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Finite mixture model (FMM) is being increasingly used for unsupervised image segmentation. In this paper, a new finite mixture
model based on a combination of generalized Gamma and Gaussian distributions using a trimmed likelihood estimator (GGMM-
TLE) is proposed. GGMM-TLE combines the effectiveness of Gaussian distribution with the asymmetric capability of generalized
Gamma distribution to provide superior flexibility for describing different shapes of observation data. Another advantage is that
we consider the spatial information among neighbouring pixels by introducing Markov random field (MRF); thus, the proposed
mixture model remains sufficiently robust with respect to different types and levels of noise. Moreover, this paper presents a
new component-based confidence level ordering trimmed likelihood estimator, with a simple form, allowing GGMM-TLE to
estimate the parameters after discarding the outliers. Thus, the proposed algorithm can effectively eliminate the disturbance of
outliers. Furthermore, the paper proves the identifiability of the proposed mixture model in theory to guarantee that the parameter
estimation procedures are well defined. Finally, an expectationmaximization (EM) algorithm is included to estimate the parameters
of GGMM-TLE bymaximizing the log-likelihood function. Experiments onmultiple public datasets demonstrate that GGMM-TLE
achieves a superior performance compared with several existing methods in image segmentation tasks.

1. Introduction

Segmenting an object from its background has an important
role in machine learning and computer vision [1]. In recent
years, several unsupervised image segmentation algorithms
have been presented [2, 3]. Statistical approach, particularly
finitemixturemodel (FMM), is one of themostwidely known
ones [4]. This can be used to model arbitrary univariate
or multivariate observed data. In particular, modelling the
probability density function of pixel attributes with Gaussian
mixture model (GMM) has proved successful in segmenta-
tion tasks [5]. It is mainly because the parameters of GMM
can be easily estimated by maximizing the maximum likeli-
hood (ML) of the observed data using the expectation maxi-
mization (EM) algorithm. However, there remain limitations
preventing GMM from achieving improved performance.
The first challenge is sensitivity to noise, which is caused by
the independence of the spatial relationship of pixels during

parameter learning. The second challenge derives from the
difficulty in fitting asymmetric observed data. In addition to
these limitations, GMM is sensitive to outliers and can lead
to excessive sensitivity to a small number of data points.

Recent studies have attempted to overcome the above
disadvantages. The existing schemes can be categorised as
follows.

(1) Schemes Based on Markov Random Field (MRF). A
wide variety of approaches, especially Markov random field,
have been introduced for resisting noise. These schemes
utilize MRF smoothness prior to modelling the joint prior
distribution of pixel labels; hence, the spatial information
of the pixels is considered via the contextual constraints of
the neighbouring pixels [6, 7]. Therefore, the MRF-based
mixture model has stronger ability to resist noise. However,
MRF suffers from the fact that parameter estimation is
difficult and suffers high computational complexity. Recently,
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mean template is employed along with a spatially vary-
ing mixture model to alleviate the influence of noise in
image segmentation [8]. It is a natural approach to prevent
noise because it automatically filters noise using a mean
filter.

(2) Schemes Based on Asymmetric Probability Distribution. In
general, GMM does not fit well if the shapes of the observed
data are asymmetric [9]. Indeed, in many real applications,
the intensity distribution of the observed data is not symmet-
ric. Thus, it would seem that FMM with asymmetric distri-
bution such as Gamma distribution [3], Weibull distribution
[10], and Rayleigh distribution [11] could overcome this
limitation. Another typical case is to obtain the asymmetric
distribution via the linear weighted aggregativemethod using
two ormore symmetric probability distributions. One typical
example is asymmetric Student’s 𝑡 mixture model (NSMM)
[12], where each component density is modelled with multi-
ple Student’s 𝑡 distributions. Another example of this case is
the Bayesian-bounded asymmetric mixture model (BAMM)
[13], which was developed by a subset of the authors [12] and
other coauthors, for unsupervised image segmentation. Each
component of their approach can model different shapes of
observed data with different bounded support regions. A
close relative of this framework involves a bounded asym-
metrical Student’s 𝑡 mixture model [14]. Peculiarly, we note
that the mixture of two or more different distributions has
caused great concern and yet has developed rapidly in recent
years. Typical algorithms includeZhou et al.’s statisticalmodel
[15], which is a mixture of 𝐾-distribution and lognormal
distribution. This also includes De Angelis et al. [16] who
offered a robust time interval measurement method based
on a Gaussian-uniform mixture model. Browne et al. [17]
incorporated a multivariate Gaussian and uniform distribu-
tions as the component density, which allowed for superior
mixture possessing. These methods demonstrate a compet-
itive performance in fitting different shapes of observed
data.

(3) Schemes Based on Trimming Method. In general, for
GMM-based algorithms, the parameters are estimated by the
ML estimator through the EM algorithm. However, the ML
estimator is overly sensitive to outliers and GMM cannot
address outliers properly. Therefore, outliers seriously dete-
riorate the performance of Gaussian-based clustering algo-
rithms. To overcome this shortcoming, a common approach
is to consider a mixture model with Student’s 𝑡 distribution
(SMM), which provides a longer-tailed alternative to the
Gaussian distribution [18]. Therefore, SMM is more robust
to outliers than the GMM for heavier tails. Another model-
based method, which presents a theoretically well-based
segmentation criterion in presence of outliers, is the trim-
ming method [19]. The main principle in trimming is to
locate and discard the outliers from the likelihood function.
Segmentation results benefit from the trimming approach.
Müller and Neykov proposed the fast trimmed likelihood
estimator (FAST-TLE) [20]. Galimzianova et al. developed
the confidence level ordering trimmed likelihood estimator
(CLO-TLE) [21]. However, they do not function effectively in

noisy samples, especially when each group has a different size
of observations.

Motivated by the aforementioned considerations, in this
paper, we present a two-step procedure (GGMM-TLE),
beginning with a component-based confidence level order-
ing trimmed likelihood estimator. Because the majority of
observed data contains outliers, it is necessary to discard
these in a previous step before robustly estimating parame-
ters. As a new algorithm, the proposed technique considers
the components with lower mixture weights. This avoids
eliminating the samples belonging to the components with
a small number of observations as the outliers. Then, we
propose a novel finite mixture model based on a mixture of
generalized Gamma and Gaussian distributions (GGMM).
The proposed GGMM with Markov random fields has
high flexibility and can be used to fit the asymmetric data
owing to the introduction of the asymmetric generalized
Gamma distribution. Moreover, we theoretically prove the
property of identifiability of the GGMM through the strat-
egy presented by Atienza et al. [22, 23], which indicates
that the GGMM’s mixture representation is unique. This
property is crucial to ensure that the parameter estimation
problem is well posed. Therefore, the proposed algorithm
can be effectively applied for segmenting images. More-
over, by imposing spatial smoothness constraints among
neighbouring pixels using MRF, the neighbouring pixels
should have the same label. Therefore, the proposed model
reduces the segmentation sensitivity to noise in a still
image. We demonstrate through simulation study that the
proposed framework is superior to other related methods
in terms of the misclassification ratio and Dice similarity
coefficient.

The remainder of this paper is organized as follows.
Section 2 introduces the proposedmixturemodel in detail. In
Section 3, we prove the identifiability of the proposedmixture
model. The process of parameter learning is described in
Section 4. The ordering method for likelihood trimming is
reported in Section 5. Section 6 provides the experimental
results and analysis. Finally, we conclude with a discussion
in Section 7.

