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The article is devoted to modelling and analysis of linear time-varying (LTV) filters with periodically variable coefficients. A
transmission model of such filters has been described. Equations expressing the filter response for a given class of periodic
parametric functions have been obtained and presented in a closed form. The results have been illustrated by an example.

1. Introduction

Linear time-varying systems are nonstationary deterministic
systems with parameters variable in time.They are also called
parametric systems or shortly LTV systems. Those systems
are a direct generalization of classical linear and time invari-
ant (LTI) systems. Many theoretical works [1–5] as well as
practical applications have been devoted to these systems. In
particular, LTV systems can be applied in signal processing
[6–11], especially in sampling systems [12], signal filtering and
noise reduction [7, 8, 13–17], and current compensators in
power networks [18, 19], amplifiers [5, 20], chaos generators
[21], electromagnetic launchers [22], and medical devices
[23].Themain advantages of LTV system application include
improvement of the dynamic properties of systems and
reduction of the transient state [16, 24].

The analysis of LTV systems can be found, among others,
in [5, 20, 25–30]. In particular, these works concern paramet-
ric systems described by the second- or higher-order differen-
tial equations with time-varying parameters. In the literature,
there are some methods of LTV system analysis based on
transformation of such equations into equations known from
the applied mathematics, for example, into Riccati equation
[25, 26] or Floquet equation [20] aswell asMathieu,Meissner,
or Hill equations [5]. These methods require the determi-
nation of the state matrix having time-varying elements
[20], followed by calculation of the generalized eigenvalues

[27] or Wroński’s fundamental solution matrix [27, 28]. This
approach is very useful in the case of stability analysis [31,
32] or spectral analysis [27], but it does not usually lead to
analytic solutions which are expressed in a closed form.

Analytic solutions to the above-mentioned differential
equations exist only in some specific cases which depend
strictly on the parametric functions: the waveforms of time-
varying parameters. In the theory of differential equations
[33], the fundamental solutions of the first-order equation
and some second-order equations with time-varying coeffi-
cients can be found. On the base of Wroński’s fundamental
solution matrix [5, 25–28], we can determine solutions to the
equations describing LTV systems. The solution of the first-
order equation has a form of an exponential function with an
integral of the parametric function in the exponent. On the
other hand, the fundamental solutions of the second-order
equations are much more complex and can be expressed
by special functions of mathematical physics, such as the
first- and the second-kind Bessel functions of noninteger
orders as well as confluent hypergeometric functions [24,
33]. Determination of a closed form solution for the first-
and the second-order systems is possible only if integrals
of a combination of fundamental solutions and parametric
functions can be calculated.

In the era of applying numerical approach to solving
almost everything, it must be reminded that the closed form
solutions are important and cannot be ignored or neglected.
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Their importance comes from their role in understanding of
qualitative features of phenomena and processes described
by differential equations or impulse response functions.
Moreover, even if there is no clear physical meaning of
a closed form solution, it can still be used to verify the
convergence and evaluate the errors of numerical algorithms
as well as asymptotic and approximate analytical methods. In
the case of the presented model, the numerical solution was
also implemented in order to compare the analytical and the
numerical results.

The paper shows that, for the first-order LTV system and
the assumed class of periodic and exponential parametric
functions, it is possible to determine the system impulse
response in a closed form for a wide class of excitations,
including signals with finite energy or finite average power.
The first-order systems can be treated as elementary blocks
which allow constructing more complex LTV systems. The
determination of the LTV system impulse response is essen-
tial as it not only allows calculating the system response to
any excitation, but also enables obtaining frequency charac-
teristics of LTV filters. The time waveform of the parametric
function, which in our case is interpreted as the time-varying
cutoff frequency, has been chosen very carefully. First of all,
from the signal theory point of view, exponential changes
of the cutoff frequency correspond directly to the dynamic
properties of the filter. Moreover, the obtained solution
can be extended for a wider class of periodic parametric
functions including all the functions which can be expressed
by the algebraic sum of exponential functions or can be
approximated by such functions with sufficiently small error.
Finally, if the parametric function expressing the variability
of the coefficient of the first-order differential equation is
periodic and exponential, it is possible to find a closed form
solution to this equation. According to our knowledge, such
closed form solution has not been given in the literature so
far.

