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An algorithm based on pulse-coupled neural network (PCNN) constructed in the Tetrolet transform domain is proposed for the
fusion of the visible and passive millimeter wave images in order to effectively identify concealed targets. The Tetrolet transform
is applied to build the framework of the multiscale decomposition due to its high sparse degree. Meanwhile, a Laplacian pyramid
is used to decompose the low-pass band of the Tetrolet transform for improving the approximation performance. In addition, the
maximum criterion based on regional average gradient is applied to fuse the top layers along with selecting the maximum absolute
values of the other layers. Furthermore, an improved PCNNmodel is employed to enhance the contour feature of the hidden targets
and obtain the fusion results of the high-pass band based on the firing time. Finally, the inverse transform of Tetrolet is exploited
to obtain the fused results. Some objective evaluation indexes, such as information entropy, mutual information, and 𝑄𝐴𝐵/𝐹, are
adopted for evaluating the quality of the fused images. The experimental results show that the proposed algorithm is superior to
other image fusion algorithms.

1. Introduction

Both the active mode and passive mode are used to detect
concealed objects. The active detection mode usually relies
on strong penetrability of special ray. It (i.e., the irreversible
radiation) is easy to damage the testing material and human
health. On the contrary, the passive detection mode plays
an important role in the field of threat precaution due to
its security. It depends on the spectral radiation difference
between the interesting targets and surrounding for recog-
nizing the concealed objects. For example, a metal gun is
hidden in the abdomen of a man shown in Figure 1, which
is labeled for explaining a passive imaging scene. When the
man passes through a passive millimeter wave (PMMW)
system, the gun should reflect brightness temperature of cold
air in millimeter wavelength. Meanwhile, some completely
different pixels are generated for describing the information

of brightness temperature in PMMW images, which lead to
an obvious diversity between the gun and human body. The
PMMW imaging produces an interpretable imagery without
irradiating the targets. It has the capability to penetrate
through the low-visibility conditions and some obstacles such
as textile materials [1].Therefore, the concealed objects under
clothing can be identified by the PMMW imaging system
reasonably. The target characteristic forming in the PMMW
images is different from surroundings, which leads to an
automated target detection [2].

The radiometer array captures radiated energy restricted
by the antenna aperture. Every pixel of the PMMW images
actually reflects a weighted average of regional radiation in
millimeter wave (MMW) band. The low resolution images
are usually obtained due to the diffraction limit and the
low signal level. Meanwhile, the sensitivity of the sensor
and environmental radiation are the key factors of affecting
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Figure 1: The schematic diagram of the PMMW imaging.

feature expression about the concealed objects. As a result,
the imaging quality is insufficient for supporting the follow-
up task such as target recognition and localization.There is an
inevitable limitation for detecting the concealed targets based
on any type of sensors or methods. Additionally, the visible
image has good readability and rich details of scene with
the defect of exploring the concealed objects. The infrared
sensor is used to obtain thermal radiation information of the
hidden targets, which is inferior to the PMMW sensor when
detecting the metal objects [2]. The multisource information
fusion has maintained a strong vitality for obtaining multiple
dimensions information about the interesting targets under
any complex viewing conditions. It is effective for improving
the validity and accuracy of recognizing the concealed objects
with the comprehensive description of a scene. The fused
results integrate complementary and redundant information
from source images and obtain a more sufficient description
of the targets than any single source images [3]. Song et
al. [4] proposed a novel region-based algorithm based on
Expectation-Maximization (EM) algorithm and Normalized
Cut (Ncut) algorithm. A region growing algorithm is used to
extract the potential target regions, and a statistical model
with Gaussian mixture distortion is applied for producing
the fusion image. Xiong et al. [5] proposed a novel algorithm
based on clustering andnonsubsampled contourlet transform
(NSCT). The fusion image is obtained by taking the inverse
NSCT of the fusion coefficients. These fusion algorithms are
more meaningful for obtaining the concealed information.