2. Model Formulation

Assume a set of data 𝑋 = {𝑥𝑖 | 𝑖 = 1, 2, . . . , 𝑁}, where each𝑥𝑖 denotes an observation at the 𝑖th pixel of an image. 𝑁 is
the total number of pixels in an image.The proposedmixture
model assumes that the density function at pixel 𝑥𝑖 is given
by

𝑓 (𝑥𝑖 | Θ) = 𝐾∑
𝑗=1

𝜋𝑗{{{
𝐾𝑗∑
𝑘=1

ℏ𝑗𝑘𝑝𝑗𝑘 (𝑥𝑖 | 𝜃𝑗𝑘)}}} , (1)

where Θ = {𝜋𝑗, ℏ𝑗𝑘, 𝜃𝑗𝑘} is the complete parameter set of the
proposed mixture model; 𝐾 denotes the number of mixture
components. The prior 𝜋𝑗 represents the probability that the
observation 𝑥𝑖 belongs to the 𝑗th label and ℏ𝑗𝑘 is called the
weighting factor; they satisfy the following constraints:
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𝐾∑
𝑗=1

𝜋𝑗 = 1,
𝐾𝑗∑
𝑘=1

ℏ𝑗𝑘 = 1,
0 ≤ 𝜋𝑗, ℏ𝑗𝑘 ≤ 1.

(2)

In this paper, we set 𝐾𝑗 = 2; thus, 𝑝𝑗1(𝑥𝑖 | 𝜃𝑗1) is the
generalized Gamma distribution defined by

𝑝𝑗1 (𝑥𝑖 | 𝜃𝑗1)
= 󵄨󵄨󵄨󵄨󵄨V𝑗󵄨󵄨󵄨󵄨󵄨𝜎𝑗Γ (𝑘𝑗) (

𝑥𝑖𝜎𝑗)
𝑘𝑗V𝑗−1

exp{−(𝑥𝑖𝜎𝑗)
V𝑗} , (3)

where 𝜃𝑗1 = {V𝑗, 𝑘𝑗, 𝜎𝑗} is the parameter set of generalized
Gamma distribution, V𝑗 is the power parameter, 𝑘𝑗 is the
shape parameter, 𝜎𝑗 is the scale parameter, and Γ(⋅) denotes
the Gamma function. The probability density function of
Gaussian distribution 𝑝𝑗2(𝑥𝑖 | 𝜃𝑗2) is defined as

𝑝𝑗2 (𝑥𝑖 | 𝜃𝑗2)
= 1
√2𝜋Σ𝑗 exp {−

12 (𝑥𝑖 − 𝑢𝑗)𝑇 Σ−1𝑗 (𝑥𝑖 − 𝑢𝑗)} , (4)

where 𝜃𝑗2 = {𝑢𝑗, Σ𝑗} is the parameter set of Gaussian
distribution, 𝑢𝑗 is the mean, and Σ𝑗 denotes the covariance.

According to Bayesian rules, we express the posterior
probability density function of the proposed model as

𝑓 (Θ | 𝑋) ∝ 𝑓 (𝑋 | Θ) 𝑝 (Θ) . (5)

To train the proposed mixture model, based on the above
formulation, we define the following maximum a posteriori
log-likelihood function:

𝐿 (Θ | 𝑋) = log (𝑓 (Θ | 𝑋))
∝ log {𝑓 (𝑋 | Θ)} + log𝑝 (Θ) . (6)

TheMarkov random field based on Gibbs distribution can be
characterized by

𝑝 (Θ) = 𝑍−1 exp{−𝑈 (Θ)𝑇 } , (7)

where 𝑇 and 𝑍 are temperature and normalizing constants,
respectively. In the proposed approach, a new energy func-
tion of the following form is chosen to enforce spatial
smoothness:

𝑈 (Θ) = − 𝑁∑
𝑖=1

𝐾∑
𝑗=1

𝐺𝑖𝑗 log𝜋𝑗, (8)

where

𝐺𝑖𝑗 = exp(𝛽 ∑
𝑚∈𝑁𝑖

(𝑧𝑚𝑗 + 𝜋𝑗)) , (9)

where 𝑁𝑖 is the neighbourhood of the 𝑖th pixel including
the 𝑖th pixel itself: for example, 3 × 3 or 5 × 5. 𝑧𝑚𝑗 denotes
the posterior probability. Eventually, we can formulate the
segmentation problem as a maximum a posteriori problem
using the log-likelihood function as

𝐿 (Θ | 𝑋) = 𝑁∑
𝑖=1

log
{{{
𝐾∑
𝑗=1

𝜋𝑗 [ 2∑
𝑘=1

ℏ𝑗𝑘𝑝𝑗𝑘 (𝑥𝑖 | 𝜃𝑗𝑘)]}}}
− log𝑍 + 1𝑇

𝑁∑
𝑖=1

𝐾∑
𝑗=1

𝐺𝑖𝑗 log𝜋𝑗.
(10)

The above scheme contains two parts, where the first
denotes the proposed mixture model and the last is the
Markov model. In general, the EM algorithm is an efficient
framework for estimating the mixture model parameters.

3. Identifiability of the Proposed
Mixture Model

This section discusses the property of identifiability of the
GGMM. This property implies that GGMM can only be
expressed by specific components. Obviously, this property is
important for finite mixture model because it can guarantee
the estimation procedures of the parameter set to be well
defined [3, 22]. The property of identifiability is described as
follows.

We defined the following set:

𝐹 = {𝑓 : 𝑓𝜃 (𝑥) = ℏ1𝑝1 (𝑥 | V, 𝑘, 𝜎) + ℏ2𝑝2 (𝑥 | 𝑢, Σ)} . (11)

𝐹 is the family of proposed distributions, where V ̸= 0,𝑘 > 0, 𝜎 > 0, ℏ1 + ℏ2 = 1. In this study, 𝑝1(𝑥 |
V, 𝑘, 𝜎) is the generalized Gamma distribution and 𝑝2(𝑥 |𝑢, Σ) is the Gaussian distribution; the parameters of the
proposed distribution are mutually independent. The set of
the proposed mixture model with 𝜋𝑗 satisfying (2) is
𝐻𝐹 = {{{𝐻 : 𝐻 (𝑥) = 𝐾∑

𝑗=1

𝜋𝑗𝑓𝜃𝑗 (𝑥) , 𝑓𝜃1≤𝑗≤𝐾 (𝑥) ∈ 𝐹}}} . (12)

Theorem 1. The property of identifiability of 𝐻𝐹 means that
for any two mixture models𝐻1,2 ∈ 𝐻𝐹, that is,

𝐻1 = 𝐾1∑
𝑗=1

𝜋1𝑗𝑓𝜃1𝑗 (𝑥) ,
𝐻2 = 𝐾2∑

𝑗=1

𝜋2𝑗𝑓𝜃2𝑗 (𝑥) ,
(13)

if 𝐻1 = 𝐻2, then 𝐾1 = 𝐾2, and {(𝜋1𝑗, 𝑓𝜃1𝑗)}𝐾1𝑗=1 = {(𝜋2𝑗,𝑓𝜃2𝑗)}𝐾2𝑗=1.
Proof. According to [22], we prove that, for a linear trans-
form, 𝑀 : 𝑓𝜃(𝑥) → 𝜙𝑓 with domain 𝑆(𝑓). Let 𝑆0(𝑓) =
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{𝑚 ∈ 𝑆(𝑓) : 𝜙𝑓(𝑚) ̸= 0}. For a given point 𝑚0 and any two
proposed distributions 𝑓1, 𝑓2 ∈ 𝐹, there exists a total order ≺
on 𝐹 that satisfies

