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In this paper we investigate a Cauchy problem of two-dimensional (2D) heat conduction equation, which determines the internal
surface temperature distribution from measured data at the fixed location. In general, this problem is ill-posed in the sense of
Hadamard. We propose a revised Tikhonov regularization method to deal with this ill-posed problem and obtain the convergence
estimate between the approximate solution and the exact one by choosing a suitable regularization parameter. A numerical example
shows that the proposed method works well.

1. Introduction

In many industrial applications [1] one wishes to determine
the temperature on the surface of a body, where the surface
itself is inaccessible for measurements. This problem leads us
to consider a Cauchy problem of heat conduction equation,
which can be considered as a data completion problem that
means to achieve the remaining information from boundary
conditions for both the solution and its normal derivative on
the boundary. This sort of problem occurs in a wide range of
scientific and engineering areas [1] including manufacturing
process control, metallurgy, chemical, aerospace and nuclear
engineering, food science, and medical diagnostics.

Mathematically, the Cauchy problem of heat equation
belongs to the class of problems called the ill-posed problems;
i.e., small errors in the measured data can lead to large
deviations in the estimated quantities. As a consequence, its
solution does not satisfy the general requirement of existence,
uniqueness, and stability under small changes to the input
data. To overcome such difficulties, a variety of techniques
for solving the Cauchy problem of heat equation have been
proposed [2–10].

In this paper, we investigate a Cauchy problem of two-
dimensional (2D) heat conduction equation.We remark here

that the Cauchy problem of one-dimensional heat equation
has been well studied in the last few decades. Due to severe
ill-posedness, however, much more difficulties exist to solve
the Cauchy problem of heat conduction equation in the 2D
case than in the 1D case.

To the knowledge of the authors, there are still few results
on Cauchy problem of heat conduction equation in the 2D
case. In 2007, Qian and Fu [11] applied Fourier method and
modified equationmethod to solve problem 1 and prove some
error estimates of Hölder type for the solution. In 2011, Li and
Wang [12] used a simplified Tikhonov regularization method
to treat it. Following the works of [11, 12], Zhao et al. [13] also
treated this problem by a modified kernel method in 2015.

In this article, we continue to consider the following
Cauchy problem of 2D heat conduction equation.

Problem 1.

𝑢𝑡 (𝑥, 𝑦, 𝑡) = 𝑢𝑥𝑥 (𝑥, 𝑦, 𝑡) + 𝑢𝑦𝑦 (𝑥, 𝑦, 𝑡) ,
0 < 𝑥 < 1, 𝑦 > 0, 𝑡 > 0, (1)

𝑢 (0, 𝑦, 𝑡) = 𝑔 (𝑦, 𝑡) , 𝑦 ≥ 0, 𝑡 ≥ 0, (2)
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with corresponding measured data function 𝑔𝛿(𝑦, 𝑡),
𝑢𝑥 (0, 𝑦, 𝑡) = 0, 𝑦 ≥ 0, 𝑡 ≥ 0,
𝑢 (𝑥, 𝑦, 0) = 0, 0 ≤ 𝑥 ≤ 1, 𝑦 ≥ 0,
𝑢 (𝑥, 0, 𝑡) = 0, 0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0.

(3)

We wish to determine the temperature 𝑢(𝑥, 𝑦, 𝑡) for 0 <𝑥 ≤ 1 from temperature measurement 𝑔𝛿(𝑦, 𝑡). We will adopt
a revised Tikhonov regularization method to deal with this
problem.Thismethodwas first introduced by Carasso in [14],
and then the idea of this method has been successfully used
for solving various types of ill-posed problems [15–18]. Under
a priori selection rule for the regularization parameter, the
convergence of the revised Tikhonov regularization method
will also be given.

The paper is organized as follows. In Section 2 we for-
mulate a Cauchy problem of 2D heat conduction equation.
Section 3 is devoted to the convergence estimate for this
method. A numerical example is tested in Section 4. Finally,
the paper ends with a brief conclusion in Section 5.

