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This paper focuses on the problem of nonlinear systems with input and state delays. The considered nonlinear systems are
represented by Takagi-Sugeno (T-S) fuzzy model. A new state feedback control approach is introduced for T-S fuzzy systems with
input delay and state delays. A new Lyapunov-Krasovskii functional is employed to derive less conservative stability conditions
by incorporating a recently developed Wirtinger-based integral inequality. Based on the Lyapunov stability criterion, a series of
linear matrix inequalities (LMIs) are obtained by using the slack variables and integral inequality, which guarantees the asymptotic
stability of the closed-loop system. Several numerical examples are given to show the advantages of the proposed results.

1. Introduction

In recent years, T-S fuzzy system has become a very active
research direction in the fields of fuzzy control [1–8]. T-S
fuzzy model is useful for approximating complex nonlinear
systems by local linear submodel and fuzzy membership
functions. It has been proved that T-S fuzzy model can
approximate any smooth nonlinear dynamic systems. There-
fore, T-S fuzzy model is a very effective and powerful tool
for the study of nonlinear systems. Currently, many valuable
results on stability analysis, controller design, filter design,
and fault detection of T-S fuzzy systems have been widely
reported in [9–19].

It is well known that time-delay is an important source
of system instability or oscillation [20–27]. Lyapunov-
Krasovskii functional (LKF) technique is an effective method
to handle stability analysis and controller design of T-S fuzzy
time-delay system. Various methods are introduced to obtain
less conservative stability conditions for T-S fuzzy time-
delay system. There are two main relaxed techniques for T-
S fuzzy time-delay system, for example, constructing new
LKF with more system information and using new bounding

inequalities. A variety of results have been presented for T-
S fuzzy time-delay system by combining LKF and bounding
inequality approaches [28–37]. However, the existing results
are still very conservative due to the form of LKF, and thus
constructing new LKF with more system information is a
challenging issue to reduce the conservativeness of stability
analysis for T-S fuzzy time-delay system.

The aforementioned results only consider the state delays
in T-S fuzzy systems.Therefore, these approaches mentioned
above may be invalid when they are used to control the
systems with input delays. It is well known that input delays
always occur in practical control systems. Therefore, it is
very significant to study stability and controller design for
T-S fuzzy systems with state and input delays. Therefore, a
few studies have been developed for T-S fuzzy systems with
state and input delays [38–40]. However, the existing results
are very conservative because LFK including double integral
terms are only used to derive stability conditions in the form
of LMIs.

In this paper, the stabilization problem of nonlinear
systems with input and state delays is studied by using T-
S fuzzy model. Novel stabilization conditions are presented
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by Lyapunov stability theory. The main contributions of this
paper can be summarized as follows. (1) A new LKF with
triple integral terms is for the first time constructed for T-S
fuzzy model with input and state delays. (2)Wirtinger-based
double integral inequality is employed to derive LMI-based
stabilization conditions. (3) Using LKF with more system
information, Wirtinger-based double integral inequality, and
matrix transformation technique, less conservative stabiliza-
tion conditions are proposed for nonlinear systems with
input and state delays. The paper is organized as follows. The
problem descriptions and some useful lemmas are presented
in Section 2.Themain derivation process is given in Section 3.
Several numerical examples are provided to demonstrate the
effectiveness of the proposed approach in Section 4. The
conclusion is drawn in the last section.

2. Preliminaries

2.1. Problem Description. Consider a nonlinear system de-
scribed by T-S fuzzy model with input and state delays. The
rules are defined as follows.

Plant Rule 𝑖. If 𝜃1(𝑡) is𝑀𝑖1 and 𝜃2(𝑡) is𝑀𝑖2 and . . . and 𝜃𝑝(𝑡)
is𝑀𝑖𝑝, then
�̇� (𝑡) = 𝐴 𝑖𝑥 (𝑡) + 𝐴𝑑𝑖𝑥 (𝑡 − ℎ) + 𝐵𝑖𝑢 (𝑡 − 𝜏) ,
𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−max (ℎ, 𝜏) , 0] ,

𝑖 = 1, 2, . . . , 𝑟,
(1)

where 𝑥(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), . . . , 𝑥𝑛(𝑡)]Τ ∈ 𝑅𝑛 is the state; 𝜙(𝑡)
is the initial condition defined on 𝑡 ∈ [−max(ℎ, 𝜏), 0]; 𝑀𝑖𝑗
is the fuzzy set; 𝑟 is the number of plant rules; and 𝜃(𝑡) =[𝜃1(𝑡), 𝜃2(𝑡), . . . , 𝜃𝑝(𝑡)] is the antecedent variable vector. ℎ and𝜏, respectively, indicate the state delay and input delay.𝐴 𝑖, 𝐵𝑖,
and 𝐴𝑑𝑖 are known real constant matrices with appropriate
dimensions.

The overall fuzzy model can be given by

�̇� (𝑡)
= 𝑟∑
𝑖=1

𝜆𝑖 (𝜃 (𝑡)) [𝐴 𝑖𝑥 (𝑡) + 𝐴𝑑𝑖𝑥 (𝑡 − ℎ) + 𝐵𝑖𝑢 (𝑡 − 𝜏)] , (2)

where
𝑟∑
𝑖=1

𝜆𝑖 (𝜃 (𝑡)) = 1,

𝜆𝑖 (𝜃 (𝑡)) = 𝜔𝑖 (𝜃 (𝑡))∑𝑟𝑖=1 𝜔𝑖 (𝜃 (𝑡)) ,

𝜔𝑖 (𝜃 (𝑡)) =
𝑟∏
𝑗=1

𝑀𝑖𝑗 (𝜃𝑗 (𝑡)) ,
(3)

and 𝑀𝑖𝑗(𝜃𝑗(𝑡)) indicates the membership degree of 𝜃𝑗(𝑡) in𝑀𝑖𝑗.
A tight T-S fuzzy model can be written as

�̇� (𝑡) = 𝐴 (𝜆) 𝑥 (𝑡) + 𝐴𝑑 (𝜆) 𝑥 (𝑡 − ℎ) + 𝐵 (𝜆) 𝑢 (𝑡 − 𝜏) ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−max (ℎ, 𝜏) , 0] ,
(4)

where𝐴(𝜆) = ∑𝑟𝑖=1 𝜆𝑖(𝜃(𝑡))𝐴 𝑖,𝐴𝑑(𝜆) = ∑𝑟𝑖=1 𝜆𝑖(𝜃(𝑡))𝐴𝑑𝑖, and𝐵(𝜆) = ∑𝑟𝑖=1 𝜆𝑖(𝜃(𝑡))𝐵𝑖.
Moreover, we define the fuzzy state feedback control rules

using the following fuzzy parallel distributed compensation
strategy.

Controller Rule 𝑖. If 𝜃1(𝑡) is 𝑀𝑖1 and 𝜃2(𝑡) is 𝑀𝑖2 and . . . and𝜃𝑝(𝑡) is𝑀𝑖𝑝, then
𝑢 (𝑡) = 𝐾𝑖𝑥 (𝑡) , 𝑖 = 1, 2, . . . , 𝑟, (5)

where 𝑥(𝑡) is the input, 𝑢(𝑡) ∈ 𝑅𝑚 is the output, and 𝐾𝑖 is the
gain matrix of the controller.

So the overall output of the fuzzy state feedback controller
can be represented as

𝑢 (𝑡) = 𝑟∑
𝑖=1

𝜆𝑖 (𝜃 (𝑡)) 𝐾𝑖𝑥 (𝑡) . (6)

The compact form can be written as

𝑢 (𝑡) = 𝐾 (𝜆) 𝑥 (𝑡) , (7)

where 𝐾(𝜆) = ∑𝑟𝑖=1 𝜆𝑖(𝜃(𝑡))𝐾𝑖.
Therefore, we can get the closed-loop system formed by

T-S fuzzy system with input delay and state delays in (2) and
state feedback controller in (6), which is as follows:

�̇� (𝑡) = 𝑟∑
𝑖=1

𝑟∑
𝑗=1

𝜆𝑖 (𝜃 (𝑡)) 𝜆𝑗 (𝜃 (𝑡))
⋅ [𝐴 𝑖𝑥 (𝑡) + 𝐴𝑑𝑖𝑥 (𝑡 − ℎ) + 𝐵𝑖𝐾𝑗𝑥 (𝑡 − 𝜏)] .