𝑓1 ≺ 𝑓2 ⇐⇒
lim
𝑚→𝑚0

𝜙𝑓2 (𝑚)𝜙𝑓1 (𝑚) = 0.
(14)

Given the expression of the linear transform𝑀 is as follows:

𝑀[𝑓𝜃 (𝑥)] : 𝜙𝑓 (𝑚) = 𝐸 (𝑥𝑚) = ∫+∞
−∞

𝑥𝑚𝑓𝜃 (𝑥) 𝑑𝑥, (15)

where 𝑓𝜃(𝑥) is the proposed density function 𝑓𝜃(𝑥) =ℏ1𝑝1(𝑥 | V, 𝑘, 𝜎) + ℏ2𝑝2(𝑥 | 𝑢, Σ). Let 𝑔𝜃1(𝑥) = 𝑝1(𝑥 | V, 𝑘, 𝜎)
and ℎ𝜃2(𝑥) = 𝑝2(𝑥 | 𝑢, Σ); then, 𝑓𝜃(𝑥) = ℏ1𝑔𝜃1(𝑥) + ℏ2ℎ𝜃2(𝑥).
Obviously, if 𝑔1 ≺ 𝑔2 and ℎ1 ≺ ℎ2, we can obtain 𝑓1 ≺ 𝑓2.
According to (15), we have

𝜙𝑔 (𝑚) = 𝜎𝑚 Γ (𝑘 + 𝑚/V)Γ (𝑘) , 𝑚 ∈ (−𝑘V, +∞) , (16)

where 𝑆0(𝑔) = (−𝑘V, +∞) and 𝑚0 = +∞. To facilitate
the proof procedure, this study utilizes Stirling’s formula as
follows:

Γ (𝑧 + 1) ∼ √2𝜋𝑧 (𝑧𝑒 )
𝑧 , 𝑧 󳨀→ +∞. (17)

Thus, we have

𝜙𝑔 (𝑚) ∼ 𝜎𝑚Γ (𝑘)√2𝜋(𝑚V )
𝑘+𝑚/V−1/2

⋅ (1 + 𝑘 − 1𝑚 V)𝑘+𝑚/V−1/2 exp {1 − 𝑘 − 𝑚
V
} ∼ √2𝜋Γ (𝑘)

⋅ exp {𝑚 log𝜎 − 𝑚
V
}

⋅ exp {(𝑘 + 𝑚
V
− 12) (log𝑚 − log V)} .

(18)

The sign “∼” indicates that the expressions on both sides are
equivalent up to constant term when 𝑚 → +∞. Hence, for𝑚 → 𝑚0, we have

𝜙𝑔2 (𝑚)𝜙𝑔1 (𝑚) ∼ 𝐶 exp{( 1
V2
− 1
V1
)𝑚 log𝑚

+ [(log𝜎2 − log𝜎1) − ( 1V2 − 1
V1
)

+ ( 1
V2

log 1
V2
− 1
V1

log 1
V1
)]𝑚

+ (𝑘2 − 𝑘1) log𝑚} ,

(19)

where 𝐶 is a constant. From (19), we can derive 𝑔1 ≺ 𝑔2 ⇔[V2 > V1], or [V2 = V1, 𝜎2 < 𝜎1], or [V2 = V1, 𝜎2 = 𝜎1, 𝑘2 < 𝑘1],
which is apparently a total order. Analogously, we have

𝜙ℎ (𝑚) = exp {𝑚𝑢 + 12Σ𝑚2} , (20)

where 𝑆0(ℎ) = (−∞, +∞) and 𝑚0 = +∞. For 𝑚 → 𝑚0, we
have

𝜙ℎ2 (𝑚)𝜙ℎ1 (𝑚) = exp {12 (Σ2 − Σ1)𝑚2 + (𝑢2 − 𝑢1)𝑚} . (21)

From (21), we can determine that ℎ1 ≺ ℎ2 ⇔ [Σ2 < Σ1], or[Σ2 = Σ1, 𝑢2 < 𝑢1], which is clearly a total order. Overall, we
have 𝑓1 < 𝑓2; there exists a total order ≺ on 𝐹. Hence, we can
draw the conclusion that the GGMMs are identifiable.

4. Parameter Learning

The main task of this section is to estimate the complete
parameter set. In general, the EM algorithm provides an
efficient scheme for unsupervised segmentation using itera-
tive updating and guarantees that the log-likelihood function
converges to a local maximum. Considering the complexity
of (10), it is difficult to apply the EM algorithm directly
for maximizing the log-likelihood function (10). Therefore,
we employ Jensen’s inequality by defining the two hidden
variables 𝑧𝑖𝑗 and 𝑦𝑖𝑗𝑘, which are, respectively,

𝑧(𝑡)𝑖𝑗
= 𝜋𝑗 [ℏ𝑗1𝑝𝑗1 (𝑥𝑖 | 𝜃𝑗1) + ℏ𝑗2𝑝𝑗2 (𝑥𝑖 | 𝜃𝑗2)]∑𝐾𝑚=1 𝜋𝑚 [ℏ𝑚1𝑝𝑚1 (𝑥𝑖 | 𝜃𝑚1) + ℏ𝑚2𝑝𝑚2 (𝑥𝑖 | 𝜃𝑚2)] ,

(22)

𝑦(𝑡)𝑖𝑗𝑘 = ℏ𝑗𝑘𝑝𝑗𝑘 (𝑥𝑖 | 𝜃𝑗𝑘)∑𝐾𝑗𝑚=1 ℏ𝑗𝑚𝑝𝑗𝑚 (𝑥𝑖 | 𝜃𝑗𝑚) . (23)

Clearly, 𝑧𝑖𝑗 and 𝑦𝑖𝑗𝑘 satisfy the constraints ∑𝐾𝑗=1 𝑧𝑖𝑗 = 1
and ∑𝐾𝑗

𝑘=1
𝑦𝑖𝑗𝑘 = 1. Using Jensen’s inequality, one has

log(∑𝐾𝑗=1 𝑒𝑗) ≥ log(∑𝐾𝑗=1 𝑧𝑖𝑗𝑒𝑗) ≥ ∑𝐾𝑗=1(𝑧𝑖𝑗 log 𝑒𝑗); thus, the log-
likelihood function (10) can be rewritten as follows:

𝐿 (𝑋 | Θ) ≥ 𝑁∑
𝑖=1

𝐾∑
𝑗=1

𝑧(𝑡)𝑖𝑗 {{{log𝜋𝑗

+ log[[
𝐾𝑗∑
𝑘=1

ℏ𝑗𝑘𝑝𝑗𝑘 (𝑥𝑖 | 𝜃𝑗𝑘)]]
}}} − log𝑍 + 1𝑇
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⋅ 𝑁∑
𝑖=1

𝐾∑
𝑗=1

𝐺𝑖𝑗 log𝜋𝑗 ≥ 𝑁∑
𝑖=1

𝐾∑
𝑗=1

𝑧(𝑡)𝑖𝑗 {{{log𝜋𝑗
+ 𝐾𝑗∑
𝑘=1

𝑦(𝑡)𝑖𝑗𝑘 [log ℏ𝑗𝑘 + log𝑝𝑗𝑘 (𝑥𝑖 | 𝜃𝑗𝑘)]}}} − log𝑍
+ 1𝑇
𝑁∑
𝑖=1

𝐾∑
𝑗=1

𝐺𝑖𝑗 log𝜋𝑗.
(24)

Thus, we can define the following new objective function𝑄(𝑋 | Θ) in terms of Jensen’s inequality.