The fused images contain much more comprehensive
and accurate information than a single image. This is widely
exploited in the field of military, medical science, remote
sensing, and machine vision [9]. Particularly, the multiscale
transforms are usually applied to achieve sparse representa-
tion of source images. The final images are obtained through
fusion in accordance with certain rules. There are several
types of the multiscale transform, such as discrete wavelet
transform (DWT) [10], Curvelet transform (CT) [11], NSCT,
and Tetrolet transform (TT) [12, 13]. The DWT is suitable for
dealing with singular signal with the limitation of describing
linear signal, and the CT is suitable for approximating the
closed curve. The NSCT not only inherits the anisotropy
of the CT but also expands multidirection and translation
invariance. The TT executes sparse decomposition of source
images due to its excellent capability of multiscale geometry
analysis. Krommweh firstly proved that the TT is better
than the DWT, CT, and NSCT when describing geometric

structure characteristics [13]. Shi et al. presented a hybrid
method for image approximation using the TT and wavelet
[14]. The core of the algorithm is the further sparse rep-
resentation of the low-pass band in the TT domain. After
that, some scholars began to explore the possibility of intro-
ducing the TT into multisource image fusion. For example,
Huang et al. proposed different rules for the low and high-
pass coefficients. The local region gradient information was
applied to get the low-pass fusion coefficients. And the larger
region edge informationmeasurement factor is used to select
the better coefficients for fusion [15]. Shen et al. proposed
an improved algorithm based on the TT for fusing the
infrared and visible images [16]. An optimization algorithm
named compressive sampling matching pursuit (referred to
as CoSaMP) is used to determine the fusion coefficients. The
PMMW images contain relatively less information due to the
detecting principles. The CoSaMP algorithm usually causes
certain loss of useful information. Yan et al. introduced a
regional gradient into the fusion process in the TT domain
[17]. The fused results are better than those algorithms based
on the wavelet transform and principal component analysis
(PCA) methods. However, the low-frequency coefficients of
the TT contain a small amount of details such as edge and
corner feature. If these details are neglected, the fused results
always lost a lot of targets’ contours. Zhang et al. proposed
a Laplacian pyramid for decomposing the low-frequency
portion of the TT and proved that the Laplacian pyramid
is conducive to improve the capability of describing details
[18]. The result shows that the proposed algorithm performs
well when fusing multichannel satellite cloud images. If the
source images have similar structural characteristics, this
method has good performance when preserving image edge
and curvature geometric structure. However, due to the
characteristic difference between the visible and PMMW
images, the contour features of the concealed objects can be
submerged in the background easily.

The pulse-coupled neural network (PCNN) is known as
the third-generation neural network developed by Eckhorn et
al. in 1990. It was founded on the experimental observations
of synchronous pulse bursts in cat and monkey visual cortex
[19]. Although PCNN achieves excellent results, the PCNN-
based fusion methods are complex and inefficient for dealing
with different source images. Wang et al. illustrated that
the amount of the channels of the PCNN and parameters
limits its application [20]. Many researchers have improved
the original PCNN model for making it more appropriate
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Figure 2: The five kinds of tetrominoes.

for image fusion. For example, Deng and Ma proposed
an improved PCNN model and implemented the initial
parameters based on the max gray of normalized source
images [21]. Chenhui and Jianying [22] decomposed the
visible and PMMW images in themultibandwavelet domain.
The fusion ruler for low-frequency coefficients is based on
local variance, and the high-frequency coefficients are based
on the adaptive PCNN. Xiong et al. [23] adopted the CT
transform for obtaining the coefficients at different scales.The
potential target regions of the PMMW image is conducive to
determine the fusion coefficients, which takes advantage of
the particular ability of the PMMWimage in presentingmetal
target. So the fusion coefficients are determined by the feature
of PMMW image based on the region growing algorithm,
and the improved PCNN is selected for the fine scale,
which enhances the performance of fusion for integrating
the important information of the visible and PMMW image.
However, the result of the region growing is restricted by
three major factors such as an initial growth point, a growth
criteria, and a terminating condition, which directly affected
the success rate of the potential target extraction.

In this work, we adopted a generic framework for the
fusion of the source image instead of extracting the target
region of the PMMW image. Both the TT and the improved
PCNN are applied for fusing the visible and PMMW images
with different rules.Meanwhile, the PCNN is used to enhance
the clarity and contrast of the hidden targets. The rest of this
paper is organized as follows. The principles of the TT and
the PCNN are illustrated in Section 2. The proposed fusion
method is described in Section 3. The results and analysis
of experiments are shown in Section 4. Finally, Section 5
concludes the work.

2. The Theory of the TT and PCNN

2.1. The Theory of the TT. The TT possesses smaller support
domain and avoids the Gibbs phenomenon at the edge of
images. Five basic structures of the TT are shown in Figure 2.