(8)

The compact form of the closed-loop system is repre-
sented as

�̇� (𝑡) = 𝐴 (𝜆) 𝑥 (𝑡) + 𝐴𝑑 (𝜆) 𝑥 (𝑡 − ℎ)
+ 𝐵 (𝜆)𝐾 (𝜆) 𝑥 (𝑡 − 𝜏) . (9)

The goal of this paper is to find gains 𝐾𝑖 such that the
closed-loop system (9) is asymptotically stable.

2.2. Useful Lemmas. The following lemmas are useful to
obtain the main results of this paper.

Lemma 1 (see [25]). For any constant matrix 𝑀 > 0, given
scalars 𝑎 and 𝑏 satisfying 𝑎 < 𝑏, the following inequality holds
for all continuously differentiable function 𝜑 in [𝑎, 𝑏] → 𝑅𝑛:

(𝑏 − 𝑎) ∫𝑏
𝑎
𝜑Τ (𝑠)𝑀𝜑 (𝑠) 𝑑𝑠

≥ (∫𝑏
𝑎
𝜑 (𝑠) 𝑑𝑠)Τ𝑀(∫𝑏

𝑎
𝜑 (𝑠) 𝑑𝑠) + 3ΘΤ𝑑𝑀Θ𝑑,

(10)

where Θ𝑑 = ∫𝑏
𝑎
𝜑(𝑠)𝑑𝑠 − (2/(𝑏 − 𝑎)) ∫𝑏

𝑎
∫𝑠
𝑎
𝜑(𝑢)𝑑𝑢 𝑑𝑠 =

−∫𝑏
𝑎
𝜑(𝑠)𝑑𝑠 + (2/(𝑏 − 𝑎)) ∫𝑏

𝑎
∫𝑏
𝑠
𝜑(𝑢)𝑑𝑢 𝑑𝑠.
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Lemma 2 (see [26]). For a given matrix𝑀 > 0, given scalars𝑎 and 𝑏 satisfying 𝑎 < 𝑏, the following inequality holds for all
continuously differentiable function 𝑥 in [𝑎, 𝑏] → 𝑅𝑛:

(𝑏 − 𝑎)22 ∫𝑏
𝑎
∫𝑏
𝑠
𝑥Τ (𝑢)𝑀𝑥 (𝑢) 𝑑𝑢 𝑑𝑠

≥ (∫𝑏
𝑎
∫𝑏
𝑠
𝑥 (𝑢) 𝑑𝑢 𝑑𝑠)Τ𝑀(∫𝑏

𝑎
∫𝑏
𝑠
𝑥 (𝑢) 𝑑𝑢 𝑑𝑠)

+ 2ΘΤ𝑑𝑀Θ𝑑,

(11)

where Θ𝑑 = −∫𝑏
𝑎
∫𝑏
𝑠
𝑥(𝑢)𝑑𝑢 𝑑𝑠 + (3/(𝑏 −

𝑎)) ∫𝑏
𝑎
∫𝑏
𝑠
∫𝑏
𝑢
𝑥(V)𝑑V 𝑑𝑢 𝑑𝑠.

Lemma 3 (see [41]). Given matrices V ∈ 𝑅𝑛, Θ = ΘΤ ∈ 𝑅𝑛×𝑛,
and𝑁 ∈ 𝑅𝑚×𝑛, if rank(𝑁) < 𝑛, then

VΤΘV < 0, ∀𝑁V = 0, V ̸= 0 (12)

if and only if there exists matrix 𝐿 ∈ 𝑅𝑛×𝑚 such that
Θ + 𝐿𝑁 +𝑁Τ𝐿Τ < 0. (13)

3. Main Results

In this section, new stability conditions for system (9) will be
presented. Now we give the following theorem.

Theorem 4. Consider the closed-loop system (9) and given
scalars ℎ and 𝜏 to meet ℎ > 0, 𝜏 > 0, the system is
asymptotically stable, if there exist scalars 𝑎1 and 𝑎2, matrices𝑀(𝜆),𝑋, and positive definite symmetric matrices �̂�, 𝑄,𝐷, �̂�,
�̂�, �̂�, and �̂�, such that the following inequality holds:

Ξ̂ + �̂�Γ̂ (𝜆) + Γ̂ (𝜆)Τ �̂�Τ < 0, (14)

where

Ξ̂0 = sym {[𝑒1 𝑒3 𝑒5 𝑒6 𝑒7 𝑒9 𝑒10] �̂� [𝑒2 𝑒4 𝑒1 − 𝑒3 ℎ𝑒1 − 𝑒5 𝑒8 𝑒1 − 𝑒7 𝜏𝑒1 − 𝑒9]Τ} + [𝑒1 𝑒2] 𝑄 [𝑒1 𝑒2]Τ

− [𝑒3 𝑒4] 𝑄 [𝑒3 𝑒4]Τ + ℎ2 [𝑒1 𝑒2]𝐷 [𝑒1 𝑒2]Τ + (ℎ22 )
2 𝑒2�̂�𝑒2Τ + [𝑒1 𝑒2] �̂� [𝑒1 𝑒2]Τ − [𝑒7 𝑒8] �̂� [𝑒7 𝑒8]Τ

+ 𝜏2 [𝑒1 𝑒2] �̂� [𝑒1 𝑒2]Τ + (𝜏22 )
2 𝑒2�̂�𝑒2Τ,

Ξ̂1 = − [𝑒5 𝑒1 − 𝑒3]𝐷 [𝑒5 𝑒1 − 𝑒3]Τ − 3 [(2ℎ) 𝑒6 − 𝑒5 𝑒1 + 𝑒3 − (2ℎ) 𝑒5]𝐷[(2ℎ) 𝑒6 − 𝑒5 𝑒1 + 𝑒3 − (2ℎ) 𝑒5]
Τ ,

Ξ̂2,1 = − [ℎ𝑒1 − 𝑒5] �̂� [ℎ𝑒1 − 𝑒5]Τ ,
Ξ̂2,2 = −2 [(ℎ2) 𝑒1 + 𝑒5 − (3ℎ) 𝑒6] �̂� [(ℎ2) 𝑒1 + 𝑒5 − (3ℎ) 𝑒6]

Τ ,
Ξ̂3 = − [𝑒9 𝑒1 − 𝑒7] �̂� [𝑒9 𝑒1 − 𝑒7]Τ − 3 [(2𝜏) 𝑒10 − 𝑒9 𝑒1 + 𝑒7 − (2𝜏) 𝑒9] �̂� [(2𝜏) 𝑒10 − 𝑒9 𝑒1 + 𝑒7 − (2𝜏) 𝑒9]

Τ ,
Ξ̂4,1 = − [𝜏𝑒1 − 𝑒9] �̂� [𝜏𝑒1 − 𝑒9]Τ ,
Ξ̂4,2 = −2 [(𝜏2) 𝑒1 + 𝑒9 − (3𝜏) 𝑒10] �̂� [(𝜏2) 𝑒1 + 𝑒9 − (3𝜏) 𝑒10]

Τ ,
Ξ̂ = Ξ̂0 + Ξ̂1 + Ξ̂2,1 + Ξ̂2,2 + Ξ̂3 + Ξ̂4,1 + Ξ̂4,2,
�̂� = 𝑎1𝑒1 + 𝑒2 + 𝑎2𝑒3,
Γ̂ (𝜆) = [𝐴 (𝜆)𝑋 −𝑋 𝐴𝑑 (𝜆)𝑋 𝐵 (𝜆)𝑀 (𝜆)] [𝑒1, 𝑒2, 𝑒3, 𝑒7]Τ .