𝑄 (𝑋 | Θ) = 𝑁∑
𝑖=1

𝐾∑
𝑗=1

𝑧(𝑡)𝑖𝑗 {{{log𝜋𝑗 + 𝐾𝑗∑
𝑘=1

𝑦(𝑡)𝑖𝑗𝑘 [log ℏ𝑗𝑘
+ log𝑝𝑗𝑘 (𝑥𝑖 | 𝜃𝑗𝑘)]}}} − log𝑍 + 1𝑇

𝑁∑
𝑖=1

𝐾∑
𝑗=1

𝐺𝑖𝑗 log𝜋𝑗
= 𝑁∑
𝑖=1

𝐾∑
𝑗=1

𝑧(𝑡)𝑖𝑗 {log𝜋𝑗
+ 𝑦(𝑡)𝑖𝑗1 [log ℏ𝑗1 + log𝑝𝑗1 (𝑥𝑖 | 𝜃𝑗1)]
+ 𝑦(𝑡)𝑖𝑗2 [log ℏ𝑗2 + log𝑝𝑗2 (𝑥𝑖 | 𝜃𝑗2)]} − log𝑍 + 1𝑇
⋅ 𝑁∑
𝑖=1

𝐾∑
𝑗=1

𝐺𝑖𝑗 log𝜋𝑗.

(25)

To realize clustering, we must maximize the log-likelihood
function in (10), which is equivalent to maximizing the
objective function in (25). In particular, to estimate the prior
probability 𝜋𝑗, we take the partial derivative of the objective
function in (25) with respect to 𝜋𝑗, yielding

𝜕𝜕𝜋𝑗 [[𝑄 (𝑋 | Θ) − 𝜆( 𝐾∑
𝑗=1

𝜋𝑗 − 1)]] = 0, (26)

where 𝜆 is the Lagrange multiplier in consideration of the
constraint ∑𝐾𝑗=1 𝜋𝑗 = 1; we have

𝜋(𝑡+1)𝑗 = 𝑧(𝑡)𝑖𝑗 + 𝐺(𝑡)𝑖𝑗∑𝐾𝑚=1 𝑧(𝑡)𝑖𝑚 + 𝐺(𝑡)𝑖𝑚 . (27)

Similarly, to estimate the weighting factor ℏ𝑗𝑘, we take the
partial derivative of the objective function in (25)with respect
to ℏ𝑗𝑘

𝜕𝜕ℏ𝑗𝑘 [[𝑄 (𝑋 | Θ) − 𝜏( 𝐾𝑗∑
𝑘=1

ℏ𝑗𝑘 − 1)]] = 0, (28)

where 𝜏 is the Lagrange multiplier in consideration of the
constraint ∑𝐾𝑗

𝑘=1
ℏ𝑗𝑘 = 1; we have

ℏ(𝑡+1)𝑗𝑘 = ∑𝑁𝑖=1 𝑧(𝑡)𝑖𝑗 𝑦(𝑡)𝑖𝑗𝑘∑𝑁𝑖=1 𝑧(𝑡)𝑖𝑗 . (29)

In the following, we estimate the power parameter V𝑗. We
calculate the partial derivative of the objective function (25)
with this power parameter V𝑗 as follows:

𝜕𝑄 (𝑋 | Θ)𝜕V𝑗
= 𝑁∑
𝑖=1

{𝑧(𝑡)𝑖𝑗 𝑦(𝑡)𝑖𝑗1 [(𝑘𝑗 − (𝑥𝑖𝜎𝑗)
V𝑗) log(𝑥𝑖𝜎𝑗) + 1

V𝑗
]} .

(30)

The solution of 𝜕𝑄(𝑋 | Θ)/𝜕V𝑗 = 0 yields the estimates of V𝑗
as follows:

V(𝑡+1)𝑗

= ∑
𝑁
𝑖=1 {𝑧(𝑡)𝑖𝑗 𝑦(𝑡)𝑖𝑗1 [(V(𝑡)𝑗 )2 (𝑥𝑖/𝜎(𝑡)𝑗 )V(𝑡)𝑗 log2 (𝑥𝑖/𝜎(𝑡)𝑗 ) + 1]}
∑𝑁𝑖=1 {𝑧(𝑡)𝑖𝑗 𝑦(𝑡)𝑖𝑗1 [𝜑(𝑡)𝑗 (𝑥𝑖/𝜎(𝑡)𝑗 )V(𝑡)𝑗 − 𝑘(𝑡)𝑗 ] log (𝑥𝑖/𝜎(𝑡)𝑗 )} , (31)

where 𝜑(𝑡)𝑗 = V(𝑡)𝑗 log(𝑥𝑖/𝜎(𝑡)𝑗 ) + 1. Then, to derive the solution
of the shape parameter 𝑘𝑗, we must calculate the partial
derivative 𝑄(𝑋 | Θ) with respect to it. We have

𝜕𝑄 (𝑋 | Θ)𝜕𝑘𝑗
= 𝑁∑
𝑖=1

{𝑧(𝑡)𝑖𝑗 𝑦(𝑡)𝑖𝑗1 [V𝑗 log(𝑥𝑖𝜎𝑗) − Φ0 (𝑘𝑗)]} .
(32)

It is clear to see that the solution 𝜕𝑄(𝑋 | Θ)/𝜕𝑘𝑗 = 0 yields
the updates for shape parameter 𝑘𝑗 by

Φ0 (𝑘𝑗) = V(𝑡+1)𝑗 ∑𝑁𝑖=1 {𝑧(𝑡)𝑖𝑗 𝑦(𝑡)𝑖𝑗1 log (𝑥𝑖/𝜎(𝑡)𝑗 )}∑𝑁𝑖=1 𝑧(𝑡)𝑖𝑗 𝑦(𝑡)𝑖𝑗1 , (33)

whereΦ0(⋅) is the Digamma function; 𝑘(𝑡+1)𝑗 can be calculated
by solving (33) via the bisection method [23]. In the same
fashion, to obtain the estimate of the scale parameter 𝜎𝑗, we
must derive the partial derivative of 𝑄(𝑋 | Θ) over it.

𝜕𝑄 (𝑋 | Θ)𝜕𝜎𝑗 = V𝑗𝜎𝑗
𝑁∑
𝑖=1

{𝑧(𝑡)𝑖𝑗 𝑦(𝑡)𝑖𝑗1 [(𝑥𝑖𝜎𝑗)
V𝑗 − 𝑘𝑗]} . (34)
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Equating 𝜕𝑄(𝑋 | Θ)/𝜕𝜎𝑗 to zero, we can obtain the update
formulas for scale parameter 𝜎𝑗 by

𝜎(𝑡+1)𝑗 = [[[[
∑𝑁𝑖=1 {𝑧(𝑡)𝑖𝑗 𝑦(𝑡)𝑖𝑗1𝑥V(𝑡+1)𝑗𝑖 }
𝑘(𝑡+1)𝑗 ∑𝑁𝑖=1 𝑧(𝑡)𝑖𝑗 𝑦(𝑡)𝑖𝑗1

]]]]

1/V(𝑡+1)𝑗

. (35)

By calculating the partial derivative of the objective function
in (25) with parameter set 𝜃𝑗2 = {𝑢𝑗, Σ𝑗}, we can obtain the
estimation of the parameters mean 𝑢𝑗 and covariance Σ𝑗.

