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Empirical mode decomposition (EMD) is a self-adaptive analysis method for nonlinear and nonstationary signals. It has been
widely applied to machinery fault diagnosis and structural damage detection. A novel feature, maximum symbolic entropy of
intrinsic mode function based on EMD, is proposed to enhance the ability of recognition of EMD in this paper. First, a signal is
decomposed into a collection of intrinsic mode functions (IMFs) based on the local characteristic time scale of the signal, and then
IMFs are transformed into a serious of symbolic sequence with different parameters. Second, it can be found that the entropies of
symbolic IMFs are quite different. However, there is always a maximum value for a certain symbolic IMF.Third, take the maximum
symbolic entropy as features to describe IMFs from a signal. Finally, the proposed features are applied to evaluate the effect of
maximum symbolic entropy in fault diagnosis of rolling bearing, and then the maximum symbolic entropy is compared with other
standard time analysis features in a contrast experiment. Although maximum symbolic entropy is only a time domain feature, it
can reveal the signal characteristic information accurately. It can also be used in other fields related to EMDmethod.

1. Introduction

Empirical mode decomposition (EMD) is an adaptive time-
frequency signal processing method [1–4]. EMD not only
has a wide applicability and a high signal-to-noise ratio, but
also does not need basis functions; therefore, it has been
applied in many engineering fields [5–8]. The original signal
is decomposed into a series of intrinsic mode functions
(IMFs) according to the signal features with EMD. IMFs can
reveal the nonstationary and nonlinearity properties of the
signal and reflect the information in different time domain
scales.

How to obtain the property from nonstationary signal
based on IMFs is an important problem. Many researchers
have attempted to solve this problem in the past. They often
focus on eliminating mode mixing and calculating sensitive
features [5, 9, 10]. With the development of science and
technology, there are higher requirements for the efficiency
and accuracy in the industrial application.

Many researchers get instantaneous frequency of IMFs
with Hilbert-Huang transform and then take an envelope
analysis to get the key frequency area. Although both time
domain and frequency domain characteristics are considered,
computational complexity of features becomes more difficult
as a result of large calculation in frequency domain of IMFs.
Many values are needed in pattern recognition. It is difficult to
realize intelligent decision and information fusion [4, 11–13].
With the development of pattern recognition such as support
vector machine and neural networks, structure effective
features have been much more important in signal analysis,
and it can recognize state of nonstationary signals reliably and
quickly. Energy features, dimensionless features, statistical
features, and others are applied in various situations [14–16].
Computation is often increased with EMD-basedmethods as
a result of IMFs and corresponding frequency components.
Redundant information may also be introduced with low
frequency components in IMFs. These defects will lead to
a lower prediction accuracy in signal analysis. Therefore,
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advanced features, those that are strong to represent signal
and easy to calculate, should be developed for this challenging
task.

Recently, entropy-based features are always used in
IMFs and EMD such as information entropy and sample
entropy [17–19]. Above these features, it has been proved
that symbolic entropy has a good property in representing
statistical regularity. With good computational efficiency and
resisting disturbance, symbolic entropy represents a major
improvement of entropy-based features [20–22].

In this paper, we combined the advantages of IMFs and
entropy and proposed a novel feature, maximum symbolic
entropy, based on symbolic dynamics in order to overcome
the above shortcomings.

Thepaperwas organized as follows. In Section 2, the com-
ponents of the proposed methodology based on EMD and
symbolizing IMFs, a procedure for the proposed methodol-
ogy of maximum symbolic entropy and related parameters,
are introduced. In Section 3, verification of the method-
ology as applied on simulated signal and its properties
are described. In Section 4, contrast rest results prove the
effectiveness and reliability of maximum symbolic entropy.
Experimental data for normal and faulty bearings sourced
comes from bearing data center in Case Western Reserve
University. Finally, the conclusion is given in Section 5.