2. Mathematical Formulation of the Cauchy
Problem of 2D Heat Conduction Equation

In order to use the Fourier transform technique, we extend
the functions 𝑢(𝑥, 𝑦, 𝑡), 𝑔(𝑦, 𝑡), 𝑔𝛿(𝑦, 𝑡) to the whole real(𝑦, 𝑡) plane by defining them to be zero everywhere in{(𝑦, 𝑡), 𝑦 < 0, 𝑡 < 0}. We wish to determine the temperature𝑢(𝑥, 𝑦, 𝑡) ∈ 𝐿2(R2) for 0 < 𝑥 ≤ 1 from the temperature
measurement 𝑔𝛿(𝑦, 𝑡) ∈ 𝐿2(R2).

We also use the corresponding 𝐿2-norm defined as

󵄩󵄩󵄩󵄩𝑔󵄩󵄩󵄩󵄩 = (∫
R2

󵄨󵄨󵄨󵄨𝑔 (𝑦, 𝑡)󵄨󵄨󵄨󵄨2 𝑑𝑦𝑑𝑡)1/2 . (4)

We now could assume that the measured data function𝑔𝛿(𝑦, 𝑡) satisfies
󵄩󵄩󵄩󵄩󵄩𝑔𝛿 − 𝑔󵄩󵄩󵄩󵄩󵄩 ≤ 𝛿, (5)

where the constant 𝛿 > 0 represents a bound on the
measurement error. Assume that there exists a constant𝐸 > 0
such that the following a priori bound exists:

‖𝑢 (1, ⋅, ⋅)‖ ≤ 𝐸. (6)

Let

𝑔 (𝜉, 𝜂) = 12𝜋 ∫R2

𝑔 (𝑦, 𝑡) 𝑒−𝑖(𝜉𝑦+𝜂𝑡)𝑑𝑦𝑑𝑡, 𝜉, 𝜂 ∈ R, (7)

be the Fourier transform of a function 𝑔(𝑦, 𝑡). Then

𝑔 (𝑦, 𝑡) = 12𝜋 ∫R2

𝑔 (𝜉, 𝜂) 𝑒𝑖(𝜉𝑦+𝜂𝑡)𝑑𝜉 𝑑𝜂. (8)

Applying this transform to (1) with respect to 𝑦 and 𝑡, we
obtain 𝑢̂𝑥𝑥 (𝑥, 𝜉, 𝜂) = (𝑖𝜂 + 𝜉2) 𝑢̂ (𝑥, 𝜉, 𝜂) , (9)

which is a second-order ordinary differential equation for
fixed 𝜉 and 𝜂. Now using the boundary condition in the fre-
quency domain, we can easily get𝑢̂ (𝑥, 𝜉, 𝜂) = cosh (𝜏𝑥) 𝑔 (𝜉, 𝜂) , (10)

and taking the inverse Fourier transform, the solution of
problem 1 is

𝑢 (𝑥, 𝑦, 𝑡) = 12𝜋 ∫R2

𝑒𝑖(𝜉𝑦+𝜂𝑡)𝑔 (𝜉, 𝜂) cosh (𝜏𝑥) 𝑑𝜉 𝑑𝜂, (11)

where 𝜏 is the principal value of√𝑖𝜂 + 𝜉2; i.e.,
𝜏 = √𝑖𝜂 + 𝜉2

= √√𝜂2 + 𝜉4 + 𝜉22 + 𝑖 sign (𝜂)√√𝜂2 + 𝜉4 − 𝜉22
= 𝑎 + 𝜎𝑏𝑖,

(12)

where 𝜎 = sign(𝜂).
We note here that, for fixed 0 < 𝑥 ≤ 1, the value of

cosh(𝜏𝑥) in (10) is unbounded as |𝜉| → ∞. We can see that
small errors in the data can blow up and completely destroy
the solution for 0 < 𝑥 ≤ 1. Thus the Cauchy problem of 2D
heat conduction equation is ill-posed. A feasible approach to
stabilize the problem is to eliminate all high frequencies or to
replace the “kernel” cosh(𝜏𝑥) by a bounded approximation
kernel denoted by 𝑘(𝑥, 𝜏, 𝛼), which has the following two
common properties:

(I) If the parameter 𝛼 is small, then for small 𝜏, the kernel𝑘(𝑥, 𝜏, 𝛼) is close to cosh(𝜏𝑥).
(II) If 𝛼 is fixed, 𝑘(𝑥, 𝜏, 𝛼) is bounded.