𝜕𝑄 (𝑋 | Θ)𝜕𝑢𝑗 = 𝑁∑
𝑖=1

𝑧(𝑡)𝑖𝑗 𝑦(𝑡)𝑖𝑗2 (𝑥𝑖 − 𝑢𝑗Σ𝑗 ) ,
𝜕𝑄 (𝑋 | Θ)𝜕Σ𝑗 = 𝑁∑

𝑖=1

𝑧(𝑡)𝑖𝑗 𝑦(𝑡)𝑖𝑗2(− 12Σ𝑗 +
(𝑥𝑖 − 𝑢𝑗)22Σ2𝑗 ) .

(36)

Eventually, the final updates for these two parameters can be
obtained by

𝑢(𝑡+1)𝑗 = ∑𝑁𝑖=1 𝑧(𝑡)𝑖𝑗 𝑦(𝑡)𝑖𝑗2𝑥𝑖∑𝑁𝑖=1 𝑧(𝑡)𝑖𝑗 𝑦(𝑡)𝑖𝑗2 , (37)

Σ(𝑡+1)𝑗 = ∑𝑁𝑖=1 𝑧(𝑡)𝑖𝑗 𝑦(𝑡)𝑖𝑗2 (𝑥𝑖 − 𝑢(𝑡+1)𝑗 )2
∑𝑁𝑖=1 𝑧(𝑡)𝑖𝑗 𝑦(𝑡)𝑖𝑗2 . (38)

At this point, the parameter learning procedure is complete.

5. Ordering Method for Likelihood Trimming

For observed data with heavy outliers, it is preferred to
discard the outliers and to estimate the parameters of the
proposed mixture model using the remaining data. Assume
that 𝑋 is a sample with 𝑁 observations, 𝜂 is the trimming
fraction, and 𝑋𝑀 is the subsample with a size 𝑀 =𝑁(1 − 𝜂). Theoretically, the trimming fraction 𝜂 should be
higher than the real outlier fraction value. After cutting the
outliers, we estimate the model parameters by maximizing
the objective function 𝑄(𝑋𝑀 | Θ) in subsample 𝑋𝑀. The
most important step is to discard the outliers and select the
subsample. This requires a specific ordering for all of the
observations in the sample. Typically, the number of outliers
is unpredictable.Thus, it is important for the proposedmodel
to avoid allowing observed data that belongs to the labels
with a small number of observations falling into outliers.
This study presents an effective component-based confidence
level ordering method. In the proposed GGMM-TLE, we
do not calculate the density function value as in FAST-TLE
[20], for every single observation. Rather, we only utilize
the concept of confidence level for these observations to
eliminate the effects of mixture weights and sample scales.
Combined with the posterior probability 𝑧(𝑡)𝑖𝑗 in (22), we
can order the observations that belong to the same group
separately. Thus, it is more reasonable for ordering the
observation with GGMM-TLE. Specifically, we derive the

following increasing inequality based on component-based
confidence level ordering:

∫
Ω1(𝑥𝑑11 )

𝐾𝑗∑
𝑘=1

ℏ1𝑘𝑝1𝑘 (𝜔 | 𝜃1𝑘) 𝑑𝜔 ≤ ⋅ ⋅ ⋅
≤ ∫
Ω1(𝑥𝑑1𝑁1

)

𝐾𝑗∑
𝑘=1

ℏ1𝑘𝑝1𝑘 (𝜔 | 𝜃1𝑘) 𝑑𝜔
...

∫
Ω𝐾(𝑥𝑑𝐾1 )

𝐾𝑗∑
𝑘=1

ℏ𝐾𝑘𝑝𝐾𝑘 (𝜔 | 𝜃𝐾𝑘) 𝑑𝜔 ≤ ⋅ ⋅ ⋅
≤ ∫
Ω𝐾(𝑥𝑑𝐾𝑁𝐾

)

𝐾𝑗∑
𝑘=1

ℏ𝐾𝑘𝑝𝐾𝑘 (𝜔 | 𝜃𝐾𝑘) 𝑑𝜔,

(39)

where Ω𝑗(𝑥𝑖) = {𝜔 ∈ Ω𝑗 : ∑𝐾𝑗
𝑘=1
ℏ𝑗𝑘𝑝𝑗𝑘(𝜔 | 𝜃𝑗𝑘) ≥∑𝐾𝑗

𝑘=1
ℏ𝑗𝑘𝑝𝑗𝑘(𝑥𝑖 | 𝜃𝑗𝑘)}; 𝑗 = (1, . . . , 𝐾); Ω𝑗 is the 𝑗th

component determined by the posterior probability. 𝑁𝑗 is
the number of observations belonging to the 𝑗th component.
Clearly, 𝑁𝑗 satisfies ∑𝐾𝑗=1𝑁𝑗 = 𝑁. 𝑑𝑗 = (𝑑𝑗1, 𝑑𝑗2, . . . , 𝑑𝑗𝑁𝑗)
is the ordering of sample indices of the 𝑗th component. By
sorting and discarding each component individually with the
same trimming fraction 𝜂, we can obtain the subsample of
each component 𝑋𝑀𝑗 = {𝑥𝑑𝑗𝑚}𝑀𝑗𝑚=1, where𝑀𝑗 = 𝑁𝑗(1 − 𝜂).
Hence, the total subsample𝑋𝑀 can be expressed by the union
of the subsample of each component𝑋𝑀𝑗 ,

𝑋𝑀 = 𝑋𝑀1 ∪ 𝑋𝑀2 ∪ ⋅ ⋅ ⋅ ∪ 𝑋𝑀𝐾 . (40)

Finally, the parameters of the proposedmixturemodel can be
estimatedwith subsample𝑋𝑀 and objective function𝑄(𝑋𝑀 |Θ). In the proposed GGMM-TLE, by evaluating the interval
integral rather than log-likelihood value of the observations,
we can obtain superior performance compared with the clas-
sical FAST-TLE.This is becausewe can order the observations
within every individual label to retain the consistency of
trimming proportion of each label. Therefore, regardless of
the mixture weights and sample scales, all observations of
each label are equally considered. Finally, combined with the
steps of GGMM in Section 2, we summarize the procedures
of GGMM-TLE as follows.

Step 1. Input the trimming fraction 𝜂. Initialize the parameter
set Θ = {𝜋𝑗, ℏ𝑗1, 𝜃𝑗1, ℏ𝑗2, 𝜃𝑗2}, where 𝜃𝑗1 = {V𝑗, 𝑘𝑗, 𝜎𝑗} and𝜃𝑗2 = {𝑢𝑗, Σ𝑗}.
Step 2. Based on the current parameter set Θ(𝑡), evaluate the
posterior probability 𝑧𝑖𝑗 using (22), compute the variable 𝑦𝑖𝑗𝑘
using (23), and classify the observations.

Step 3. Perform component-based confidence level ordering
using (39) to obtain subsample𝑋(𝑡+1)𝑀 .
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Step 4. Compute the objective function 𝑄(𝑋(𝑡+1)𝑀 | Θ(𝑡)) in
terms of (25). If 𝑄(𝑋(𝑡+1)𝑀 | Θ(𝑡)) ≥ 𝑄(𝑋(𝑡)𝑀 | Θ(𝑡)), continue to
Step 5; else, increase the value of the trimming fraction below
the predefined threshold and obtain new subsample 𝑋(𝑡+1)𝑀∗
until the following condition is satisfied: 𝑄(𝑋(𝑡+1)𝑀∗ | Θ(𝑡)) ≥𝑄(𝑋(𝑡+1)𝑀 | Θ(𝑡)); set𝑀 = 𝑀∗. If the condition is not satisfied,
terminate the procedure.