Suppose a source image is expressed as 𝑎0 = (𝑎[𝑖, 𝑗])𝑁−1𝑖,𝑗=0,
𝑁 = 2𝐽 (𝐽 ∈ 𝑁). The decomposition process of the TT is
shown as follows:

(I) Primary Decomposition. The low-pass image 𝑎𝑟−1 is
divided into several blocks 𝑄𝑖,𝑗, 𝑖, 𝑗 = 0, . . . , 𝑁/4𝑟 − 1.
(II) Tetrominoes Selection. The low-pass coefficients are
defined as

𝑎𝑟,(𝑐) = (𝑎𝑟,(𝑐) [𝑠])3
𝑠=0
,

𝑎𝑟,(𝑐) [𝑠] = ∑
(𝑚,𝑛)∈𝐼(𝑐)𝑠

𝜀 [0, 𝐿 (𝑚, 𝑛)] 𝑎𝑟−1 [𝑚, 𝑛] (1)

and then the three high-pass coefficients for 𝑙 = 1, 2, 3 are
given by

𝑤𝑟,(𝑐)𝑙 = (𝑤𝑟,(𝑐)𝑙 [𝑠])3
𝑠=0
,

𝑤𝑟,(𝑐)𝑙 [𝑠] = ∑
(𝑚,𝑛)∈𝐼(𝑐)𝑠𝑠

𝜀 [𝑙, 𝐿 (𝑚, 𝑛)] 𝑎𝑟−1 [𝑚, 𝑛] . (2)

Thus the covering 𝑐∗ is
𝑐∗ = argmin

𝑐

3∑
𝑙=1

𝑤𝑟,(𝑐)𝑙 𝑙 = argmin
𝑐

3∑
𝑙=1

3∑
𝑠=0

𝑤𝑟,(𝑐)𝑙 [𝑠] . (3)

An optimal Tetrolet decomposition in the first phase is
[𝑎𝑟,(𝑐∗), 𝑤𝑟,(𝑐∗)1 , 𝑤𝑟,(𝑐∗)2 , 𝑤𝑟,(𝑐∗)3 ].
(III) Rearranging Coefficients. The low-frequency coefficients
of each block are retranslated into 2 × 2 blocks. Then steps
(I) and (II) are repeated for sparse representation.

(IV) Image Reconstruction. The fused image is reconstructed
based on the low-pass, high-pass coefficients, and the corre-
sponding coverings.

The flow chart of the TT is shown in Figure 3.

2.2.TheTheory of the PCNN. Theneuronmodel of the PCNN
is described as follows [20]:

𝐹𝑖,𝑗 (𝑛) = exp (−𝛼𝐹) 𝐹𝑖,𝑗 (𝑛 − 1)
+ 𝑉𝐹∑𝑤𝑖,𝑗,𝑘,𝑙𝑌𝑖,𝑗 (𝑛 − 1) + 𝑆𝑖𝑗,

𝐿 𝑖,𝑗 (𝑛) = exp (−𝛼𝐿) 𝐿 𝑖,𝑗 (𝑛 − 1)
+ 𝑉𝐿∑𝑀𝑖,𝑗,𝑘,𝑙𝑌𝑖,𝑗 (𝑛 − 1) ,

𝑈𝑖𝑗 (𝑛) = 𝐹𝑖𝑗 (𝑛) (1 + 𝛽𝐿 𝑖𝑗 (𝑛)) ,
𝑌𝑖,𝑗 (𝑛) = 1, if 𝑈𝑖,𝑗 (𝑛) > 𝑇𝑖𝑗 (𝑛)
𝑌𝑖,𝑗 (𝑛) = 0, otherwise

𝑇𝑖,𝑗 (𝑛) = exp (−𝛼𝑇) 𝑇𝑖,𝑗 (𝑛 − 1) + 𝑉𝑇∑𝑌𝑖,𝑗 (𝑛) ,

(4)

where 𝑆𝑖𝑗 and 𝐹𝑖,𝑗(𝑛) denote the external input stimulus and
the feedback of𝑁(𝑖, 𝑗), respectively, 𝑈𝑖,𝑗(𝑛) and 𝑇𝑖,𝑗(𝑛) repre-
sent the internal activity of neuron and the dynamic thresh-
old, respectively, and 𝐿 𝑖,𝑗(𝑛) is the linking item. 𝑌𝑖,𝑗(𝑛) ∈[0, 1] denotes the pulse output of 𝑁(𝑖, 𝑗). 𝑀𝑖,𝑗,𝑘,𝑙 and 𝑤𝑖,𝑗,𝑘,𝑙
denote the relationship between the current neuron and the
surrounding neurons, respectively; 𝛽 is the linking strength
or linking coefficient; 𝛼𝐹, 𝛼𝐿, and 𝛼𝑇 are the attenuation
time constants; 𝑉𝐹, 𝑉𝐿, and 𝑉𝑇 denote the inherent voltage
potential of 𝐹𝑖,𝑗(𝑛), 𝐿 𝑖,𝑗(𝑛), and 𝑇𝑖,𝑗(𝑛), respectively.
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Figure 3: The diagram of the TT.