2. Symbolization of Intrinsic Mode Function

2.1. Calculation of Intrinsic Mode Function. EMD is a pow-
erful time-frequency domain analysis technique for decom-
posing a nonlinear and nonstationary time series into a set of
orthogonal components named as intrinsic mode functions.
The EMD process of a signal 𝑥(𝑡) can be described as follows
[4]:

(1) Find the positions and amplitudes of all local maxima
and minima; then denote them as 𝑥max and 𝑥min
correspondingly;

(2) Create an upper envelope and a lower envelope by
cubic spline interpolation of the localmaxima and the
local minima, respectively. Calculate the mean of the
upper and lower envelopes as𝑚(𝑡) = (𝑥max +𝑥min)/2;

(3) Envelope is then subtracted from the signal usingℎ
1
(𝑡) = 𝑥(𝑡) − 𝑚(𝑡). If ℎ

1
(𝑡) satisfies the two

conditions of IMF conditions as follow, it can be
obtained as an IMF. Otherwise, set 𝑥(𝑡) = ℎ

1
(𝑡) and

repeat processes (1)–(3) until the residual satisfies the
stopping criterion.

(4) Once IMF has been got, 𝑥(𝑡) should be replaced by
the residual 𝑟

1
(𝑡) = 𝑥(𝑡) − 𝑐

1
(𝑡). The above process is

repeated and the signal 𝑥(𝑡) would be separated into𝑛 IMFs 𝑐
𝑖
(𝑡) and a residue signal 𝑟

𝑛
(𝑡) as in (1) at last:

𝑥 (𝑡) = 𝑛∑
𝑖=1

𝑐
𝑖 (𝑡) + 𝑟𝑛 (𝑡) . (1)

An IMF is a function that satisfies the two following
conditions: (1) in the whole data set, the number of extremes

and the number of zero-crossings must either be equal or
differ at most by one; (2) at any point, the mean value of the
envelope defined by local maxima and the envelope defined
by the local minima is zero.

To overcome the end effects and mode mixing, original
signal was extended in a mirror way before EMD. Then,
extended signal was decomposed and the extended parts
in IMFs were also cut correspondingly. High frequency
information of the signal is always contained in the former
IMFs while noise and low frequency information are in
residue signal and back IMFs. Thus features calculation is
mainly aimed at the first few IMFs.

2.2. Symbolic Intrinsic Mode Function. It is essentially a kind
of quantization process symbolizing IMFs in some certain
regulation; therefore, local and some specific information is
ignored. However, symbolized signal always keeps enhanced
robustness and a better reliability to resist the interference
from noise. These advantages will make features more sen-
sitive to the property of signal.

There are always two ways for signal symbolizing. One is
directly changing the sequence into symbol number one by
one, the other is taking a fewpoints as a unit and transforming
them gradually. Considering the later one takes account of
the relationship between neighboring points, hence it is more
conducive to find property of signals. In the symbolizing
process, the range between the maximum and minimum
values was divided into 2 or 4 intervals [23–25].

In this paper, the range was divided into 4 intervals, and
3 points of IMF were taken as a unit to realize symbolization.
The process is presented as

𝑠
𝑖
(𝑥
𝑖
) =

{{{{{{{{{{{{{{{{{

0 𝑥
𝑖
< 𝜇
1

1 𝜇
1
≤ 𝑥
𝑖
< 𝜇
2

2 𝜇
2
≤ 𝑥
𝑖
< 𝜇
3

3 𝜇
3
≤ 𝑥
𝑖
,

(2)

where 𝜇min and 𝜇max are the upper and lower boundary,
respectively. 𝜇

1
, 𝜇
2
, and 𝜇

3
are break points which have a

deep influence on symbolization result. According to symbol
dynamics, we can set 𝜇

2
= 𝑥
𝑖
and 𝜇

2
− 𝜇
1
= 𝜇
3
− 𝜇
2
= Δ for

the symmetry of intervals. Δ denotes the length of interval
and can be defined as Δ = 𝛼𝜇.

