm outperforms the GRASP-MHT algorithm
in the data association part. On timing results, both of the
algorithms are efficient while the GRASP-MHT algorithm
has a comparatively shorter execution time.

Figure 10 shows the average OSPA distance obtained
over 100 Monte Carlo runs. It can be seen that the OSPA
distance of GRASP-MHT fluctuates approximately between
1250 and 3000 whereas the OSPA distance of MPBP-MHT
fluctuates between 250 and 2600. Although the curves of the
two algorithms follow a similar pattern, the curve of MPBP-
MHT is beneath the curve of GRASP-MHTmost of time and
stabilizes at a lower position.Therefore, we can conclude that
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Figure 9: Estimated trajectories in scenario B. (a) MPBP-MHT; (b) GRASP-MHT.
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Figure 10: OSPA distance of the scene B.

the MPBP-MHT algorithm exhibits better overall estimation
performance.

6. Conclusions

In this paper, we propose an efficient MPBP-MHT method
that exploits graphical models and message passing algo-
rithms to solve the data association problem in tracking appli-
cation. Instead of seeking the best hypothesis by enumeration,
we cast the hypothesis generation problem into the graphical
model formalism using MWISP structure and the efficient
MPBP algorithm is developed to find the MAP assignment.
The effectiveness of the proposed algorithm is tested over
challenging cases and a comparison with the GRASP-MHT
algorithm is made to demonstrate the priority in association
property of the MPBP-MHT algorithm.
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