2. Transmission Model of LTV Systems

The transformation rules for systems composed of ele-
mentary single input single output LTI blocks are well
known in the control theory [34]. In the continuous-time
or discrete-time domain, the algebra of these transforma-
tions is based on the algebraic sum and the convolution
operations (±, ∗) with impulse responses of elementary sec-
tions as kernels of these operations. In the domain of 𝐿-
transform or 𝐹-transform, algebra is based on the classi-
cal definition of the algebraic sum and the multiplication
operations (±, ⋅) with arguments being the transfer functions
or spectral functions of elementary blocks. In the case of
LTV systems with coefficients variable in time, the classical
definition of operational transfer functions has no sense
[1, 35].

The transmission model of an LTV system describes an
input-output signal relation. The model of a parametric sys-
tem can be obtained on the basis of the stationary prototype
using the algorithm presented in Figure 1.

Based on a known transfer function of the classical filter
𝐻(𝑠) (1), by the inverse Laplace transform, one can obtain
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Figure 1: Algorithm of LTI to LTV system transformation.

the differential equation of an LTI system (2) with zero initial
conditions.

𝐻(𝑠) = 𝑌 (𝑠)𝑈 (𝑠) =
𝑏𝑛𝑠𝑛 + 𝑏𝑛−1𝑠𝑛−1 + ⋅ ⋅ ⋅ + 𝑏1𝑠 + 𝑏0
𝑎𝑛𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 + ⋅ ⋅ ⋅ + 𝑎1𝑠 + 𝑎0 ,

𝑎𝑘, 𝑏𝑘 ∈ R, 𝑘, 𝑛 ∈ N,
(1)

𝑎𝑛𝑦(𝑛) (𝑡) + 𝑎𝑛−1𝑦(𝑛−1) (𝑡) + ⋅ ⋅ ⋅ + 𝑎1𝑦 (𝑡) + 𝑎0𝑦 (𝑡)
= 𝑏𝑛𝑢(𝑛) (𝑡) + 𝑏𝑛−1𝑢(𝑛−1) (𝑡) + ⋅ ⋅ ⋅ + 𝑏1𝑢 (𝑡) + 𝑏0𝑢 (𝑡) ,

(2)

where

𝑦(𝑡) is the output signal,
𝑢(𝑡) is the input signal.

Then, after the variation of constant equation coefficients, one
can obtain the parametric differential equation:

𝑎𝑛 (𝑡) 𝑦(𝑛) (𝑡) + 𝑎𝑛−1 (𝑡) 𝑦(𝑛−1) (𝑡) + ⋅ ⋅ ⋅ + 𝑎1 (𝑡) 𝑦 (𝑡)
+ 𝑎0 (𝑡) 𝑦 (𝑡)

= 𝑏𝑛 (𝑡) 𝑢(𝑛) (𝑡) + 𝑏𝑛−1 (𝑡) 𝑢(𝑛−1) (𝑡) + ⋅ ⋅ ⋅
+ 𝑏1 (𝑡) 𝑢 (𝑡) + 𝑏0 (𝑡) 𝑢 (𝑡) .

(3)

In the following considerations, it has been assumed that
only the parameters on the left side of equation can be
varied. Further discussion has been carried out for a section
described by (3) with an assumption that the input signal is
an equivalent signal 𝑥(𝑡). In such a case, the analysis of any
parametric section of the 𝑛th order can be reduced to the
analysis of a low-pass LTV section:

𝑎𝑛 (𝑡) 𝑦(𝑛) (𝑡) + 𝑎𝑛−1 (𝑡) 𝑦(𝑛−1) (𝑡) + ⋅ ⋅ ⋅ + 𝑎1 (𝑡) 𝑦 (𝑡)
+ 𝑎0 (𝑡) 𝑦 (𝑡) = 𝑥 (𝑡) .