Step 5. Update the prior probability 𝜋𝑗 and weighting factorℏ𝑗𝑘 using (27) and (29), respectively. Compute the power
parameter V𝑗, shape parameter 𝑘𝑗, scale parameter 𝜎𝑗, mean
parameter 𝑢𝑗, and the covariance parameter Σ𝑗 by solving
(31), (33), (35), (37), and (38), respectively.

Step 6. Maximize the objective function 𝑄(𝑋(𝑡+1)𝑀 | Θ(𝑡))
using (25) and obtain the new parameter set Θ(𝑡+1). If
the termination condition is satisfied, end the iterations.
Otherwise, set 𝑡 = 𝑡 + 1 and return to Step 2.

6. Experimental Results

This section experimentally evaluates the proposed GGMM-
TLE by considering the problem of real-world image seg-
mentation and compares GGMM-TLE with other related
algorithms. All algorithms are initialized using 𝑘-means. The
experiments were developed in MATLAB R2012b and were
executed on a personal computer with Intel(R) Core(TM)
I7-6500U CPU @ 2.5GHz, 8GB RAM, 64-bit. To obtain an
objective evaluation of the proposed method, this paper uses
two measure criteria: the misclassification ratio (MCR) [24]
andDice similarity coefficient (DSC) [25].The former has the
following form:

MCR = number of mis-segmented pixels
total number of pixels

. (41)

MCR is widely used in the literature to evaluate segmentation
performance. For MCR, the smaller the value of the MCR,
the higher the accuracy of the segmentation. The popular
overlap-based metric DSC is also employed to evaluate the
proposed mixture model.

DSC (𝑆𝑎, 𝑆𝑚) = 2 󵄨󵄨󵄨󵄨𝑆𝑎 ∩ 𝑆𝑚󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑆𝑎󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝑆𝑚󵄨󵄨󵄨󵄨 , (42)

where 𝑆𝑎 denotes the shape of the automatic segmentation
and 𝑆𝑚 indicates the shape of the manual segmentation
obtained from the algorithm output. The range of DSC is
from zero to one, with one denoting ideal segmentation and
zero indicating poor segmentation.

6.1. Test of the Proposed Trimming Approach. The first
experiment presented herein validates the behaviour of
the proposed GGMM-TLE. For this purpose, we generated
three labels of inlier observations and one label of outliers.
The inlier observations consisted of 10,000 points from a
3-component bivariate GMM with prior probability 𝜋1 =

𝜋2 = 𝜋3 = 1/3. The means and variances of this bivariate
GMM are

𝜇1 = (0 4)𝑇 ,
𝜇2 = (4 0)𝑇 ,
𝜇3 = (−4 4)𝑇 ,
Σ1 = (1 11 2) ,
Σ2 = (1 00 1) ,
Σ3 = ( 1 −0.5−0.5 3 ) .

(43)

Labels 1, 2, and 3 have 2,500, 3,500, and 4,000 points,
respectively. Random noise with 1,000 points was added
in the ±10 rectangle. This random noise is considered as
outliers. For comparison, apart from the proposed approach,
we also included the performance of FAST-TLE [20] and
CLO-TLE [21]. The trimming fraction 𝜂 varied in the range[0.1, 0.5]. The segmentation results of the different methods
are presented in Figure 1. From Figure 1, we can observe
that the classical GMM was sensitive to outliers resulting in
poor clustering performance in terms of visual interpretation.
It is clear that the performance of the FAST-TLE method
was less influenced by the outliers. However, it was also
unstable, especially when the trimming fraction was high.
The CLO-TLE ordering strategy exhibited a higher stability
versus the previous two algorithmswith the use of confidence
level ordering.However, there remainedmisclassified outliers
demonstrating that the fitting influence of CLO-TLE was not
ideal. Conversely, we determined that the best performance
was with the proposed GGMM-TLE; this is because every
observation of the individual groups was considered. This
figure indicates that the GGMM-TLE can extract clear point
accumulations from noise data.

6.2. Segmentation of Noise-Degraded Images. To demonstrate
the feasibility of GGMM-TLE, the following experiment
used four real-world images (“Boat,” “Cow,” “House,” and
“Man”) from the semantic boundaries dataset (SBD) [26]
for comparison. These images were segmented into three
labels. All these images were contaminated by Salt and Pepper
noise with intensity 5%. Figure 2 presents the visualization of
the segmentation task with trimming fraction 0.2, where the
second, third, and fourth columns correspond to the FAST-
TLE, CLO-TLE, and GGMM-TLE algorithms, respectively.
Figure 2 shows the detailed parts of the corresponding seg-
mentation results using different approaches. Note that the
GGMM-TLE eliminates obviously the noise as predicated.We
demonstrate the log-likelihood function versus the number
of iteration under trimming fractions 0.2 for the different test
images in Figure 3. It can be clearly observed that the log-
likelihood functions of FAST-TLE and CLO-TLE are similar
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Figure 1: Noisy synthetic data clustering using the considered methods. (a) Classical GMM, (b) FAST-TLE method, (c) CLO-TLE method,
and (d) GGMM-TLE method.

to that of the proposed method. However, a closer inspection
of the iteration ranges [5, 15] indicates that the GGMM-
TLE method can moderately improve the convergence rate.
When the iterations is low (𝑡 ≤ 5), the convergence rate
with GGMM-TLE is the biggest one. In the general case,
the GGMM-TLE method converges after five iterations. In
Figure 4, the MCR plots of each test image against different
trimming fractions are displayed. This figure implies that the
proposed scheme achieved superior segmentation accuracy
as the basic scheme because the MCR of the GGMM-TLE
method was the least of all test images.

The proposed algorithm was also assessed on a clinical
MR image to label the white mass (WM) and grey mass
(GM). For this purpose, a real MR image, slice 42 of IBSR2
from the IBSR dataset [27], was randomly selected to evaluate
the performance of the proposed GGMM-TLE against FAST-
TLE and CLO-TLE. Salt and Pepper noise with intensity5% and 10% was considered in our experiment. Figure 5
presents the performance of these methods under 5% Salt
and Pepper noise and different trimming fractions. It is
clear that FAST-TLE did not demonstrate improved results
for heavier outliers in the segmentation task. The CLO-TLE
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(a) (b) (c) (d)

Figure 2: Segmentation results obtained by different methods for four test images (trimming fractions: 0.2). (a) Original image with 5% Salt
and Pepper noise. The figures from (b) to (d) show FAST-TLE, CLO-TLE, and GGMM-TLE methods, respectively.

tended to achieve superior performance with an increase of
the trimming fraction and could maintain its stability and
effectiveness. A closer inspection of Figure 5 indicates that the
segmentation accuracy of GGMM-TLE was visually higher
than the other methods. It is due to the fact that the proposed
GGMM-TLE utilizes the advantages of confidence level for
these observations so that the effects of mixture weights and
sample scales are eliminated.Therefore, with the increasing of
the trimming fractions, GGMM-TLE exhibits better stability
to outliers than CLO-TLE. As shown in Figure 5, this is

especially apparent in GGMM-TLE with high trimming
fractions. Figure 6 displays the evaluation results using the
MCR metric. It can be observed that the GGMM-TLE had
the lowest MCR value; thus, its segmentation results were
superior to those of FAST-TLE and CLO-TLE.