(15)

In addition, the gain matrix of state feedback controller can be
obtained as

𝐾 (𝜆) = 𝑀 (𝜆)𝑋−1. (16)
Proof. In order to establish a stability condition of system (9),
we choose the following Lyapunov-Krasovskii functional:

𝑉 = VΤ1 (𝑡) 𝑃V1 (𝑡) + ∫𝑡
𝑡−ℎ

VΤ2 (𝑠) 𝑄V2 (𝑠) 𝑑𝑠

+ ℎ∫𝑡
𝑡−ℎ

∫𝑡
𝑠
VΤ2 (𝑢)𝐷V2 (𝑢) 𝑑𝑢 𝑑𝑠
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+ ℎ22 ∫𝑡
𝑡−ℎ

∫𝑡
𝑠
∫𝑡
𝑢
�̇�Τ (V) 𝑇�̇� (V) 𝑑V 𝑑𝑢 𝑑𝑠

+ ∫𝑡
𝑡−𝜏

VΤ2 (𝑠) 𝑄V2 (𝑠) 𝑑𝑠
+ 𝜏∫𝑡
𝑡−𝜏

∫𝑡
𝑠
VΤ2 (𝑢)𝐷V2 (𝑢) 𝑑𝑢 𝑑𝑠

+ 𝜏22 ∫𝑡
𝑡−𝜏

∫𝑡
𝑠
∫𝑡
𝑢
�̇�Τ (V) 𝑇�̇� (V) 𝑑V 𝑑𝑢 𝑑𝑠,

(17)

where

V1 (𝑡) =

[[[[[[[[[[[[[[[[[[[
[

𝑥 (𝑡)
𝑥 (𝑡 − ℎ)

∫𝑡
𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠
∫𝑡
𝑡−ℎ

∫𝑡
𝑠
𝑥 (𝑢) 𝑑𝑢 𝑑𝑠

𝑥 (𝑡 − 𝜏)
∫𝑡
𝑡−𝜏

𝑥 (𝑠) 𝑑𝑠
∫𝑡
𝑡−𝜏

∫𝑡
𝑠
𝑥 (𝑢) 𝑑𝑢 𝑑𝑠

]]]]]]]]]]]]]]]]]]]
]

,

V2 (𝑡) = [𝑥 (𝑡)�̇� (𝑡)] ,

V̇1 (𝑡) =

[[[[[[[[[[[[[[[[[
[

�̇� (𝑡)
�̇� (𝑡 − ℎ)

𝑥 (𝑡) − 𝑥 (𝑡 − ℎ)
ℎ𝑥 (𝑡) − ∫𝑡

𝑡−ℎ
𝑥 (𝑠) 𝑑𝑠

�̇� (𝑡 − 𝜏)
𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏)

𝜏𝑥 (𝑡) − ∫𝑡
𝑡−𝜏

𝑥 (𝑠) 𝑑𝑠

]]]]]]]]]]]]]]]]]
]

.

(18)

Moreover, 𝑃 ∈ 𝑅7𝑛×7𝑛, 𝑄,𝑄 ∈ 𝑅2𝑛×2𝑛, 𝐷,𝐷 ∈ 𝑅2𝑛×2𝑛, and𝑇, 𝑇 ∈ 𝑅𝑛×𝑛 are positive definite symmetric matrices.
The time-derivative of 𝑉 can be computed as

�̇� = 2VΤ1 (𝑡) 𝑃V̇1 (𝑡) + VΤ2 (𝑡) 𝑄V2 (𝑡)
− VΤ2 (𝑡 − ℎ)𝑄V2 (𝑡 − ℎ) + ℎ2VΤ2 (𝑡) 𝐷V2 (𝑡)
− ℎ𝜉1 (𝑡) + (ℎ22 )

2 �̇�Τ (𝑡) 𝑇�̇� (𝑡) − ℎ22 𝜉2 (𝑡)
+ VΤ2 (𝑡) 𝑄V2 (𝑡) − VΤ2 (𝑡 − 𝜏)𝑄V2 (𝑡 − 𝜏)
+ 𝜏2VΤ2 (𝑡) 𝐷V2 (𝑡) − 𝜏𝜉3 (𝑡)
+ (𝜏22 )

2 �̇�Τ (𝑡) 𝑇�̇� (𝑡) − 𝜏22 𝜉4 (𝑡)
= 2VΤ1 (𝑡) 𝑃V̇1 (𝑡) + VΤ2 (𝑡) 𝑄V2 (𝑡)
− VΤ2 (𝑡 − ℎ)𝑄V2 (𝑡 − ℎ) + ℎ2VΤ2 (𝑡) 𝐷V2 (𝑡)
+ (ℎ22 )

2 �̇�Τ (𝑡) 𝑇�̇� (𝑡) + VΤ2 (𝑡) 𝑄V2 (𝑡)
− VΤ2 (𝑡 − 𝜏)𝑄V2 (𝑡 − 𝜏) + 𝜏2VΤ2 (𝑡) 𝐷V2 (𝑡)
+ (𝜏22 )

2 �̇�Τ (𝑡) 𝑇�̇� (𝑡) − ℎ𝜉1 (𝑡) − ℎ22 𝜉2 (𝑡)

− 𝜏𝜉3 (𝑡) − 𝜏22 𝜉4 (𝑡)
= 𝜁Τ (𝑡) Ξ0𝜁 (𝑡) − ℎ𝜉1 (𝑡) − ℎ22 𝜉2 (𝑡) − 𝜏𝜉3 (𝑡)
− 𝜏22 𝜉4 (𝑡) ,

(19)

where

𝜉1 (𝑡) = ∫𝑡
𝑡−ℎ

VΤ2 (𝑠)𝐷V2 (𝑠) 𝑑𝑠,
𝜉2 (𝑡) = ∫𝑡

𝑡−ℎ
∫𝑡
𝑠
�̇�Τ (𝑢) 𝑇�̇� (𝑢) 𝑑𝑢 𝑑𝑠,

𝜉3 (𝑡) = ∫𝑡
𝑡−𝜏

VΤ2 (𝑠)𝐷V2 (𝑠) 𝑑𝑠,
𝜉4 (𝑡) = ∫𝑡

𝑡−𝜏
∫𝑡
𝑠
�̇�Τ (𝑢) 𝑇�̇� (𝑢) 𝑑𝑢 𝑑𝑠,

Ξ0 = sym {[𝑒1 𝑒3 𝑒5 𝑒6 𝑒7 𝑒9 𝑒10] 𝑃 [𝑒2 𝑒4 𝑒1 − 𝑒3 ℎ𝑒1 − 𝑒5 𝑒8 𝑒1 − 𝑒7 𝜏𝑒1 − 𝑒9]Τ} + [𝑒1 𝑒2] 𝑄 [𝑒1 𝑒2]Τ

− [𝑒3 𝑒4] 𝑄 [𝑒3 𝑒4]Τ + ℎ2 [𝑒1 𝑒2]𝐷 [𝑒1 𝑒2]Τ + (ℎ22 )
2 𝑒2𝑇𝑒2Τ + [𝑒1 𝑒2] 𝑄 [𝑒1 𝑒2]Τ − [𝑒7 𝑒8] 𝑄 [𝑒7 𝑒8]Τ
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+ 𝜏2 [𝑒1 𝑒2]𝐷 [𝑒1 𝑒2]Τ + (𝜏22 )
2 𝑒2𝑇𝑒2Τ,

𝜁Τ (𝑡) = [𝑥Τ (𝑡) , �̇�Τ (𝑡) , 𝑥Τ (𝑡 − ℎ) , �̇�Τ (𝑡 − ℎ) , ∫𝑡
𝑡−ℎ

𝑥Τ (𝑠) 𝑑𝑠, ∫𝑡
𝑡−ℎ

∫𝑡
𝑠
𝑥Τ (𝑢) 𝑑𝑢 𝑑𝑠, 𝑥Τ (𝑡 − 𝜏) , �̇�Τ (𝑡 − 𝜏) , ∫𝑡

𝑡−𝜏
𝑥Τ (𝑠) 𝑑𝑠,

∫𝑡
𝑡−𝜏

∫𝑡
𝑠
𝑥Τ (𝑢) 𝑑𝑢 𝑑𝑠] ,

(20)

and 𝑒𝑖 ∈ 𝑅10𝑛×𝑛 (𝑖 = 1, 2, . . . , 10) means the block entry
matrices; for example, 𝑒Τ3 𝜁(𝑡) = 𝑥(𝑡 − ℎ), 𝑒Τ9 𝜁(𝑡) = ∫𝑡𝑡−𝜏 𝑥(𝑠)𝑑𝑠.