(4)

In the time domain, LTV systems are described in two
different ways. The first of them is a linear differential
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Figure 2: Relations between methods of description used for (a) LTI systems and (b) LTV systems.

equation with coefficients depending on time (4). The main
problem of this description is that the solution to higher-
order parametric equations usually, except for rare cases, does
not exist.

The secondmethod of LTV system expression in the time
domain is a parametric convolutionwith an impulse response
as a kernel [4]:

𝑦 (𝑡) = ∫𝑡
0
ℎ (𝑡, 𝜏) 𝑥 (𝜏) d𝜏, (5)

where

ℎ(𝑡, 𝜏) is the system impulse response.

In contrast to classical stationary systems, the impulse
response of an LTV system is a function of two variables: time
and themoment of signal application to the input of a system.

The transfer function and the frequency response for LTV
systems can be defined in various ways [1, 12, 36–38]. The
most popular definitions have been given below:

𝐻(𝑠, 𝑡) =L𝜏 {ℎ (𝑡, 𝜏)} ,
𝐻 (𝑗𝜔, 𝑡) = F𝜏 {ℎ (𝑡, 𝜏)} = 𝐻 (𝑠, 𝑡)|𝑠=𝑗𝜔 ,

(6)

where

L𝜏,F𝜏, are the Laplace and Fourier transforms with
respect to the variable 𝜏.

The functions 𝐻(𝑠, 𝑡) and 𝐻(𝑗𝜔, 𝑡) are called transfer
functions or frequency characteristics of LTV systems [1, 37,
38]. They are very helpful representations used in the LTV
system theory [5, 36, 39].

The relations between various methods of LTI and LTV
system description have been illustrated in Figure 2. The
main difference consists in the lack of direct transition
between differential equations and transfer functions for LTV

systems. The impulse response function ℎ(𝑡, 𝜏) of an LTV
system can be obtained on the base of fundamental solutions
of the differential equation describing this system in time
domain. The determination of impulse response is essential
and necessary to obtain the frequency characteristics of LTV
filters. Further and detailed analysis has been limited to the
first-order low-pass filters.

2.1. Model of the First-Order Low-Pass Filter. Analytical
methods of solving higher-order differential equations with
variable coefficients, with a few exceptions [5, 33], usually do
not exist. The determination of the impulse response of LTV
systems described by (4) is not generally possible.

Elementary first-order sections described in this work
allow constructing more complex higher-order systems,
which are stable, if the elementary sections are stable [40]. For
the mentioned reasons, the consideration has been limited to
the analysis of the LTV systems described by the first-order
differential equation in the following form:

𝑦 (𝑡) + 𝜔 (𝑡) 𝑦 (𝑡) = 𝑐𝑥 (𝑡) , (7)

where

𝑥(𝑡), 𝑦(𝑡) are the input and output signals,
𝜔(𝑡) is the parametric function,
𝑐 is the constant gain coefficient, usually 𝑐 = 𝜔0, where𝜔0 denotes cutoff angular frequency of a stationary
low-pass filter.

2.2. Parametric Function Variability. 𝜔(𝑡) is a parametric
function and it can be interpreted as a cutoff angular fre-
quency which depends on time. In the paper, the exponential
and periodical waveform of the parameter has been assumed
(Figure 3).

The mathematical description of the parametric function
can be carried out in two ways. The first one consists in
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periodical repetition of the exponential function defined for
a finite time interval which becomes the period. The second
method uses the Fourier series.