The effect of symbolizing is due to ratio parameter 𝛼
and mean value 𝜇. As to a certain signal, 𝜇 is a constant.
In substance, the distribution of points in different internals
determines the result of division; therefore, how to choose 𝛼
is the most important factor in the process of symbolizing
IMFs. In order to get the symbolic law with different intervals
division, 𝑆

1
was used to represent the total number of both

1 and 2, and 𝑆
2
was used to represent the total number

of both 0 and 3 in symbolization, and a new parameter 𝛽
was introduced and defined as 𝛽 = 𝑆

1
/(𝑆
1
+ 𝑆
2
). Thus 𝛽

determined the interval division in essence and led to division
by both𝜇

1
and𝜇
3
. Once𝛽 changes, the result of symbolization

will be quite different.
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Table 1: Maximum symbol entropy of IMF from 𝑥(𝑡).
IMF Maximum symbol entropy 𝛽/%
IMF1 3.177 53.125
IMF2 2.717 51.856
IMF3 2.422 47.559
Average 2.772 50.847

2.3. Entropy of Symbolic Sequence. If𝑚 points in sequence are
selected as a basic unit for symbolization, there are 4𝑚 kinds
of units in signal. Take 𝑙 as the length of original signal, the
probability for one of the 4𝑚 units𝑚

𝑖
can be calculated as

𝑝 (𝑚
𝑖
) = 𝑛 (𝑚

𝑖
)

𝑙 − 𝑚 + 1 , (3)

where 𝑛(𝑚
𝑖
) is the number of times of a unit 𝑚

𝑖
. Then, the

symbol entropy𝐻 can be noted as

𝐻 = − 4
𝑚

∑
𝑖=1

𝑝 (𝑚
𝑖
) log𝑝 (𝑚

𝑖
) . (4)

The concept of entropy serves to characterize the probability
distribution functions of symbolic units. A low value of 𝐻
reflects a stronger regularity in symbolic sequence, and vice
versa.

For the symbolic IMFs to be analyzed, different symbolic
interval will lead to a change of 𝐻. As to a certain signal,
there is always a maximum symbolic entropy. We know that
symbolic entropy can represent random variables in some
way, and a higher value often means that it contains more
information of symbolizing signal. Thus, maximum value
reflects the complexity degree of a given symbolic sequence.
It can be taken as features of symbolic IMFs correspondingly.

3. Analysis of Simulation Signal

In order to get the property of maximum symbolic entropy
of IMFs from different signals, simulation experiments for
both period signal and periodic signal containing noise were
taken.

3.1. Periodic Signal. The used period signal is composed of 3
cosine signals with a frequency of 50Hz, 100Hz, and 200Hz.
The signal contains 1024 points and can be described as (5):

𝑥 (𝑡) = cos(2𝜋𝑡50 ) + 0.6 cos(2𝜋𝑡100) + 0.5 cos(2𝜋𝑡200) . (5)

Figure 1 shows 𝑥(𝑡) and its IMFs. It can be seen that IMFs
have been abstracted gradually with EMD. Figure 2 shows the
relationship between symbolic entropies and 𝛽, and it is clear
that the symbolic entropy presents a parabola form with the
increasing 𝛽.

The maximum symbolic entropies of IMFs from 𝑥(𝑡) are
recorded in Table 1. It can be observed that the maximum
symbolic entropy decreases from IMF1 to low order IMFs.
And 𝛽, a value of 𝛽 corresponding to the maximum entropy,
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Figure 1: 𝑥(𝑡) and IMF1–3.
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Figure 2: Relationship between symbolic entropy and 𝛽.

is different for various IMF, but 𝛽 fluctuates in the vicinity
of 50%. This phenomenon can be due to the properties of
entropy and symbolizing.