3. Revised Tikhonov Regularization Method
and Error Estimates

To get a bounded approximation kernel 𝑘(𝑥, 𝜏, 𝛼), a popular
method is Tikhonov regularization, which is applied to solve
the following minimization problem:

min𝐹𝛼 (𝑢) = min {󵄩󵄩󵄩󵄩󵄩𝐾𝑢 (⋅, 𝑦, 𝑡) − 𝑔𝛿 (𝑦, 𝑡)󵄩󵄩󵄩󵄩󵄩2𝐿2(R2)

+ 𝛼 󵄩󵄩󵄩󵄩𝑢 (⋅, 𝑦, 𝑡)󵄩󵄩󵄩󵄩2𝐿2(R2)} , (13)

where 𝛼 is a regularization parameter and 𝐾 : 𝑢(⋅, 𝑦, 𝑡) →𝑔(𝑦, 𝑡) is a linear bounded operator.

Lemma 2. There exists a unique solution to the above mini-
mization problem. It is given by

𝑢𝛿𝛼 (𝑥, 𝑦, 𝑡)
= 12𝜋 ∫R2

cosh (𝜏𝑥)1 + 𝛼 |cosh (𝜏𝑥)|2𝑔𝛿 (𝜉, 𝜂) 𝑒𝑖(𝜉𝑦+𝜂𝑡)𝑑𝜉 𝑑𝜂.
(14)
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Proof. Let 𝐼 denote identity operator in 𝐿2 and let 𝐾∗ be the
adjoint of 𝐾. Then, the unique solution of the minimization
problem (13) is given by

𝑢𝛿𝛼 = (𝛼𝐼 + 𝐾∗𝐾)−1𝐾∗𝑔𝛿. (15)

In order to obtain the explicit formula (14) from (15), we use
Parseval’s formula; one has

⟨𝐾 (𝑥) 𝑢, V̂⟩ = ⟨𝐾 (𝑥) 𝑢, V⟩ = ⟨𝑢,𝐾∗V⟩ = ⟨𝑢̂, 𝐾∗V⟩ . (16)

According to 𝐾𝑢 = (1/ cosh(𝜏𝑥))𝑢̂(𝑥, 𝜉, 𝜂), we find
𝐾∗V = 1

cosh (𝜏𝑥) V̂ (𝑥, 𝜉, 𝜂) . (17)

Likewise,

𝐾∗𝐾𝑢 = 1|cosh (𝜏𝑥)|2 𝑢̂ (𝑥, 𝜉, 𝜂) . (18)

Consequently,

(𝛼 + 1|cosh (𝜏𝑥)|2) 𝑢̂ = 𝐾∗𝑔𝛿. (19)

Using (17) and solving for 𝑢̂𝛿𝛼(𝑥, 𝜉, 𝜂) in (19), we obtain

𝑢̂𝛿𝛼 (𝑥, 𝜉, 𝜂) = cosh (𝜏𝑥)1 + 𝛼 |cosh (𝜏𝑥)|2𝑔𝛿 (𝜉, 𝜂) . (20)

Finally, (14) follows by an inverse Fourier transform.

From Lemma 2, we can see that the kernel function𝑘(𝑥, 𝜏, 𝛼) = cosh(𝜏𝑥)/(1 + 𝛼| cosh(𝜏𝑥)|2) corresponds to the
Tikhonov regularization method.

In the following, we use a much better filter 1/(1 +𝛼𝑒2|𝜏|) to replace the original 1/(1 + 𝛼| cosh(𝜏𝑥)|2); i.e.,𝑘(𝑥, 𝜏, 𝛼) = cosh(𝜏𝑥)/(1 + 𝛼𝑒2|𝜏|). It corresponds to the regu-
larized solution as follows:

𝑢𝛿𝛼 (𝑥, 𝑦, 𝑡) = 12𝜋 ∫R2

𝑒𝑖(𝜉𝑦+𝜂𝑡) cosh (𝜏𝑥)1 + 𝛼𝑒2|𝜏| 𝑔𝛿 (𝜉, 𝜂) 𝑑𝜉 𝑑𝜂, (21)

and is regarded as a revised Tikhonov regularization solution
of 𝑢(𝑥, 𝑦, 𝑡) of problem 1.