Method 1. In the first period, parametric function is
expressed by the equation:

𝜔1𝑃 (𝑡) = (𝜔0 + 𝐶𝑒−𝛾𝑡) ⋅ (1 (𝑡) − 1 (𝑡 − 𝑡𝑟)) ,
𝜔0 > 0, 𝐶 ∈ R, 𝛾 ≫ 𝑡𝑟,

(8)

where

𝜔0 is the cutoff angular frequency of a stationary
prototype,
𝐶 is the maximum or minimum value of 𝜔(𝑡),
𝛾 is the variability rate,
𝑡𝑟 is the recurrence time,
1(𝑡) is the unit step.

In the second step, the variation from the first time interval is
generalized to the whole time axis:

𝜔 (𝑡) =
∞

∑
𝑛=1

𝜔1𝑃 (𝑡 − (𝑛 − 1) 𝑡𝑟)

⋅ (1 (𝑡 − (𝑛 − 1) 𝑡𝑟) − 1 (𝑡 − 𝑛𝑡𝑟)) .
(9)

In this way, we can obtain the expression describing the
parametric function for 𝑡 ∈ R+.
Method 2. The second way to express parametric functions
uses the Fourier series. The considered function (Figure 3)
fulfils the Dirichlet conditions; therefore it can be expressed
as

𝜔 (𝑡)

= 𝜔0 − 𝐶 (𝑒
−𝛾𝑡𝑟 − 1)
𝛾𝑡𝑟

+
∞

∑
ℎ=1

2𝐶 (1 − 𝑒−𝛾𝑡𝑟)
√(𝛾𝑡𝑟)2 + (2ℎ𝜋)2

cos(ℎΩ𝑡 − arctan2ℎ𝜋𝛾𝑡𝑟 ) ,
(10)

where

Ω = 2𝜋𝑡𝑟 . (11)

Both of the proposed methods can be used in further
analysis. However, due to the Gibbs effect and difficult
calculation using formula (10), the firstmethod of description
of parametric function (9) has been used in the next sections.

3. Analysis of LTV System in Time Domain

In the first stage of filter analysis, the solution 𝑦1𝑃(𝑡) to
differential equation (7) for the first period of parametric
function was given. The general solution to (7) in a closed
form is known and it is given by the formula [33]:

𝑦1𝑃 (𝑡) = 𝜔0𝑦0 (𝑡) 𝑒−𝛼(𝑡) + 𝜔0 ∫
𝑡

0
𝑒−𝛼(𝑡)𝑒𝛼(𝜏)𝑥 (𝜏) d𝜏, (12)

𝑦0 = 𝑦 (𝑡)𝑡=0 , (13)

𝛼 (𝑡) = ∫𝑡
0
𝜔1𝑃 (𝑡) d𝑡 = 𝜔0𝑡 + 𝐶𝛾 (1 − 𝑒

−𝛾𝑡) . (14)

For zero initial condition (13), (12) can be expressed in the
form [41]:

𝑦1𝑃 (𝑡) = 𝜔0 ∫
𝑡

0
𝑒−𝜔0(𝑡−𝜏)𝑒(𝐶/𝛾)(exp(−𝛾𝑡)−exp(−𝛾𝜏))𝑥 (𝜏) d𝜏. (15)

From the comparison of (15) and the parametric convolution
expressed by (5), it can be concluded that the impulse
response of the considered system is given by

ℎ1𝑃 (𝑡, 𝜏) = 𝜔0𝑒−𝜔0(𝑡−𝜏)𝑒(𝐶/𝛾)(exp(−𝛾𝑡)−exp(−𝛾𝜏)). (16)

Representing a part of statement (15) by its functional series,
one gets

𝑒−(𝐶/𝛾)exp(−𝛾𝜏) ≅
𝑛

∑
𝑘=0

(−1)𝑘 (𝐶𝛾 )
𝑘 𝑒−𝑘𝛾𝜏
𝑘! . (17)

In the next step, using formulae (15) and (17), one can express
the output signal in the first period of parametric function
variability:

𝑦1𝑃 (𝑡)

= 𝜔0 ∫
𝑡

0
𝑒(𝐶/𝛾) exp(−𝛾𝑡)𝑒−𝜔0(𝑡−𝜏)

N
∑
𝑘=0

(−1)𝑘 (𝐶𝛾 )
𝑘 𝑒−𝛾𝑘𝜏
𝑘!