3.2. Periodic Signal Containing Noise. In order to evaluate the
ability of noise suppression, Gauss white noise was added to𝑥(𝑡) and the result was recorded as 𝑥(𝑡) when the ratio of
signal to noise is 10.

The IMF1–3 of 𝑥(𝑡) is shown in Figure 3. IMFs cannot
reflect the property of original signal because there is a mode
mixing. Their maximum symbolic entropies are shown in
Figure 4 and the distribution is similar to that in Figure 2.𝛽 is reduced corresponding to a period signal without noise.
What is more, the maximum symbolic entropy is shown in
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Figure 3: 𝑥(𝑡) and IMF1–3.
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Figure 4: Relationship between symbolic entropy and 𝛽.
Table 2: Maximum symbol entropy of 𝑥(𝑡).

IMF Maximum symbol entropy 𝛽/%
IMF1 5.394 46.582
IMF2 5.143 43.848
IMF3 4.214 40.137
Average 4.917 43.522

Table 2. The complexity of signal is added by Gauss white
noise and entropies of all IMFs increase.

As to a period signal, there is always amaximum symbolic
entropy wherever containing a noise. Its values will increase
with amore complex signal.With a EMDmethod, maximum
symbolic entropy decreases from high order IMF to those
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Figure 5: Relationship between symbolic entropy and 𝛽 of normal
bear.

low ones. Considering that it has an ability to represent IMFs
in vicarious situation, maximum symbolic entropies of high
order IMFs were taken as new features for an engineering
signal.

4. Application in Fault Diagnosis

4.1. Fault Diagnosis. Maximum symbolic entropy was used
in fault diagnosis to prove its effect in the analysis and
application of engineering signal.

Bearing faults represent the most frequent cause for
failure of mechanical drives; thus the proposed approach is
evaluated on bearing fault data from Case Western Reserve
University [26]. Deep groove ball bearing (6205-2RS, SKF)
is used in the experiment and bearings were seeded with
faults using electro-discharge machining. Faulted bearings
were reinstalled into the test motor and vibration data was
recorded. Sampling frequency was 12 kHz. Faults ranging
from 0.178mm in diameter to 0.533mm in diameter were
introduced separately at the inner raceway, rolling element,
and outer raceway.

Four groups of fault signals are selected and shown
in Table 3. The experiment includes two aspects, one is
distinguish the failure mode; the other is judge the fault level
for each mode. Sample A includes normal bearing, inner
raceway failure, outer raceway failure, and rolling element
failure with a fault of 0.533mm. Sample B includes inner fault
containing 0.178mm, 0.356mm, and 0.533mm, and sample
C and D for outer fault and rolling fault. Each sample is
composed of 60 signals and the sequence length is 1024. The
average of 𝛽 is calculated in Table 4.

Figure 5 shows symbolic entropies of IMF1–8 from nor-
mal bearing. It can be observed that the distribution of
entropy with different 𝛽 is also similar to Figure 4; fur-
thermore, 𝛽 is nearly equal to Table 2 and it means that
engineering signal can be considered as a period signal
with noise. The result proves that symbolic entropy can be
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Table 3: Test samples of rolling bearing.

Sample Bearing condition Diameter of fault (mm)

A

Normal /
Inner fault 0.533
Outer fault 0.533
Rolling fault 0.533

B

Normal /
Inner fault 0.178
Inner fault 0.356
Inner fault 0.533

C

Normal /
Outer fault 0.178
Outer fault 0.356
Outer fault 0.533

D

Normal /
Rolling fault 0.178
Rolling fault 0.356
Rolling fault 0.533

applied in getting features for fault diagnosis appropriately as
simulation signal.

The detailed descriptions of maximum symbolic
entropies of IMf1–3 from samples of rolling bearings are
recorded in Table 4. The values are quite different from
each failure mode. It provides the information to how the
features distribute in failure samples with different modes
or different level. It can also be seen that there are both a
high concentration ratio between same failure mode and an
obvious distance between different modes. 𝛽 ranges from
43% to 47% and an average of 𝛽 can be used in calculation to
avoid traversal search. Because bearing data are engineering
signals, the value of 𝛽 is more near to it in Table 2 than
Table 1.