The complexity limits the application of the PCNN
in the field of image fusion. Most of the parameters are
difficult to set up due to the change of source images. These
parameters are commonly adjusted by a lot of experiments
and experience. The PCNN relies on sync pulse distribution
phenomenon for giving rise to pixel change. Because the
mathematics coupled characteristic of the PCNN itself has an
overwritten effect on biological characteristics, the improved
PCNN and parameters setting basis are used to eliminate
the coupled characteristic [21]. We adopted the optimization
model for fusing the high-pass coefficients. Thereby the
improved model is given by

𝐹𝑖,𝑗 (𝑛) = 𝑆𝑖𝑗,
𝑈𝑖𝑗 (𝑛) = 𝐹𝑖𝑗 (𝑛) [𝐷 + 𝐷∑𝑀𝑖,𝑗,𝑘,𝑙𝑌𝑖,𝑗 (𝑛 − 1)] ,
𝑌𝑖,𝑗 (𝑛) = 𝜀 [𝑈𝑖,𝑗 (𝑛) − 𝑇𝑖𝑗 (𝑛)] ,
𝑇𝑖,𝑗 (𝑛) = exp (−𝛼𝑇) 𝑇𝑖,𝑗 (𝑛 − 1) + 𝑉𝑇∑𝑌𝑖,𝑗 (𝑛 − 1) ,

(5)

where 𝐷 is the normalized parameter for finishing the weak
coupling connection. The spatial frequency (SF) is fit for
motivating the PCNN directly [6]. It reflects the gradient
features of images in transform domain, which is considered
an effective external input stimulus of the PCNN. Let 𝜓𝑖,𝑗,𝑘,𝑙
represent the coefficients located at (𝑖, 𝑗) in the 𝑘th subbands
at the 𝑙th decomposition level. These parameters are

𝑆𝑖𝑗 = ∑
𝑖,𝑗∈[3,3]

(𝜓𝑖,𝑗,𝑘,𝑙 − 𝜓𝑖−1,𝑗,𝑘,𝑙)2 + (𝜓𝑖,𝑗,𝑘,𝑙 − 𝜓𝑖,𝑗−1,𝑘,𝑙)2 , (6)

𝑀 =
[[[[[[[
[

0.5
𝐷

1
𝐷

0.5
𝐷

1
𝐷 1 1

𝐷
0.5
𝐷

1
𝐷

0.5
𝐷

]]]]]]]
]

, (7)

where 𝑆𝑖𝑗 denotes the spatial frequency of high-pass domain;𝑆max is the max gray of normalized source images. Let = 25 ∗𝑆max, 𝑉𝑇 = 𝑆max, and 𝛼𝑇 = 0.0001.
In addition, if the cross entropy is bigger than the last one

during the iterative process, the cyclic process of the PCNN
is accomplished.

3. The TT-PCNN

There is no perfect transformation which achieves completed
approximation of various image details due to the inherent
defect of the multiscale transform.These details usually con-
tain important features of the targets. We use the Laplacian
pyramid to decompose the low-pass band of source images
in the TT domain. The remaining details of the concealed
objects usually exist in the top layer of the Laplacian pyramid.
Meanwhile, the rule based on average gradient is applied to
fuse and enhance the details of objects which are sensitive to
human vision. In addition, the detailed features of the hidden
targets in the PMMWimages are important to the subsequent
recognition limited by various factors such as the style of
imaging and electronic noise. We adopted the coefficient of
the high-pass band as the input of the PCNN in advance.
The enhancement operator of the PCNN has the capability of
enhancing the details of the hidden targets, which is beneficial
to the subsequent target recognition.Additionally, we fuse the
high-coefficient of visible and PMMW images based on the
SF. The TT-PCNN and fusion rules are shown in Figure 4.