In the following, we give the convergence estimate for‖𝑢𝛿𝛼(𝑥, 𝑦, 𝑡) − 𝑢(𝑥, 𝑦, 𝑡)‖ by using an a priori choice rule for
the regularization parameter. Before proceeding to derive the
main result, we recall a proposition which we will use in the
proof below.

Proposition 3 (see [14]). Let 0 < 𝑥 < 2, 𝛼 > 0. We have the
following inequality:

sup
|𝜏|≥0

𝑒|𝜏|𝑥1 + 𝛼𝑒2|𝜏| ≤ ( 1√𝛼)
𝑥 . (22)

Theorem 4. Suppose 𝑢 is the solution of problem 1 with the
exact data 𝑔 and 𝑢𝛿𝛼 is the regularized solution with the noise
data 𝑔𝛿, and let 𝑔𝛿 satisfy (5) and the exact solution 𝑢 at 𝑥 = 1
satisfy (6). If 𝛼 = 𝛿2/𝐸2 is selected, then for fixed 0 < 𝑥 < 1,
one gets the error estimate󵄩󵄩󵄩󵄩󵄩𝑢𝛿𝛼 (𝑥, 𝑦, 𝑡) − 𝑢 (𝑥, 𝑦, 𝑡)󵄩󵄩󵄩󵄩󵄩 ≤ 3𝛿1−𝑥𝐸𝑥. (23)

Proof. Using the Parseval’s identity and Proposition 3, we
have

󵄩󵄩󵄩󵄩󵄩𝑢𝛿𝛼 (𝑥, 𝑦, 𝑡) − 𝑢𝛼 (𝑥, 𝑦, 𝑡)󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩𝑢̂𝛿𝛼 (𝑥, 𝜉, 𝜂) − 𝑢̂𝛼 (𝑥, 𝜉, 𝜂)󵄩󵄩󵄩󵄩󵄩
= (∫∞
−∞
∫∞
−∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨cosh (𝜏𝑥)1 + 𝛼𝑒2|𝜏| 𝑔𝛿 (𝜉, 𝜂) − cosh (𝜏𝑥)1 + 𝛼𝑒2|𝜏| 𝑔 (𝜉, 𝜂)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 𝑑𝜉 𝑑𝜂)1/2

≤ sup
𝜉,𝜂∈R

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨cosh (𝜏𝑥)1 + 𝛼𝑒2|𝜏|
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 󵄩󵄩󵄩󵄩󵄩𝑔𝛿 − 𝑔󵄩󵄩󵄩󵄩󵄩 ≤ sup

𝜉,𝜂∈R

𝑒|𝜏|𝑥1 + 𝛼𝑒2|𝜏| 𝛿 ≤ ( 1√𝛼)
𝑥 𝛿,

(24)

󵄩󵄩󵄩󵄩𝑢𝛼 (𝑥, 𝑦, 𝑡) − 𝑢 (𝑥, 𝑦, 𝑡)󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩𝑢̂𝛼 (𝑥, 𝜉, 𝜂) − 𝑢̂ (𝑥, 𝜉, 𝜂)󵄩󵄩󵄩󵄩
= (∫∞
−∞
∫∞
−∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨cosh (𝜏𝑥)1 + 𝛼𝑒2|𝜏| 𝑔 − cosh (𝜏𝑥) 𝑔
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 𝑑𝜉 𝑑𝜂)1/2

= (∫∞
−∞
∫∞
−∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛼 cosh (𝜏𝑥) 𝑒
2|𝜏|

1 + 𝛼𝑒2|𝜏| 𝑔󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 𝑑𝜉 𝑑𝜂)1/2

= (∫∞
−∞
∫∞
−∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛼 cosh (𝜏𝑥) 𝑒
2|𝜏|