Using Lemmas 1 and 2 to four integral terms 𝜉1(𝑡), 𝜉2(𝑡),𝜉3(𝑡), and 𝜉4(𝑡) in (19), we have

−ℎ𝜉1 (𝑡) ≤ −𝜙Τ1,1 (𝑡) 𝐷𝜙1,1 (𝑡) − 3𝜙Τ1,2 (𝑡) 𝐷𝜙1,2 (𝑡) , (21)

−ℎ22 𝜉2 (𝑡) ≤ −𝜙Τ2,1 (𝑡) 𝑇𝜙2,1 (𝑡) − 2𝜙Τ2,2 (𝑡) 𝑇𝜙2,2 (𝑡) , (22)

−𝜏𝜉3 (𝑡) ≤ −𝜙Τ3,1 (𝑡) 𝐷𝜙3,1 (𝑡) − 3𝜙Τ3,2 (𝑡) 𝐷𝜙3,2 (𝑡) , (23)

−𝜏22 𝜉4 (𝑡) ≤ −𝜙Τ4,1 (𝑡) 𝑇𝜙4,1 (𝑡) − 2𝜙Τ4,2 (𝑡) 𝑇𝜙4,2 (𝑡) , (24)

where

𝜑1,1 (𝑡) = ∫𝑡
𝑡−ℎ

V2 (𝑠) 𝑑𝑠 = [[
∫𝑡
𝑡−ℎ

𝑥 (𝑠) 𝑑𝑠
𝑥 (𝑡) − 𝑥 (𝑡 − ℎ)

]
]

= [𝑒5 𝑒1 − 𝑒3]Τ 𝜁 (𝑡) ,
𝜑1,2 (𝑡) = 2ℎ ∫

𝑡

𝑡−ℎ
∫𝑡
𝑠
V2 (𝑢) 𝑑𝑢 𝑑𝑠 − ∫𝑡

𝑡−ℎ
V2 (𝑠) 𝑑𝑠

= [[[
[

2ℎ ∫
𝑡

𝑡−ℎ
∫𝑡
𝑠
𝑥 (𝑢) 𝑑𝑢 𝑑𝑠 − ∫𝑡

𝑡−ℎ
𝑥 (𝑠) 𝑑𝑠

𝑥 (𝑡) + 𝑥 (𝑡 − ℎ) − 2ℎ ∫
𝑡

𝑡−ℎ
𝑥 (𝑠) 𝑑𝑠

]]]
]

= [2ℎ𝑒6 − 𝑒5 𝑒1 + 𝑒3 − 2ℎ𝑒5]
Τ 𝜁 (𝑡) ,

𝜑2,1 (𝑡) = ∫𝑡
𝑡−ℎ

∫𝑡
𝑠
�̇� (𝑢) 𝑑𝑢 𝑑𝑠 = ℎ𝑥 (𝑡) − ∫𝑡

𝑡−ℎ
𝑥 (𝑠) 𝑑𝑠

= (ℎ𝑒1 − 𝑒5)Τ 𝜁 (𝑡) ,
𝜑2,2 (𝑡) = 3ℎ ∫

𝑡

𝑡−ℎ
∫𝑡
𝑠
∫𝑡
𝑢
�̇� (V) 𝑑V 𝑑𝑢 𝑑𝑠

− ∫𝑡
𝑡−ℎ

∫𝑡
𝑠
�̇� (𝑢) 𝑑𝑢 𝑑𝑠

= ℎ2𝑥 (𝑡) + ∫
𝑡

𝑡−ℎ
𝑥 (𝑠) 𝑑𝑠

− 3ℎ ∫
𝑡

𝑡−ℎ
∫𝑡
𝑠
𝑥 (𝑢) 𝑑𝑢 𝑑𝑠

= (ℎ2𝑒1 + 𝑒5 − 3ℎ𝑒6)
Τ 𝜁 (𝑡) ,

𝜑3,1 (𝑡) = ∫𝑡
𝑡−𝜏

V2 (𝑠) 𝑑𝑠 = [[
∫𝑡
𝑡−𝜏

𝑥 (𝑠) 𝑑𝑠
𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏)

]
]

= [𝑒9 𝑒1 − 𝑒7]Τ 𝜁 (𝑡) ,
𝜑3,2 (𝑡) = 2𝜏 ∫

𝑡

𝑡−𝜏
∫𝑡
𝑠
V2 (𝑢) 𝑑𝑢 𝑑𝑠 − ∫𝑡

𝑡−𝜏
V2 (𝑠) 𝑑𝑠

= [[[
[

2𝜏 ∫
𝑡

𝑡−𝜏
∫𝑡
𝑠
𝑥 (𝑢) 𝑑𝑢 𝑑𝑠 − ∫𝑡

𝑡−𝜏
𝑥 (𝑠) 𝑑𝑠

𝑥 (𝑡) + 𝑥 (𝑡 − 𝜏) − 2𝜏 ∫
𝑡

𝑡−𝜏
𝑥 (𝑠) 𝑑𝑠

]]]
]

= [2𝜏𝑒10 − 𝑒9 𝑒1 + 𝑒7 − 2𝜏𝑒9]
Τ 𝜁 (𝑡) ,

𝜑4,1 (𝑡) = ∫𝑡
𝑡−𝜏

∫𝑡
𝑠
�̇� (𝑢) 𝑑𝑢 𝑑𝑠 = 𝜏𝑥 (𝑡) − ∫𝑡

𝑡−𝜏
𝑥 (𝑠) 𝑑𝑠

= (𝜏𝑒1 − 𝑒9)Τ 𝜁 (𝑡) ,
𝜑4,2 (𝑡) = 3𝜏 ∫

𝑡

𝑡−𝜏
∫𝑡
𝑠
∫𝑡
𝑢
�̇� (V) 𝑑V 𝑑𝑢 𝑑𝑠

− ∫𝑡
𝑡−𝜏

∫𝑡
𝑠
�̇� (𝑢) 𝑑𝑢 𝑑𝑠

= 𝜏2𝑥 (𝑡) + ∫
𝑡

𝑡−𝜏
𝑥 (𝑠) 𝑑𝑠

− 3𝜏 ∫
𝑡

𝑡−𝜏
∫𝑡
𝑠
𝑥 (𝑢) 𝑑𝑢 𝑑𝑠

= (𝜏2𝑒1 + 𝑒9 − 3𝜏𝑒10)
Τ 𝜁 (𝑡) .