Further, we executed these algorithms 20 times, each time
with different initialization.Then, we computed the (average)
performance in terms of the number of correctly classified
data points and the DSC for this MR image, including white
matter and grey matter. Table 1 lists the mean values and the
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Figure 3: Comparison of likelihood values for the different test images with trimming faction 0.2. (a) Test image “Boat,” (b) test image “Cow,”
(c) test image “House,” and (d) test image “Man.”

standard deviations of the DSC obtained from 20 executions.
The experiment results demonstrate that the accuracy was
moderately improved compared with the other methods.

To assess the robustness of the proposed GGMM-TLE
at different levels of noise, a set of real-world images from
the Berkeley image dataset [28] was considered to compare
the performance of GMM [29], SMM [30], GΓMM [31],
NSMM [12], and ACAP [8]. The ground-truth information
was freely obtained from the website [31]. This was used
for algorithm performance evaluation. The experiment was

performed with noisy version images by adding Gaussian
noise (zero mean, 0.01 variance) and Salt and Pepper noise
(3%) to the images, as indicated in the first row of Figures 7
and 8. The evaluated algorithms were initialized using the 𝑘-
means algorithm.The number of label𝐾was set according to
human visual inspection. Figures 7 and 8 exhibit the results
of image segmentation using the different methods. Owing
to the application of a mean filter, we can observe that the
performance of ACAPwas superior to GMM, SMM, GΓMM,
and NSMM. The results generated by the ACAP achieved
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Figure 4: Plot ofMCR of test images against different trimming fractions. (a) Test image “Boat,” (b) test image “Cow,” (c) test image “House,”
and (d) test image “Man.”

Table 1: Average DSC of different methods with diverse trimming fractions. Original MR image with 5% Salt and Pepper noise (mean ±
standard deviation).

Methods Trimming fraction (WM)
0.1 0.2 0.3 0.4 0.5

FAST-TLE 0.7153 ± 0.4191 0.7269 ± 0.4785 0.7081 ± 0.2083 0.6771 ± 0.4762 0.6743 ± 0.5216
CLO-TLE 0.8181 ± 0.2721 0.7968 ± 0.2814 0.7966 ± 0.3612 0.7748 ± 0.3264 0.7484 ± 0.3673
GGMM-TLE 0.8994 ± 0.1023 0.8380 ± 0.1571 0.8177 ± 0.1238 0.8040 ± 0.0779 0.7803 ± 0.2317
Methods Trimming fraction (GM)

0.1 0.2 0.3 0.4 0.5
FAST-TLE 0.8367 ± 0.4020 0.8378 ± 0.4060 0.8313 ± 0.3553 0.8015 ± 0.3723 0.7829 ± 0.4062
CLO-TLE 0.9107 ± 0.3841 0.8931 ± 0.2379 0.8944 ± 0.1540 0.8803 ± 0.2783 0.8593 ± 0.1761
GGMM-TLE 0.9561 ± 0.1262 0.9227 ± 0.1040 0.9095 ± 0.1235 0.9002 ± 0.1156 0.8837 ± 0.1240
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(a)

(b)

(c)

Figure 5: (a) to (c) display the segmentation results of MR image (slice 42 of IBSR2) using FAST-TLE, CLO-TLE, and GGMM-TLE,
respectively. The trimming fractions from left to right are 0.1, 0.2, 0.3, 0.4, and 0.5.
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Figure 6: Trimming fractions versus classification accuracy under noise environment, MCR of different methods for MR image (slice 42 of
IBSR2). (a) 5% Salt and Pepper noise and (b) 10% Salt and Pepper noise.
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Figure 7: Segmentation performance comparison for real-world images in the Gaussian noise environment (zero mean, variance 0.01). From
the first row to the last: noisy image, GMM, SMM, GΓMM, NSMM, ACAP, and GGMM-TLE, respectively. From the first column to the last
column: test image 24063, 8068, 241004, 55067, and 35010 (Berkeley Dataset).

similar results to GGMM-TLE; however, its performance was
impaired when there was an abundance of rich details, for
example, in test image 241004 (the sixth row of Figure 7).The
GGMM-TLE provided a moderately improved performance
under different noisy conditions and eliminated the influence
of widely spread noise data. This characteristic is endemic
to MRF and trimmed likelihood estimator. The resulting
DSC is reported in Tables 2 and 3, providing a quantitative
comparison among the algorithms. The DSC and standard
deviation indicate that the proposed method outperformed
the other methods by preserving the highest DSC.

To further demonstrate the goodness of GGMM-TLE
against different noise, in Figure 9, we display the mean
values and standard deviations of the MCR obtained from
twenty runs on two Berkeley test images (24063 and 35010)
under different noise environments. Considering the MCR,
on average, the ACAP effectively eliminated the effects of
noise during the segmentation processing and demonstrated
acceptable segmentation results. We determined that classi-
cal GMM, SMM, and GΓMM were severely influenced by
Gaussian noise and could not accurately separate a region
from the background. In the majority of cases, the NSMM
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Figure 8: Segmentation performance comparison for real-world images in the Salt and Pepper noise environment (3%). From the first row
to the last: noisy image, GMM, SMM, GΓMM, NSMM, ACAP, and GGMM-TLE, respectively. From the first column to the last column: test
image 24063, 8068, 241004, 55067, and 35010 (Berkeley Dataset).

approach was superior to SMM and GMM, yet continued
to be influenced by varying degrees of Salt and Pepper
and Gaussian noise. As expected, compared to the other
algorithms, the GGMM-TLEwas stable and achieved the best
segmentation results according to the quantitative criterion.

7. Concluding Remarks

In this paper, a robust estimation of the proposed GGMM-
TLE using a trimmed likelihood estimator for real-world
image segmentation was proposed. GGMM-TLE with MRF

implements a mixture of generalized Gamma and Gaussian
distributions.

The main contribution of this paper is the presentation
of an asymmetric finite model GGMM-TLE based on MRF.
With this model, we have high flexibility to fit different
shapes of observed data. Further, this study discussed the
property of identifiability of the proposed mixture model,
guaranteeing that the estimation procedure for the parame-
ters was correctly developed. Then, to ensure that GGMM-
TLE was robust against heavy outliers, the paper offered
an effective method to discard the outliers in advance, and
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Figure 9: Average MCR for different methods on two test images under noisy environment (Berkeley Dataset). ((a) and (b)) Test image
24063; ((c) and (d)) test image 35010.

therefore, GGMM-TLE demonstrated superior performance
under modelling with samples contaminated with unknown
outliers. Finally, combined with MRF, GGMM-TLE consid-
ered the spatial relationship between neighbouring pixels and
demonstrated a stronger ability to resist different noise. The
segmentation results of synthetic data and real-world images
confirmed that the proposed method demonstrated superior
competitiveness.Themain limitation of this algorithm is that

the segmentation task requires component-based confidence
level ordering, which increases the computational cost.