The original data of maximum symbolic entropy from
high order IMFs is shown in Figure 6. The distribution can
also be observed and we can find that maximum symbolic
entropy is sensitive to different kinds and degrees of faults.

4.2. Contrast Test. In order to evaluate the effect of separa-
tion, other time series analysis methods such as symbolic
entropy (in [23]), standard deviation, and rootmean square of
IMFs are used to compare with maximum symbolic entropy.
Some advanced classification algorithm based on machine
learning may get a good result of separation with these
features such as neural networks, but they will also hide
the real properties of features with their strong abilities
of nonlinear self-study and numbers of train sets are also
needed. Therefore, K-means cluster is adopted here, in the
contrast test, to evaluate the effect of features itself. The result
can reflect the space distribution and distances of features.
The results are shown in Table 5.

In sample A, maximum symbolic entropy reaches an
accuracy of 85.00% which is better than other contrast

features. Accuracy of other features is near 70.00%. It proves
that the maximum symbolic entropy has a robust ability in
expressing different faults.

In samples B and C, standard deviation and root mean
square can recognize the inner and outer faults under
different degree well, and the accuracy is over 90%. Two other
entropies are lower but themaximum symbolic entropy is still
near to 80%.

In sample D, rolling fault is always more difficult to
distinguish in bearing fault diagnosis; therefore, all features
have a lower accuracy. Only maximum symbolic entropy is
over 80% which is better.

From the result,maximumsymbolic entropy has a correct
rate about 80% for all samples based on cluster of Euclidean
distance and its property is better than symbolic entropy.
Although its accuracy is lower than two classical time domain
characteristics in samples B and C, maximum symbolic
entropy has a stable ability to distinguish samples A and D.

In order to provide reference for further applications,
Support Vector Machines are also used in classification with
cross validation and all features are selected. Both training
and validation sets have 30 sequences for each sample. Take
radial basis function as kernel function of SVM net as (6).

𝐾(𝑥, 𝑦) = exp(−𝑥 − 𝑦22𝜎2 ) . (6)

The classification result is shown in Table 6. There is
a higher accuracy compared to K-means cluster due to
the ability of self-study and nonlinear learning of SVM. In
Table 6,most results of separation are near to 90%.Maximum
symbolic entropy is better than symbolic entropy in test.
Compared to standard deviation and root mean square,
different types of bearing faults and failure levels in rolling
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Table 4: Maximum symbol entropy of IMF1–3 from bearing data.

Fault type Function Average of maximum
symbol entropy 𝛽/%

Normal
IMF1 4.726 43.262

IMF2 4.124 43.556

IMF3 3.441 44.434

Inner fault
(0.178mm)

IMF1 5.126 46.679

IMF2 4.774 44.238

IMF3 4.179 43.164

Inner fault
(0.356mm)

IMF1 5.151 44.642

IMF2 5.000 48.372

IMF3 4.213 48.301

Inner fault
(0.533mm)

IMF1 4.574 38.692

IMF2 4.699 47.347

IMF3 3.829 47.760

Outer fault
(0.178mm)

IMF1 5.011 43.906

IMF2 5.106 44.915

IMF3 4.592 47.181

Outer fault
(0.356mm)

IMF1 5.164 44.749

IMF2 4.814 45.989

IMF3 4.034 47.874

Outer fault
(0.533mm)

IMF1 5.061 43.766

IMF2 4.917 48.050

IMF3 4.043 46.771

Rolling fault
(0.178mm)

IMF1 4.894 41.712

IMF2 4.600 44.209

IMF3 3.898 47.894

Rolling fault
(0.356mm)

IMF1 4.924 42.256

IMF2 4.546 45.319

IMF3 3.868 48.939

Rolling fault
(0.533mm)

IMF1 5.015 42.467

IMF2 4.759 46.901

IMF3 3.999 46.247

faults can be separated more accurately with maximum
symbolic entropy.