Step 1. Decompose the source images into the low-pass and
high-pass subbands via the TT.The following coefficients are
expressed as the high-pass coefficients𝑇HPA and𝑇HPB and the
low-pass coefficients 𝑇LPA and 𝑇LPB.
Step 2. 𝑇LPA and 𝑇LPB are decomposed by the Laplacian
pyramid named 𝐿PA and 𝐿PB, respectively. The fusion rule
based regional gradient is used for fusing the top layer of 𝐿PA
and 𝐿PB. Suppose that LPAtop(𝑖, 𝑗) is the value of 𝐿PA located
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Figure 4: The flow chart of the TT-PCNN.

at top layer. The regional space at the center of LPAtop(𝑖, 𝑗)
is 3 × 3. LPFtop(𝑖, 𝑗) is the fused result of LPAtop(𝑖, 𝑗)
and LPBtop(𝑖, 𝑗). LPBtop(𝑖, 𝑗) and 𝐺𝐵(𝑖, 𝑗) have the similar
definition as LPAtop(𝑖, 𝑗) and 𝐺𝐴(𝑖, 𝑗). The regional average
gradient 𝐺𝐴(𝑖, 𝑗) is expressed as

𝐺𝐴 (𝑖, 𝑗) = 1
4
2∑
𝑖=1

2∑
𝑗=1

√Δ𝐼𝑖2 + Δ𝐼𝑗2, (8)

where Δ𝐼𝑖 and Δ𝐼𝑗 are the first-order difference of LPAtop(𝑖, 𝑗)
in different directions. So the fusion rule of top layer is
described as

LPFtop (𝑖, 𝑗) = {{{
LPAtop (𝑖, 𝑗) 𝐺𝐴 (𝑖, 𝑗) ≥ 𝐺𝐵 (𝑖, 𝑗)
LPBtop (𝑖, 𝑗) 𝐺𝐴 (𝑖, 𝑗) < 𝐺𝐵 (𝑖, 𝑗) .

(9)

In addition, the rule of choosing the highest absolute value is
designed to fuse the value of other layers of 𝐿PA and 𝐿PB.

Step 3. Inverse Laplacian pyramid and obtain the fusion
result 𝑇LPF.
Step 4. The enhancement of targets area is based on the
improved PCNN. Suppose that 𝑇HPB(𝑖, 𝑗) represents the
coefficients of 𝑇HPB and let 𝐹𝑖,𝑗(𝑛) = 𝑇HPB(𝑖, 𝑗). Meanwhile,
the other parameters remain the same settings as (7).

Step 5. This is the final fusion of the high-pass coefficients.
The SF is obtained from (6) in slipping windows 3 × 3,
which is the input of the improved PCNN. The fusion rule
is designed as
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𝑇HPF (𝑖, 𝑗)

= {{{
𝑇HPFA (𝑖, 𝑗) Fire𝐴,(𝑖,𝑗) (𝑛) ≥ Fire𝐵,(𝑖,𝑗) (𝑛)
𝑇HPFB (𝑖, 𝑗) Fire𝐴,(𝑖,𝑗) (𝑛) < Fire𝐵,(𝑖,𝑗) (𝑛) ,

(10)

where Fire(𝑖,𝑗)(𝑛) denotes the firing time of each coefficient,
which is given by

Fire(𝑖,𝑗) (𝑛) = Fire(𝑖,𝑗) (𝑛 − 1) + 𝑌𝑖,𝑗 (𝑛) . (11)

Step 6. Use the selected coefficients to reconstruct the fused
image via the inverse TT.

4. Experimental Results and
Performance Analysis

4.1. Evaluation Criteria. The existing metrics are classified
into three categories: statistics-based, information-based, and
human-visual-system based classes. The selected metrics
with smaller correlation are beneficial to the objectivity of
the evaluation [24]. The statistics-based metrics are easily
influenced by the pseudoedges of targets, so we evaluate
the fusion performance based on information-based and
human-visual-system based metrics. The information-based
evaluation indexes mainly contain information entropy (IE)
and mutual information (MI) [25]. Moreover, 𝑄𝐴𝐵/𝐹 is a
representative model in the evaluation system based on
human vision since it has strong correlation with other
human-visual-system based metrics [26]. These formulas are
shown as follows:

IE:

𝐻(𝑋) = 𝑛∑
𝑖=1

𝑃 (𝑥𝑖) 𝐼 (𝑥𝑖) =
𝑛∑
𝑖=1

𝑃 (𝑥𝑖) log𝑏𝑃 (𝑥𝑖) . (12)

MI:

MI = ∑
𝑓,𝑎

𝑝𝐹𝐴 (𝑓, 𝑎) log 𝑝𝐹𝐴 (𝑓, 𝑎)
𝑝𝐹 (𝑓) 𝑝𝐴 (𝑎)

+∑
𝑓,𝑏

𝑝𝐹𝐵 (𝑓, 𝑏) log 𝑝𝐹𝐵 (𝑓, 𝑏)
𝑝𝐹 (𝑓) 𝑝𝐵 (𝑏) .