⋅ 𝑥 (𝜏) d𝜏.

(18)

Then, one can generalize it for the remaining time intervals
in such a form:

𝑦 (𝑡) =
∞

∑
𝑛=1

𝑦1𝑃 (𝑡 − (𝑛 − 1) 𝑡𝑟)

⋅ (1 (𝑡 − (𝑛 − 1) 𝑡𝑟) − 1 (𝑡 − 𝑛𝑡𝑟)) .
(19)
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Figure 4: Calculation results: (a) waveforms of parametric function in the first period and (b) corresponding waveforms of output signal
based on the closed form solution.
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Figure 5: Matlab simulation results: (a) waveforms of parametric function in the first period and (b) corresponding waveforms of output
signal.

In Figure 4, the parametric function variation
(Figure 4(a)) and corresponding unit-step responses
(Figure 4(b)) of a low-pass first-order LTV filter have been
presented (the same colour has been used for the parametric
function and the corresponding output signal).

Figures 4(a) and 4(b) have been drawn based on a
mathematical analysis carried out in this work. In order
to verify their correctness, the numerical solution to (7) in
Matlab has also been arrived at. Results of Matlab simulation
have been presented in Figure 5. It can be noticed that the
output signal waveforms obtained by Matlab simulation are
identical to those obtained by the mathematical analysis,
which confirms the correctness of the considerations.

For an extensive class of input signals with limited energy
or average power, the calculation of integral in (18) is possible
and therefore the determination of the analytical solution to
(7) in a closed form is possible.

4. Example

Thefirst-order low-pass LTV filter presented in Figure 6 with
a varying parameter 𝜔(𝑡) has been analyzed. The variability
is expressed by (9). The waveforms of time-varying cutoff
angular frequency 𝜔(𝑡) of the filter have been shown in
Figure 7(a). A square signal with much lower frequency
than the cutoff frequency of a stationary prototype of the
considered LTV filter has been given on the input of the first-
order low-pass LTV filter:

𝜔in ≪ 𝜔0, (20)

First-order
LTV

low-pass �lter

x(t) y(t)

�휔(t)

Figure 6: LTV filter model.

where

𝜔in is the angular frequency of input signal, 𝜔in =2𝜋𝑓in.
On the base of the impulse response (16), it is possible to

determine the filter response. The responses of the analyzed
system for a few cutoff frequency variations (Figure 7(a))
have been presented in Figure 7(b). For comparison rea-
sons, the response of a classical LTI filter (with a constant
parameter 𝜔0) to the square wave has also been included in
Figure 7(b) (the dot line).

5. Conclusions

A closed form solution expressing the first-order LTV system
impulse response for a class of periodic and exponential
parametric functions has been presented in the paper. The
first-order systems can be treated as elementary blocks which
allow to construct more complex LTV systems. Moreover,
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Figure 7: Result of LTV filter analysis: (a) waveforms of parametric function and (b) corresponding responses of the LTV system and the
response of the LTI system.

only on the basis of the impulse response it is possible to
determine the remaining time-frequency characteristics of
the time-varying system under consideration. The obtained
results showed that changes in the character of the parametric
function variation lead to the modification of the properties
of the system. It allows finding optimal structures and deter-
mining values of parameters for required filter properties
(e.g., dynamic characteristics and noise reduction).

Time-varying filter parameters allow us to design more
flexible systems for which the properties can be designed
more freely. Changes in the waveform of the parameter
can be used to shape the system response. For example,
according to the variability of the parametric function, the
cutoff frequency may be varied in time. In every period,
when the parametric function achieves its steady value, the
LTV system becomes an equivalent to a classical first-order
low-pass filter with a constant value of the cutoff angular
frequency.
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