1 + 𝛼𝑒2|𝜏| 1
cosh (𝜏) 𝑢̂ (1, 𝜉, 𝜂)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 𝑑𝜉 𝑑𝜂)1/2

≤ 𝛼 sup
𝜉,𝜂∈R

𝑒2|𝜏|1 + 𝛼𝑒2|𝜏|
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨cosh (𝜏𝑥)cosh (𝜏)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ‖𝑢̂ (1, ⋅, ⋅)‖

≤ 𝛼 sup
𝜉,𝜂∈R

𝑒2|𝜏|1 + 𝛼𝑒2|𝜏| 2𝑒−(1−𝑥)|𝜏| ‖𝑢̂ (1, ⋅, ⋅)‖ ≤ 2𝛼( 1√𝛼)
1+𝑥 𝐸.

(25)

Combining (24), (25), and the condition 𝛼 = 𝛿2/𝐸2, we have
󵄩󵄩󵄩󵄩󵄩𝑢𝛿𝛼 (𝑥, 𝑦, 𝑡) − 𝑢 (𝑥, 𝑦, 𝑡)󵄩󵄩󵄩󵄩󵄩 ≤ 3𝛿1−𝑥𝐸𝑥. (26)

Remark 5. Compared with [11, 12], where the convergence
estimate is of logarithmic type, the convergence estimate we
get is of Hölder type.

Remark 6. InTheorem 4, we do not obtain the error estimate
at 𝑥 = 1; in order to obtain that, we should use a stronger
priori assumption as follows:

‖𝑢 (1, ⋅, ⋅)‖𝑝 ≤ 𝐸, (27)

where ‖ ⋅ ‖𝑝 denotes the norm on Sobolev space 𝐻𝑝(R2)
defined by

‖𝑢 (1, ⋅, ⋅)‖𝑝 = (∫∞
−∞
∫∞
−∞
(1 + 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨2)𝑝

⋅ 󵄨󵄨󵄨󵄨𝑢̂ (1, 𝜉, 𝜂)󵄨󵄨󵄨󵄨2 𝑑𝜉 𝑑𝜂)1/2 , 𝑝 > 0.
(28)
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Theorem 7. Suppose 𝑢(1, 𝑦, 𝑡) is the solution of problem 1 with
the exact data 𝑔 and 𝑢𝛿𝛼(1, 𝑦, 𝑡) is the regularized solution with
the noise data 𝑔𝛿, and let 𝑔𝛿 satisfy (5) and the exact solution𝑢 at 𝑥 = 1 satisfy (27). If 𝛼 = 𝛿/𝐸 is selected, then for fixed𝑥 = 1, one gets the error estimate

󵄩󵄩󵄩󵄩󵄩𝑢𝛿𝛼 (1, 𝑦, 𝑡) − 𝑢 (1, 𝑦, 𝑡)󵄩󵄩󵄩󵄩󵄩
≤ 𝛿1/2𝐸1/2 + 𝐸 max{(𝛿𝐸)

1/2 , (18 ln 𝐸𝛿 )
−𝑝} . (29)

Proof. Similar to the proof of Theorem 4, we know that

󵄩󵄩󵄩󵄩󵄩𝑢𝛿𝛼 (1, 𝑦, 𝑡) − 𝑢𝛼 (1, 𝑦, 𝑡)󵄩󵄩󵄩󵄩󵄩 ≤ 𝛿√𝛼, (30)

󵄩󵄩󵄩󵄩𝑢𝛼 (1, 𝑦, 𝑡) − 𝑢 (1, 𝑦, 𝑡)󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩𝑢̂𝛼 (1, 𝜉, 𝜂) − 𝑢̂ (1, 𝜉, 𝜂)󵄩󵄩󵄩󵄩 = (∫∞
−∞
∫∞
−∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 cosh (𝜏)1 + 𝛼𝑒2|𝜏|𝑔 − cosh (𝜏) 𝑔
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 𝑑𝜉 𝑑𝜂)1/2

= (∫∞
−∞
∫∞
−∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝛼 cosh (𝜏) 𝑒
2|𝜏|