As a future work, one direction is to obtain other finite
mixture models by testing different probability density func-
tions. Another possible direction is to extend the presented
method to a higher dimension in a straightforward manner
such as fMRI time-series clustering. We plan to address these
topics in a separate paper.
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Table 2:AverageDSCof differentmethods for Berkeley test imageswith zeromeanGaussian noise, variance 0.01 (mean± standard deviation).
Images Label GMM SMM GΓMM
24063 3 0.86005 ± 0.32173 0.89173 ± 0.20353 0.88071 ± 0.20472
8068 3 0.85737 ± 0.28634 0.87439 ± 0.27448 0.86005 ± 0.31348
241004 4 0.85388 ± 0.32745 0.89018 ± 0.24834 0.87803 ± 0.20895
55067 4 0.87931 ± 0.21733 0.88342 ± 0.21631 0.88013 ± 0.30556
35010 4 0.84904 ± 0.33850 0.88463 ± 0.23632 0.87991 ± 0.18584
Images Label NSMM ACAP GGMM-TLE
24063 3 0.91825 ± 0.15734 0.95004 ± 0.14848 0.97122 ± 0.14891
8068 3 0.89173 ± 0.28042 0.94485 ± 0.16055 0.96108 ± 0.10723
241004 4 0.92006 ± 0.21634 0.94670 ± 0.13114 0.97061 ± 0.14826
55067 4 0.92601 ± 0.17203 0.96893 ± 0.12051 0.97175 ± 0.13876
35010 4 0.92183 ± 0.20847 0.95380 ± 0.13954 0.96219 ± 0.15664

Table 3: Average DSC of different methods for Berkeley test images with 3% Salt and Pepper noise (mean ± standard deviation).

Images Label GMM SMM GΓMM
24063 3 0.87126 ± 0.30566 0.90972 ± 0.23385 0.88482 ± 0.18808
8068 3 0.85234 ± 0.32531 0.88082 ± 0.30318 0.87627 ± 0.33601
241004 4 0.87294 ± 0.35061 0.88385 ± 0.30458 0.89714 ± 0.25054
55067 4 0.88099 ± 0.32392 0.90400 ± 0.25767 0.88517 ± 0.21092
35010 4 0.85337 ± 0.25011 0.89075 ± 0.21839 0.87630 ± 0.16432
Images Label NSMM ACAP GGMM-TLE
24063 3 0.92079 ± 0.16049 0.96103 ± 0.23214 0.98394 ± 0.07514
8068 3 0.90213 ± 0.25321 0.95329 ± 0.11539 0.97328 ± 0.11482
241004 4 0.93487 ± 0.16806 0.96271 ± 0.12378 0.97117 ± 0.13683
55067 4 0.93247 ± 0.18579 0.98076 ± 0.10690 0.98587 ± 0.06655
35010 4 0.93752 ± 0.17804 0.96053 ± 0.10842 0.97420 ± 0.12722
Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China under Grant no. 61371150.

References

[1] A. Saglam and N. A. Baykan, “Sequential image segmentation
based on minimum spanning tree representation,” Pattern
Recognition Letters, vol. 87, pp. 155–162, 2017.

[2] S. Yin, Y. Qian, andM.Gong, “Unsupervised hierarchical image
segmentation through fuzzy entropy maximization,” Pattern
Recognition, vol. 68, pp. 245–259, 2017.

[3] H.-C. Li, V. A. Krylov, P.-Z. Fan, J. Zerubia, and W. J. Emery,
“Unsupervised learning of generalized gamma mixture model
with application in statistical modeling of high-resolution SAR
images,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 54, no. 4, pp. 2153–2170, 2016.

[4] A. Roy, A. Pal, and U. Garain, “JCLMM: A finite mixture
model for clustering of circular-linear data and its application
to psoriatic plaque segmentation,” Pattern Recognition, vol. 66,
pp. 160–173, 2017.

[5] Y. Bar-Yosef and Y. Bistritz, “Gaussian mixture models reduc-
tion by variational maximummutual information,” IEEE Trans-
actions on Signal Processing, vol. 63, no. 6, pp. 1557–1569, 2015.

[6] R. Zhang, D. H. Ye, D. Pal, J.-B. Thibault, K. D. Sauer, and C. .
Bouman, “A Gaussian mixture MRF for model-based iterative
reconstruction with applications to low-dose X-ray CT,” IEEE
Transactions on Computational Imaging, vol. 2, no. 3, pp. 359–
374, 2016.

[7] H. Z. Yerebakan and M. Dundar, “Partially collapsed parallel
Gibbs sampler for Dirichlet process mixture models,” Pattern
Recognition Letters, vol. 90, pp. 22–27, 2017.

[8] H. Zhang, Q.M. J.Wu, and T.M. Nguyen, “Incorporatingmean
template into finite mixture model for image segmentation,”
IEEE Transactions on Neural Networks and Learning Systems,
vol. 24, no. 2, pp. 328–335, 2013.

[9] A. Matza and Y. Bistritz, “Skew Gaussian mixture models for
speaker recognition,” IET Signal Processing, vol. 8, no. 8, pp.
860–867, 2014.

[10] T.-T. Van Cao, “Modelling of inhomogeneity in radar clutter
using weibull mixture densities,” IET Radar, Sonar & Naviga-
tion, vol. 8, no. 3, pp. 180–194, 2014.

[11] Q. Peng and L. Zhao, “SAR image filtering based on the Cauchy-
Rayleigh mixture model,” IEEE Geoscience and Remote Sensing
Letters, vol. 11, no. 5, pp. 960–966, 2014.

[12] T.M.Nguyen andQ.M. J.Wu, “A nonsymmetricmixturemodel
for unsupervised image segmentation,” IEEE Transactions on
Cybernetics, vol. 43, no. 2, pp. 751–765, 2013.



Mathematical Problems in Engineering 17

[13] T. M. Nguyen, Q. M. J. Wu, D. Mukherjee, and H. Zhang,
“A bayesian bounded asymmetric mixture model with seg-
mentation application,” IEEE Journal of Biomedical and Health
Informatics, vol. 18, no. 1, pp. 109–119, 2014.

[14] T. M. Nguyen and Q. M. J. Wu, “Bounded asymmetrical
student’s-t mixture model,” IEEE Transactions on Cybernetics,
vol. 44, no. 6, pp. 857–869, 2014.

[15] X. Zhou, R. Peng, and C. Wang, “A two-component K-
Lognormal mixture model and its parameter estimation
method,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 53, no. 5, pp. 2640–2651, 2015.

[16] A. De Angelis, G. De Angelis, and P. Carbone, “Using Gaussian-
Uniform Mixture Models for Robust Time-Interval Measure-
ment,” IEEE Transactions on Instrumentation andMeasurement,
vol. 64, no. 12, pp. 3545–3554, 2015.

[17] R. P. Browne, P. D. McNicholas, and M. D. Sparling, “Model-
based learning using a mixture of mixtures of gaussian and
uniform distributions,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 34, no. 4, pp. 814–817, 2012.

[18] J. Sun, A. Zhou, S. Keates, and S. Liao, “Simultaneous Bayesian
Clustering and Feature Selection Through Student’s t Mixtures
Model,” IEEE Transactions on Neural Networks and Learning
Systems, 2017.

[19] N. Neykov, P. Filzmoser, R. Dimova, and P. Neytchev, “Robust
fitting of mixtures using the trimmed likelihood estimator,”
Computational Statistics & Data Analysis, vol. 52, no. 1, pp. 299–
308, 2007.

[20] C. H. Müller and N. Neykov, “Breakdown points of trimmed
likelihood estimators and related estimators in generalized
linear models,” Journal of Statistical Planning and Inference, vol.
116, no. 2, pp. 503–519, 2003.
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