(25)

Combining (21)–(24), (19) can be rewritten as

�̇� ≤ 𝜁Τ (𝑡) (Ξ0 + Ξ1 + Ξ2,1 + Ξ2,2 + Ξ3 + Ξ4,1 + Ξ4,2)
⋅ 𝜁 (𝑡) = 𝜁Τ (𝑡) Ξ𝜁 (𝑡) , (26)
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where

Ξ1 = − [𝑒5 𝑒1 − 𝑒3]𝐷 [𝑒5 𝑒1 − 𝑒3]Τ − 3 [(2ℎ) 𝑒6 − 𝑒5 𝑒1 + 𝑒3 − (2ℎ) 𝑒5]𝐷[(2ℎ) 𝑒6 − 𝑒5 𝑒1 + 𝑒3 − (2ℎ) 𝑒5]
Τ ,

Ξ2,1 = − [ℎ𝑒1 − 𝑒5] 𝑇 [ℎ𝑒1 − 𝑒5]Τ ,
Ξ2,2 = −2 [(ℎ2) 𝑒1 + 𝑒5 − (3ℎ) 𝑒6]𝑇[(ℎ2) 𝑒1 + 𝑒5 − (3ℎ) 𝑒6]

Τ ,
Ξ3 = − [𝑒9 𝑒1 − 𝑒7]𝐷 [𝑒9 𝑒1 − 𝑒7]Τ − 3 [(2𝜏) 𝑒10 − 𝑒9 𝑒1 + 𝑒7 − (2𝜏) 𝑒9]𝐷[(2𝜏) 𝑒10 − 𝑒9 𝑒1 + 𝑒7 − (2𝜏) 𝑒9]

Τ ,
Ξ4,1 = − [𝜏𝑒1 − 𝑒9] 𝑇 [𝜏𝑒1 − 𝑒9]Τ ,
Ξ4,2 = −2 [(𝜏2) 𝑒1 + 𝑒9 − (3𝜏) 𝑒10]𝑇 [(𝜏2) 𝑒1 + 𝑒9 − (3𝜏) 𝑒10]

Τ ,
Ξ = Ξ0 + Ξ1 + Ξ2,1 + Ξ2,2 + Ξ3 + Ξ4,1 + Ξ4,2.

(27)

Then, a new stability condition for system (9) can be de-
scribed as

𝜁Τ (𝑡) Ξ𝜁 (𝑡) < 0 s.t. Γ (𝜆) 𝜁 (𝑡) = 0, 𝜁 (𝑡) ̸= 0, (28)

where Γ(𝜆) = [𝐴(𝜆) −𝐼 𝐴𝑑(𝜆) 𝐵(𝜆)𝐾(𝜆)] [𝑒1 𝑒2 𝑒3 𝑒7]Τ.
Based on Lemma 3, formula (28) can be rewritten as

Ξ + 𝐿Γ (𝜆) + Γ (𝜆)Τ 𝐿Τ < 0, (29)

where 𝐿 = 𝑎1𝑒1𝐿0 + 𝑒2𝐿0 + 𝑎2𝑒3𝐿0.

Now, let 𝐿0 = 𝑋−Τ and 𝐾(𝜆) = 𝑀(𝜆)𝑋−1. Ap-
plying matrix inequality (29) to the left multiplication
diag[𝑋,𝑋,𝑋,𝑋,𝑋,𝑋,𝑋,𝑋,𝑋,𝑋]Τ and right multiplication
diag[𝑋,𝑋,𝑋,𝑋,𝑋,𝑋,𝑋,𝑋,𝑋,𝑋], we have

Ξ̂ + �̂�Γ̂ (𝜆) + Γ̂ (𝜆)Τ �̂�Τ < 0, (30)

where

Ξ̂0 = sym {[𝑒1 𝑒3 𝑒5 𝑒6 𝑒7 𝑒9 𝑒10] �̂� [𝑒2 𝑒4 𝑒1 − 𝑒3 ℎ𝑒1 − 𝑒5 𝑒8 𝑒1 − 𝑒7 𝜏𝑒1 − 𝑒9]Τ} + [𝑒1 𝑒2] 𝑄 [𝑒1 𝑒2]Τ

− [𝑒3 𝑒4] 𝑄 [𝑒3 𝑒4]Τ + ℎ2 [𝑒1 𝑒2]𝐷 [𝑒1 𝑒2]Τ + (ℎ22 )
2 𝑒2�̂�𝑒2Τ + [𝑒1 𝑒2] �̂� [𝑒1 𝑒2]Τ − [𝑒7 𝑒8] �̂� [𝑒7 𝑒8]Τ

+ 𝜏2 [𝑒1 𝑒2] �̂� [𝑒1 𝑒2]Τ + (𝜏22 )
2 𝑒2�̂�𝑒2Τ,

Ξ̂1 = − [𝑒5 𝑒1 − 𝑒3]𝐷 [𝑒5 𝑒1 − 𝑒3]Τ − 3 [(2ℎ) 𝑒6 − 𝑒5 𝑒1 + 𝑒3 − (2ℎ) 𝑒5]𝐷[(2ℎ) 𝑒6 − 𝑒5 𝑒1 + 𝑒3 − (2ℎ) 𝑒5]
Τ ,

Ξ̂2,1 = − [ℎ𝑒1 − 𝑒5] �̂� [ℎ𝑒1 − 𝑒5]Τ ,
Ξ̂2,2 = −2 [(ℎ2) 𝑒1 + 𝑒5 − (3ℎ) 𝑒6] �̂� [(ℎ2) 𝑒1 + 𝑒5 − (3ℎ) 𝑒6]

Τ ,
Ξ̂3 = − [𝑒9 𝑒1 − 𝑒7] �̂� [𝑒9 𝑒1 − 𝑒7]Τ − 3 [(2𝜏) 𝑒10 − 𝑒9 𝑒1 + 𝑒7 − (2𝜏) 𝑒9] �̂� [(2𝜏) 𝑒10 − 𝑒9 𝑒1 + 𝑒7 − (2𝜏) 𝑒9]

Τ ,
Ξ̂4,1 = − [𝜏𝑒1 − 𝑒9] �̂� [𝜏𝑒1 − 𝑒9]Τ ,
Ξ̂4,2 = −2 [(𝜏2) 𝑒1 + 𝑒9 − (3𝜏) 𝑒10] �̂� [(𝜏2) 𝑒1 + 𝑒9 − (3𝜏) 𝑒10]

Τ ,
Ξ̂ = Ξ̂0 + Ξ̂1 + Ξ̂2,1 + Ξ̂2,2 + Ξ̂3 + Ξ̂4,1 + Ξ̂4,2,
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�̂� = (diag [𝑋,𝑋,𝑋,𝑋,𝑋,𝑋,𝑋]Τ) 𝑃 (diag [𝑋,𝑋,𝑋,𝑋,𝑋,𝑋,𝑋]) ,
𝑄 = (diag [𝑋,𝑋]Τ)𝑄 (diag [𝑋,𝑋]) ,
�̂� = (diag [𝑋,𝑋]Τ)𝑄 (diag [𝑋,𝑋]) ,
𝐷 = (diag [𝑋,𝑋]Τ)𝐷 (diag [𝑋,𝑋]) ,
�̂� = (diag [𝑋,𝑋]Τ)𝐷 (diag [𝑋,𝑋]) ,
�̂� = 𝑋Τ𝑇𝑋,
�̂� = 𝑋Τ𝑇𝑋.

(31)

Since

(diag [𝑋,𝑋,𝑋,𝑋,𝑋,𝑋,𝑋,𝑋,𝑋,𝑋]Τ) 𝐿Γ (𝜆)
⋅ (diag [𝑋,𝑋,𝑋,𝑋,𝑋,𝑋,𝑋,𝑋,𝑋,𝑋]) = (𝑎1𝑒1 + 𝑒2
+ 𝑎2𝑒3) [𝐴 (𝜆)𝑋 −𝑋 𝐴𝑑 (𝜆)𝑋 𝐵 (𝜆)𝑀 (𝜆)] [𝑒1,
𝑒2, 𝑒3, 𝑒7]Τ = �̂�Γ̂ (𝜆) ,

(32)

we have �̂� = 𝑎1𝑒1 + 𝑒2 + 𝑎2𝑒3 and Γ̂(𝜆) =[𝐴(𝜆)𝑋 −𝑋 𝐴𝑑(𝜆)𝑋 𝐵(𝜆)𝑀(𝜆)] [𝑒1, 𝑒2, 𝑒3, 𝑒7]Τ.
Thus, we transform inequality (29) into the form of linear

matrix inequality, which is defined in (14).The whole proof is
completed.