1 + 𝛼𝑒2|𝜏| 𝑔󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 𝑑𝜉 𝑑𝜂)1/2

= (∫∞
−∞
∫∞
−∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝛼𝑒
2|𝜏|

1 + 𝛼𝑒2|𝜏| (1 + 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨2)−𝑝/2 (1 + 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨2)𝑝/2 cosh (𝜏) 𝑔
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2 𝑑𝜉 𝑑𝜂)1/2

≤ ( sup
𝜉,𝜂∈R

𝛼𝑒2|𝜏|1 + 𝛼𝑒2|𝜏| (1 + 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨2)−𝑝/2)‖𝑢̂ (1, ⋅, ⋅)‖𝑝 .

(31)

Now, we distinguish two cases to estimate (31).

Case 1. For√|𝜂| + |𝜉| ≤ (1/2)ln(1/√𝛼), we have
|𝜏| = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨√(𝑖𝜂 + 𝜉2)󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ √󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨 . (32)

Therefore, we can derive that

𝛼𝑒2|𝜏|1 + 𝛼𝑒2|𝜏| (1 + 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨2)−𝑝/2 ≤ 𝛼𝑒2|𝜏| ≤ 𝛼𝑒2(√|𝜂|+|𝜉|)
≤ √𝛼. (33)

We can see that it goes to zero as 𝛼 → 0.
Case 2. For√|𝜂| + |𝜉| ≥ (1/2)ln(1/√𝛼), we have

𝛼𝑒2|𝜏|1 + 𝛼𝑒2|𝜏| (1 + 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨2)−𝑝/2
≤ (1 + 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨2)−𝑝/2 .

(34)

If√|𝜂| ≥ |𝜉| ≥ 0, we have
2√󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨 ≥ √󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨 ≥ 12 ln 1√𝛼; (35)

i.e.,√|𝜂| ≥ (1/4)ln(1/√𝛼). Therefore,

(1 + 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨2)−𝑝/2 ≤ (󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨2)−𝑝/2 ≤ 󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨−𝑝
= (√󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨)−2𝑝 ≤ (14 ln 1√𝛼)

−2𝑝 . (36)

If 0 ≤ √|𝜂| ≤ |𝜉|, we have
2 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨 ≥ √󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨 ≥ 12 ln 1√𝛼; (37)

i.e., |𝜉| ≥ (1/4)ln(1/√𝛼). Therefore,

(1 + 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨2)−𝑝/2 ≤ (󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨𝜂󵄨󵄨󵄨󵄨2)−𝑝/2 ≤ 󵄨󵄨󵄨󵄨𝜉󵄨󵄨󵄨󵄨−𝑝
≤ (14 ln 1√𝛼)

−𝑝 . (38)

Combining (31), (33), (36), and (38), we obtain󵄩󵄩󵄩󵄩𝑢𝛼 (1, 𝑦, 𝑡) − 𝑢 (1, 𝑦, 𝑡)󵄩󵄩󵄩󵄩
≤ 𝐸max{√𝛼, (14 ln 1√𝛼)

−𝑝} . (39)

Now using the triangle inequality and combining (30) and
(39), we can easily get the convergence estimate󵄩󵄩󵄩󵄩󵄩𝑢𝛿𝛼 (1, 𝑦, 𝑡) − 𝑢 (1, 𝑦, 𝑡)󵄩󵄩󵄩󵄩󵄩

≤ 󵄩󵄩󵄩󵄩󵄩𝑢̂𝛿𝛼 (1, 𝜉, 𝜂) − 𝑢̂𝛼 (1, 𝜉, 𝜂)󵄩󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩𝑢̂𝛼 (1, 𝜉, 𝜂) − 𝑢̂ (1, 𝜉, 𝜂)󵄩󵄩󵄩󵄩

≤ 𝛿1/2𝐸1/2 + 𝐸max{(𝛿𝐸)
1/2 , (18 ln𝐸𝛿 )

−𝑝} .
(40)
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Figure 1: The exact solution and its approximation solution at 𝑥 = 0.8: (a) the exact solution, (b) its approximation solution with 𝜀 = 0.0001,
(c) its approximation solution with 𝜀 = 0.001, (d) its approximation solution with 𝜀 = 0.01.
4. Numerical Aspect

In the section, we present a numerical example intended to
illustrate the behaviour of the proposed method.