5. Conclusion

The empirical mode decomposition and symbolizingmethod
provide powerful tools for nonlinear and nonstationary
signal analysis. Maximum symbolic entropy based on IMFs
is proposed in this research and applied to fault diagnosis
successfully. Carrying out simulation and bearing experiment
mainly yields the following conclusions.

(1) Maximum symbolic entropy based on IMFs is pro-
posed and analyzed. The relationship between sym-
bolizing parameters and symbolic entropy value is
concluded and it is proved that the maximum sym-
bolic entropy value has a robust ability in expressing
different signal.

(2) In simulation and experiment, bearing faults are
detected by the proposed features accurately. Fur-
thermore, the given method, the maximum symbolic
entropy with EMD, can be used to distinguish both
failure level and mode of rolling bearing.
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Table 5: Results of contrast test based on K-means cluster.

(a) Maximum symbolic entropy of IMFs

Sample Accuracy (%)

IMF1 IMF1–3 IMF1–5

A 75.42 82.50 85.00

B 75.00 80.42 75.42

C 75.00 80.42 79.17

D 76.25 80.83 77.92

(b) Symbolic entropy of IMFs

Sample Accuracy (%)

IMF1 IMF1–3 IMF1–5

A 67.08 70.83 70.83

B 68.75 72.50 72.50

C 68.75 65.42 65.42

D 65.42 65.83 66.67

(c) Standard deviation of IMFs

Sample Accuracy (%)

IMF1 IMF1–3 IMF1–5

A 60.41 60.41 63.75

B 99.58 99.58 99.58

C 91.67 93.33 93.33

D 54.58 55.42 55.42

(d) Root mean square of IMFs

Sample Accuracy (%)

IMF1 IMF1–3 IMF1–5

A 60.41 62.08 67.08

B 99.58 99.58 99.58

C 51.67 57.50 58.75

D 57.08 61.25 61.25

Table 6: Result of fault diagnosis with maximum symbolic entropy (MSE), symbolic entropy (SE), standard deviation (STD), and root mean
square (RMS) based on SVM.

Sample Accuracy with IMF1–5 (%)
MSE SE STD RMS

A 97.50 83.33 93.33 93.33
B 96.67 85.83 100.00 100.00
C 95.83 87.50 99.17 100.00
D 88.33 55.83 84.17 84.17
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(a) Maximum symbolic entropy of sample A (numbers 0–60 are normal
bearings, 61–120 are inner faults, 121–180 are rolling faults, and 181–240
are rolling faults, and all diameters of fault are 0.533mm).
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(b) Maximum symbolic entropy of sample B (numbers 0–60 are normal
bearings, 61–120 are inner faults of 0.178mm, 121–180 are inner faults of
0.356mm, and 181–240 are inner faults of 0.533mm).
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(c) Maximum symbolic entropy of sample C (numbers 0–60 are normal
bearings, 61–120 are outer faults of 0.178mm, 121–180 are outer faults of
0.356mm, and 181–240 are outer faults of 0.533mm).
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(d) Maximum symbolic entropy of sample D (numbers 0–60 are normal
bearings, 61–120 are rolling faults of 0.178mm, 121–180 are rolling faults of
0.356mm, and 181–240 are rolling faults of 0.533mm)

Figure 6: The original data of maximum symbolic entropy from test samples A to D.

(3) In the contrast test, other time series analysis fea-
tures are used to compare with maximum symbolic
entropy.The proposed feature is better than symbolic
entropy in fault diagnosis. Different types of bear-
ing faults and failure levels in rolling faults can be
separated more accurately with maximum symbolic
entropy.
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