Theorem 4 is dependent on time-varying information 𝜆,
which cannot be computed by LMI. In the following analysis,
our goal is to convert Theorem 4 into LMI.

Theorem 5. Consider the closed-loop system (9) and given
scalars ℎ and 𝜏 to meet ℎ > 0, 𝜏 > 0, the system is
asymptotically stable, if there exist scalars 𝑎1 and 𝑎2, matrices
𝑀𝑗,𝑋, and positive definite symmetric matrices �̂�,𝑄,𝐷, �̂�, �̂�,
�̂�, and �̂�, such that the following LMI holds:

Ξ̂ + �̂�Γ̂ (𝑖, 𝑖) + Γ̂ (𝑖, 𝑖)Τ �̂�Τ < 0, 𝑖 = 1 ⋅ ⋅ ⋅ 𝑟,
Ξ̂ + �̂�Γ̂ (𝑖, 𝑗) + Γ̂ (𝑖, 𝑗)Τ �̂�Τ + Ξ̂ + �̂�Γ̂ (𝑗, 𝑖)

+ Γ̂ (𝑗, 𝑖)Τ �̂�Τ < 0 1 ≤ 𝑖 < 𝑗 ≤ 𝑟,
(33)

where

Ξ̂0 = sym {[𝑒1 𝑒3 𝑒5 𝑒6 𝑒7 𝑒9 𝑒10] �̂� [𝑒2 𝑒4 𝑒1 − 𝑒3 ℎ𝑒1 − 𝑒5 𝑒8 𝑒1 − 𝑒7 𝜏𝑒1 − 𝑒9]Τ} + [𝑒1 𝑒2] 𝑄 [𝑒1 𝑒2]Τ

− [𝑒3 𝑒4] 𝑄 [𝑒3 𝑒4]Τ + ℎ2 [𝑒1 𝑒2]𝐷 [𝑒1 𝑒2]Τ + (ℎ22 )
2 𝑒2�̂�𝑒2Τ + [𝑒1 𝑒2] �̂� [𝑒1 𝑒2]Τ − [𝑒7 𝑒8] �̂� [𝑒7 𝑒8]Τ

+ 𝜏2 [𝑒1 𝑒2] �̂� [𝑒1 𝑒2]Τ + (𝜏22 )
2 𝑒2�̂�𝑒2Τ,

Ξ̂1 = − [𝑒5 𝑒1 − 𝑒3]𝐷 [𝑒5 𝑒1 − 𝑒3]Τ − 3 [(2ℎ) 𝑒6 − 𝑒5 𝑒1 + 𝑒3 − (2ℎ) 𝑒5]𝐷[(2ℎ) 𝑒6 − 𝑒5 𝑒1 + 𝑒3 − (2ℎ) 𝑒5]
Τ ,

Ξ̂2,1 = − [ℎ𝑒1 − 𝑒5] �̂� [ℎ𝑒1 − 𝑒5]Τ ,
Ξ̂2,2 = −2 [(ℎ2) 𝑒1 + 𝑒5 − (3ℎ) 𝑒6] �̂� [(ℎ2) 𝑒1 + 𝑒5 − (3ℎ) 𝑒6]

Τ ,
Ξ̂3 = − [𝑒9 𝑒1 − 𝑒7] �̂� [𝑒9 𝑒1 − 𝑒7]Τ − 3 [(2𝜏) 𝑒10 − 𝑒9 𝑒1 + 𝑒7 − (2𝜏) 𝑒9] �̂� [(2𝜏) 𝑒10 − 𝑒9 𝑒1 + 𝑒7 − (2𝜏) 𝑒9]

Τ ,
Ξ̂4,1 = − [𝜏𝑒1 − 𝑒9] �̂� [𝜏𝑒1 − 𝑒9]Τ ,
Ξ̂4,2 = −2 [(𝜏2) 𝑒1 + 𝑒9 − (3𝜏) 𝑒10] �̂� [(𝜏2) 𝑒1 + 𝑒9 − (3𝜏) 𝑒10]

Τ ,
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Ξ̂ = Ξ̂0 + Ξ̂1 + Ξ̂2,1 + Ξ̂2,2 + Ξ̂3 + Ξ̂4,1 + Ξ̂4,2,
�̂� = 𝑎1𝑒1 + 𝑒2 + 𝑎2𝑒3,
Γ̂ (𝑖, 𝑗) = [𝐴 𝑖𝑋 −𝑋 𝐴𝑑𝑖𝑋 𝐵𝑖𝑀𝑗] [𝑒1, 𝑒2, 𝑒3, 𝑒7]Τ .

(34)

In addition, the gain matrix of state feedback controller can be
described as

𝐾𝑗 = 𝑀𝑗𝑋−1. (35)

Proof. Consider the following forms and substitute them into
inequality (14):

𝐴 (𝜆) = 𝑟∑
𝑖=1

𝜆𝑖 (𝜃 (𝑡)) 𝐴 𝑖,

𝐴𝑑 (𝜆) =
𝑟∑
𝑖=1

𝜆𝑖 (𝜃 (𝑡)) 𝐴𝑑𝑖,

𝐵 (𝜆) = 𝑟∑
𝑖=1

𝜆𝑖 (𝜃 (𝑡)) 𝐵𝑖,

𝑀 (𝜆) = 𝑟∑
𝑖=1

𝜆𝑖 (𝜃 (𝑡))𝑀𝑖.

(36)

Thus, inequality (14) can be rewritten as

𝑟∑
𝑖=1

𝑟∑
𝑗=1

𝜆𝑖 (𝜃 (𝑡)) 𝜆𝑗 (𝜃 (𝑡)) (Ξ̂ + �̂�Γ̂ (𝑖, 𝑗) + Γ̂ (𝑖, 𝑗)Τ �̂�Τ)
< 0,

(37)

where Γ̂(𝑖, 𝑗) = [𝐴 𝑖𝑋 −𝑋 𝐴𝑑𝑖𝑋 𝐵𝑖𝑀𝑗] [𝑒1, 𝑒2, 𝑒3, 𝑒7]Τ.
Now we can rewrite (37) as

𝑟∑
𝑖=1

𝜆2𝑖 (𝜃 (𝑡)) (Ξ̂ + �̂�Γ̂ (𝑖, 𝑖) + Γ̂ (𝑖, 𝑖)Τ �̂�Τ)

+ 𝑟∑
𝑖=1

𝑟∑
𝑖<𝑗

𝜆𝑖 (𝜃 (𝑡)) 𝜆𝑗 (𝜃 (𝑡)) × (Ξ̂ + �̂�Γ̂ (𝑖, 𝑗)
+ Γ̂ (𝑖, 𝑗)Τ �̂�Τ + Ξ̂ + �̂�Γ̂ (𝑗, 𝑖) + Γ̂ (𝑗, 𝑖)Τ �̂�Τ) < 0.

(38)

Thus, we can get the following linear matrix inequality:

Ξ̂ + �̂�Γ̂ (𝑖, 𝑖) + Γ̂ (𝑖, 𝑖)Τ �̂�Τ < 0, 𝑖 = 1 ⋅ ⋅ ⋅ 𝑟,
Ξ̂ + �̂�Γ̂ (𝑖, 𝑗) + Γ̂ (𝑖, 𝑗)Τ �̂�Τ + Ξ̂ + �̂�Γ̂ (𝑗, 𝑖)

+ Γ̂ (𝑗, 𝑖)Τ �̂�Τ < 0 1 ≤ 𝑖 < 𝑗 ≤ 𝑟.
(39)

The whole proof is completed.