The numerical example is constructed in the following
way: first we select the initial data 𝑢(0, 𝑦, 𝑡) = 𝑔(𝑦, 𝑡)
and 𝑢𝑥(0, 𝑦, 𝑡) = 0. Then we added a random distributed
perturbation to the data function obtaining vector 𝑔𝛿(𝑦, 𝑡);
i.e.,

𝑔𝛿 (𝑦, 𝑡) = 𝑔 (𝑦, 𝑡) + 𝜀 randn (size (𝑔 (𝑦, 𝑡))) , (41)

where

𝑔 (𝑦, 𝑡) = (𝑔 (𝑦1, 𝑡1) , 𝑔 (𝑦2, 𝑡2) , . . . , 𝑔 (𝑦𝑛, 𝑡𝑛))𝑇 ,𝑦𝑖 = −10 + (𝑖 − 1) Δ𝑦,
Δ𝑦 = 20𝑛 − 1 , 𝑖 = 1, 2, . . . , 𝑛,

𝑡𝑗 = −10 + (𝑗 − 1) Δ𝑡,
Δ𝑡 = 20𝑛 − 1 , 𝑗 = 1, 2, . . . , 𝑛.

(42)

Then the total noise 𝛿 can be measured in the sense of Root
Mean Square Error according to

𝛿 fl 󵄩󵄩󵄩󵄩󵄩𝑔𝛿 (𝑦, 𝑡) − 𝑔 (𝑦, 𝑡)󵄩󵄩󵄩󵄩󵄩𝑙2
= √ 1𝑛2

𝑛∑
𝑖=1

𝑛∑
𝑗=1

(𝑔𝛿𝑖 (𝑦𝑖, 𝑡𝑗) − 𝑔𝑖 (𝑦𝑖, 𝑡𝑗))2.
(43)

The function “randn(⋅)” generates arrays of random numbers
whose elements are normally distributed with mean 0, vari-
ance 𝜎2 = 1, and standard deviation 𝜎 = 1; “randn(size
(𝑔(𝑦, 𝑡)))” returns array of random entries that is of the same
size as 𝑔(𝑦, 𝑡).
Example 8. We choose

𝑔 (𝑦, 𝑡) = 𝑒−𝑦2−𝑡2 . (44)

Our tests about this example correspond to Figures 1–3.
The numerical results for 𝑢 and 𝑢𝛿𝛼 with different error level
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Figure 2:The exact solution and its approximation solution at 𝑥 = 0.5: (a) the exact solution, (b) its approximation solution with 𝜀 = 0.0001,
(c) its approximation solution with 𝜀 = 0.001, (d) its approximation solution with 𝜀 = 0.01.

𝜀 = 0.0001, 0.001, 0.01 at different point 𝑥 = 0.8, 0.5 are
shown in Figures 1-2. The numerical result for 𝑢 and 𝑢𝛿𝛼 with
error level 𝜀 = 0.01 at different point 𝑥 = 0.9, 0.6, 0.1 is shown
in Figure 3.

From Figures 1-2, we can see that the smaller the 𝜀 is,
the better the computed solution is. Figure 3 shows that the
numerical result becomes worse when 𝑥 approaches 1.
5. Conclusion

In this paper, the Cauchy problem of 2D heat conduction
equation is considered.We regularize it by a revisedTikhonov
regularization method for overcoming its ill-posedness. The
error estimate is obtained under an a priori regularization
parameter choice rule. A numerical example shows that our
proposed method is effective and stable.
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Figure 3: The exact solution and its approximation solution: (a) the exact solution at 𝑥 = 0.9, (b) its approximation solution with 𝜀 = 0.01
at 𝑥 = 0.9, (c) the exact solution at 𝑥 = 0.6, (d) its approximation solution with 𝜀 = 0.01 at 𝑥 = 0.6, (e) the exact solution at 𝑥 = 0.1, (f) its
approximation solution with 𝜀 = 0.01 at 𝑥 = 0.1.
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