Remark 6. T-S fuzzy time-delay systems have been widely
studied in previous papers. However, the existing literature
only considers one delay factor, for example, state delay or
input delay. Currently, a few results are presented for T-S
fuzzy system with state and input delays. Unlike the existing
results, a new Lyapunov-Krasovskii functional including
triple integral terms is employed to derive less conservative
stability conditions. In the next section, some simulation
examples will be provided to illustrate the effectiveness of the
proposed method.

In order to show the effectiveness of the Lyapunov-Kra-
sovskii functional with triple integral terms and Wirtinger-
based double integral inequality, we use the Lyapunov-
Krasovskii functional of (17) without triple integral terms
to derive new stabilization conditions. Now we give the
following corollary.

Corollary 7. Consider the closed-loop system (9) and given
scalars ℎ and 𝜏 to meet ℎ > 0, 𝜏 > 0, the system is
asymptotically stable, if there exist scalars 𝑎1 and 𝑎2, matrices
𝑀𝑗,𝑋, and positive definite symmetric matrices �̂�,𝑄,𝐷, �̂�, �̂�,
such that the following LMI holds:

Ξ̂ + �̂�Γ̂ (𝑖, 𝑖) + Γ̂ (𝑖, 𝑖)Τ �̂�Τ < 0, 𝑖 = 1 ⋅ ⋅ ⋅ 𝑟,
Ξ̂ + �̂�Γ̂ (𝑖, 𝑗) + Γ̂ (𝑖, 𝑗)Τ �̂�Τ + Ξ̂ + �̂�Γ̂ (𝑗, 𝑖)

+ Γ̂ (𝑗, 𝑖)Τ �̂�Τ < 0 1 ≤ 𝑖 < 𝑗 ≤ 𝑟,
(40)

where

Ξ̂0 = sym {[𝑒1 𝑒3 𝑒5 𝑒6 𝑒7 𝑒9 𝑒10] �̂� [𝑒2 𝑒4 𝑒1 − 𝑒3 ℎ𝑒1 − 𝑒5 𝑒8 𝑒1 − 𝑒7 𝜏𝑒1 − 𝑒9]Τ} + [𝑒1 𝑒2] 𝑄 [𝑒1 𝑒2]Τ
− [𝑒3 𝑒4] 𝑄 [𝑒3 𝑒4]Τ + ℎ2 [𝑒1 𝑒2]𝐷 [𝑒1 𝑒2]Τ + [𝑒1 𝑒2] �̂� [𝑒1 𝑒2]Τ − [𝑒7 𝑒8] �̂� [𝑒7 𝑒8]Τ + 𝜏2 [𝑒1 𝑒2] �̂� [𝑒1 𝑒2]Τ ,

Ξ̂1 = − [𝑒5 𝑒1 − 𝑒3]𝐷 [𝑒5 𝑒1 − 𝑒3]Τ − 3 [(2ℎ) 𝑒6 − 𝑒5 𝑒1 + 𝑒3 − (2ℎ) 𝑒5]𝐷[(2ℎ) 𝑒6 − 𝑒5 𝑒1 + 𝑒3 − (2ℎ) 𝑒5]
Τ ,

Ξ̂3 = − [𝑒9 𝑒1 − 𝑒7] �̂� [𝑒9 𝑒1 − 𝑒7]Τ − 3 [(2𝜏) 𝑒10 − 𝑒9 𝑒1 + 𝑒7 − (2𝜏) 𝑒9] �̂� [(2𝜏) 𝑒10 − 𝑒9 𝑒1 + 𝑒7 − (2𝜏) 𝑒9]
Τ ,

Ξ̂ = Ξ̂0 + Ξ̂1 + Ξ̂3,
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�̂� = 𝑎1𝑒1 + 𝑒2 + 𝑎2𝑒3,
Γ̂ (𝑖, 𝑗) = [𝐴 𝑖𝑋 −𝑋 𝐴𝑑𝑖𝑋 𝐵𝑖𝑀𝑗] [𝑒1, 𝑒2, 𝑒3, 𝑒7]Τ .

(41)

In addition, the gain matrix of state feedback controller can be
described as

𝐾𝑗 = 𝑀𝑗𝑋−1. (42)

4. Numerical Examples

In this section, we provide three numerical examples to illus-
trate the effectiveness of the stabilization criteria developed
by this paper. The first examples show the improvement
of our results. The second and third examples are used to
demonstrate the effectiveness of the controller design.

Example 1. Consider a two-rule T-S fuzzy system (2). The
system matrices are given as follows:

𝐴1 = [0 1
1 −2] ,

𝐴2 = [1 0
1 −2] ,

𝐵1 = 𝐵2 = [10] ,

𝐴𝑑1 = [0 0
0 0] ,

𝐴𝑑2 = [0 0
0 0] .

(43)

In this example, only input delay is considered. When the
parameters are defined as 𝑎1 = 𝑎2 = 0.1, the maximum input
delay and the corresponding gain matrix of the system are
obtained by Theorem 5. Meanwhile, the proposed method
is compared with that in [42], as shown in Table 1. Clearly,
the method of Theorem 5 is more superior than the existing
results. Moreover, we cannot find feasible solution by Corol-
lary 7. Therefore, the Lyapunov-Krasovskii functional with
triple integral terms and Wirtinger-based double integral
inequality are important to reduce the conservativeness of
stability analysis for T-S fuzzy systems with state and input
delays.

Example 2. Consider the following complex nonlinear con-
tinuous-time system studied in [43]:

�̇�1 (𝑡) = 𝑥1 (𝑡) + 𝑥2 (𝑡) + sin 𝑥3 (𝑡) − 0.1𝑥4 (𝑡)
+ (𝑥21 (𝑡) + 1) 𝑢 (𝑡) ,

�̇�2 (𝑡) = 𝑥1 (𝑡) − 2𝑥2 (𝑡) ,

�̇�3 (𝑡) = 𝑥1 (𝑡) + 𝑥21 (𝑡) 𝑥2 (𝑡) − 0.3𝑥3 (𝑡) ,
�̇�4 (𝑡) = sin 𝑥3 (𝑡) − 𝑥4 (𝑡) ,
𝑦1 (𝑡) = 𝑥2 (𝑡) + (𝑥21 (𝑡) + 1) 𝑥4 (𝑡) ,
𝑦2 (𝑡) = 𝑥1 (𝑡) ,

(44)

where 𝑎 and 𝑏 are positive numbers, and assume 𝑥1(𝑡) ∈[−𝑎, 𝑎], 𝑥3(𝑡) ∈ [−𝑏, 𝑏].
The nonlinear system is exactly represented by the follow-

ing T-S fuzzy model.

Plant Rule 1. If 𝑥1(𝑡) is𝑀11 and 𝑥3(𝑡) is𝑀13 , then
�̇� (𝑡) = 𝐴1𝑥 (𝑡) + 𝐵1𝑢 (𝑡)
𝑦 (𝑡) = 𝐶1𝑥 (𝑡) . (45)

Plant Rule 2. If 𝑥1(𝑡) is𝑀11 and 𝑥3(𝑡) is𝑀23 , then
�̇� (𝑡) = 𝐴2𝑥 (𝑡) + 𝐵2𝑢 (𝑡)
𝑦 (𝑡) = 𝐶2𝑥 (𝑡) . (46)

Plant Rule 3. If 𝑥1(𝑡) is𝑀21 and 𝑥3(𝑡) is𝑀13 , then
�̇� (𝑡) = 𝐴3𝑥 (𝑡) + 𝐵3𝑢 (𝑡)
𝑦 (𝑡) = 𝐶3𝑥 (𝑡) . (47)

Plant Rule 4. If 𝑥1(𝑡) is𝑀21 and 𝑥3(𝑡) is𝑀23 , then
�̇� (𝑡) = 𝐴4𝑥 (𝑡) + 𝐵4𝑢 (𝑡)
𝑦 (𝑡) = 𝐶4𝑥 (𝑡) , (48)

where

𝐴1 =
[[[[[
[

1 1 1 −0.1
1 −2 0 0
1 𝑎2 −0.3 0
0 0 1 −1

]]]]]
]
,



10 Mathematical Problems in Engineering

Table 1: Maximum allowable time delay and feedback gains.

Literature 𝜏 Feedback gains

[42] 0.5953
𝐾1 = (−0.9379 −0.6779)
𝐾2 = (−0.8903 −0.2171)

Theorem 5 0.9799
𝐾1 = (−0.0030 −1.0151)
𝐾2 = (−1.0094 0.0171)

𝐴2 =
[[[[[[[[
[

1 1 (sin 𝑏)𝑏 −0.1
1 −2 0 0
1 𝑎2 −0.3 0
0 0 (sin 𝑏)𝑏 −1

]]]]]]]]
]

,

𝐴3 =
[[[[[
[

1 1 1 −0.1
1 −2 0 0
1 0 −0.3 0
0 0 1 −1

]]]]]
]
,

𝐴4 =
[[[[[[[[
[

1 1 (sin 𝑏)𝑏 −0.1
1 −2 0 0
1 0 −0.3 0
0 0 (sin 𝑏)𝑏 −1

]]]]]]]]
]

,

𝐵1 = 𝐵2 =
[[[[[
[

1 + 𝑎2
0
0
0

]]]]]
]
,

𝐵3 = 𝐵4 =
[[[[[
[

1
0
0
0

]]]]]
]
.

(49)

To verify the effectiveness of the proposed method, the
other system matrices are given as

𝐴𝑑1 = 𝐴𝑑2 =
[[[[[
[

0.1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

]]]]]
]
,

𝐴𝑑3 = 𝐴𝑑4 =
[[[[[
[

0.1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

]]]]]
]
.

(50)

In particular, assuming 𝑎 = 1.4 and 𝑏 = 0.7 and setting
parameters 𝑎1 = 1 and 𝑎2 = 0.01, we can get the maximum
allowable delays of input and state as ℎmax = 68 and 𝜏max =0.277, respectively. However, we cannot find feasible solution
by Corollary 7. According to Theorem 5, taking ℎ = 10 and𝜏 = 0.27, we have the following feedback gains:

𝐾1 = [−0.7593 −0.3889 −0.3436 0.0275] ,
𝐾2 = [−0.7391 −0.3767 −0.3174 0.0265] ,
𝐾3 = [−1.9484 −0.5514 −0.8764 0.0701] ,
𝐾4 = [−1.9354 −0.5713 −0.8440 0.0692] .

(51)

For simulation, we choose

𝜆1 (𝜃 (𝑡)) = 𝑀11𝑀13 ,
𝜆2 (𝜃 (𝑡)) = 𝑀11𝑀23 ,
𝜆3 (𝜃 (𝑡)) = 𝑀21𝑀13 ,
𝜆4 (𝜃 (𝑡)) = 𝑀21𝑀23 ,

(52)

where the premise membership functions are as follows:

𝑀11 = 𝑥21𝑎2 ,
𝑀21 = 1 −𝑀11 ,
𝑀13 = {{{

𝑏 sin𝑥3 − 𝑥3 sin 𝑏𝑥3 (𝑏 − sin 𝑏) , 𝑥3 ̸= 0
1, 𝑥3 = 0,

𝑀23 = 1 −𝑀13 .

(53)

Suppose the initial condition𝜑Τ(𝑡)=[−1.2 0.5 0.7 −0.6]Τ,ℎ = 10, and 𝜏 = 0.27; the state responses of the closed-
loop control system are shown in Figure 1. From Figure 1, the
proposed state feedback controller can stabilize the original
nonlinear system with input and state delays.

Example 3. Consider the followingT-S fuzzy systemwith two
rules [39].The systemmatrix parameters are given as follows:

𝐴1 =
[[[[[[[[[
[

−𝑎 V𝑡𝐿𝑡0 0 0
𝑎 V𝑡𝐿𝑡0 0 0
−𝑎 V2𝑡22𝐿𝑡0

V𝑡𝑡0 0

]]]]]]]]]
]

,
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Figure 1: State responses of the closed-loop system for Example 2.

𝐴2 =
[[[[[[[[[[
[

−𝑎 V𝑡𝐿𝑡0 0 0
𝑎 V𝑡𝐿𝑡0 0 0

−𝑎𝑑 V2𝑡22𝐿𝑡0
𝑑V𝑡𝑡0 0

]]]]]]]]]]
]

,

𝐵1 =
[[[[[
[

V𝑡𝑙𝑡0
0
0

]]]]]
]
,

𝐵2 =
[[[[[
[

V𝑡𝑙𝑡0
0
0

]]]]]
]
,

𝐴𝑑1 =
[[[[[[[[[
[

− (1 − 𝑎) V𝑡𝐿𝑡0 0 0
(1 − 𝑎) V𝑡𝐿𝑡0 0 0
(1 − 𝑎) V2𝑡22𝐿𝑡0 0 0

]]]]]]]]]
]

,

𝐴𝑑2 =
[[[[[[[[[[
[

− (1 − 𝑎) V𝑡𝐿𝑡0 0 0
(1 − 𝑎) V𝑡𝐿𝑡0 0 0
(1 − 𝑎) 𝑑V2𝑡22𝐿𝑡0 0 0

]]]]]]]]]]
]

,

(54)

where 𝑙 = 2.8, 𝐿 = 5.5, V = −1.0, 𝑡 = 2.0, 𝑡0 = 0.5, 𝑑 = 10𝑡0/𝜋,𝑎 = 0.7.
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Figure 2: State responses of the closed-loop system for Example 3.

This example is taken from [39], which describes a T-
S fuzzy system with state and input delay. In the following
analysis, we give the comparison between our method and
that proposed by [39]. By the method given in [39], the maxi-
mum allowable upper-bound of the time-delays is computed
as ℎ = 𝜏 = 0.167.

Then, setting parameters 𝑎1 = 1 and 𝑎2 = 0.01, according
to Theorem 5 in our paper, the maximum allowable upper-
bounds of input and state delays are, respectively, computed
as ℎmax = 12.7 and 𝜏max = 0.925. Thus, the proposed method
obtains less conservative results than that in [39].

Now, for simulation, we set the premise membership
function as follows:

𝜆1 (𝜃 (𝑡)) = 1
1 + exp (𝑥1 + 0.5) ,

𝜆2 (𝜃 (𝑡)) = 1 − 𝜆1 (𝜃 (𝑡)) .
(55)

Taking ℎ = 12 and 𝜏 = 0.85, and applying Theorem 5, we
can obtain the feedback gain matrices as follows:

𝐾1 = [0.6571 −0.0459 0.0002] ,
𝐾2 = [0.6576 −0.0469 0.0002] . (56)

Figure 2 shows the state responses of the closed-loop
system under the initial condition 𝜑Τ(𝑡) = [4 −1 2]Τ. From
Figure 2, it can be seen that the proposed state feedback
controller can stabilize the original T-S fuzzy system with
input and state delays.

5. Conclusion

The stabilization problem of nonlinear systems with state
and input delays is investigated via T-S fuzzy model in this
paper. By choosing an appropriate Lyapunov functional, new
delay-dependent stabilization criteria are established. Using
Wirtinger-based double integral inequality, the proposed
stabilization conditions are presented in the form of LMI.
The largest allowable input and state delays calculated by the
proposed conditions are obviously better than the existing
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results. Several examples are provided to demonstrate the
effectiveness and superiority of the proposed method.
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