(13)

𝑄𝐴𝐵/𝐹:
𝑄𝐴𝐵/𝐹

= ∑𝑁𝑛=1∑𝑀𝑚=1 𝑄𝐴𝐹 (𝑛,𝑚)𝑤𝐴 (𝑛,𝑚) + 𝑄𝐵𝐹 (𝑛,𝑚)𝑤𝐵 (𝑛,𝑚)
∑𝑁𝑖=1∑𝑀𝑗=1 (𝑤𝐴 (𝑖, 𝑗) + 𝑤𝐵 (𝑖, 𝑗)) , (14)

where 𝑃(𝑥𝑖) is the probability mass function of the input
images.𝑝𝐹𝑋(𝑎, 𝑏),𝑝𝐴(𝑎), and𝑝𝐵(𝑎) is obtained by simple nor-
malization of the joint and marginal histograms of the input
images. 𝑄𝐴𝐹(𝑛,𝑚) and 𝑄𝐵𝐹(𝑛,𝑚) are weighted by the coeffi-
cients of the edge preservation values.𝑤𝐴(𝑛,𝑚) and𝑤𝐵(𝑛,𝑚)
reflect the perceptual importance of the corresponding edge
elements. IE reflects the amount of average information in
the fused images. MI reflects detailed information which

is obtained from source images, whereas the metric 𝑄𝐴𝐵/𝐹
computes and measures the amount of edge information
transferred from source images into the fused results. In
addition, a larger value of these metrics means a better fusion
results.

The source images derived from ThermoTrex Corpora-
tion are shown in Figure 5. There are three soldiers with gun
and grenade displayed in Figure 5(a). Due to the limitation
of penetrability, the information of targets under clothing
is not included in the visible image. But it contains rich
environmental details about imaging scene. In contrast,
Figure 5(b) is the PMMW image. The bright part of the
PMMW image reflects the location and shape information
of the concealed objects. The outline of the gun and grenade
is detected by the MMW owing to its penetrability, and the
contour of three soldiers is heavily blurred. It is difficult to
recognize lawn from the PMMW image. We use different
wavelets and fusion rules for acquiring the results in the
subsequent section in order to prove the effectiveness of the
proposed algorithm.

4.2.The First Group of the Fused Results. Thefirst group of the
fused results is performed on the PMMW and visible image.
Figure 6 illustrates the source images and fusion results
obtained by different wavelet. The fusion results achieved by
the DWT, CT, NSCT, TT, and TT-PCNN are displayed in
Figures 6(a)–6(e). The fusion rule adopted by these wavelets
is the same as the description of the TT [15]. As can be
seen from Figures 6(a)–6(e), the five methods successfully
fuse the PMMW and visible image, and all the fused images
contain the concealed objects information and background
information. However, it can be found that the fused result
obtained by the DWT has many artifacts due to the lack of
shift-invariance. The contour of the gun is a little blurred
caused by the pseudo-Gibbs phenomena.The CT, NSCT, and
TT achieve a better performance than the DWT method.
The CT has superior performance of depicting the edge
details. So the concealed gun has complete structural features
for recognition. If the background characteristics of source
images have significant differences, the CT usually leads to
the decrease of image contrast. Due to the shift-invariant
of NSCT, the pseudo-Gibbs phenomenon is eliminated suc-
cessfully. Limited by the fusion rules, the concealed targets
have low contrast which produces serious impact on risk
identification. Since the TT has superior capacity to describe
smooth region and local details, the fused result achieves
better effect than the above methods. The proposed method
provides best visual effects. Almost all the useful information
of concealed objects is transferred to the fused image, and
fewer artifacts are introduced during the fusion process.
Table 1 shows the evaluation results of the five methods.
The IE of the fused image obtained by the DWT and the
TT is bigger than the TT-PCNN due to the introduction
of invalid information. The MI obtained by the TT-PCNN
acquires the maximum. It illustrates the fact that the fused
image extracts more information from the original images.
Furthermore, 𝑄𝐴𝐵/𝐹 of the TT-PCNN is maximum, which
indicates that the proposed algorithm preserves the detailed
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(a) The visible image (b) The PMMW image

Figure 5: The source images.

(a) DWT (b) CT

(c) NSCT (d) TT

(e) TT-PCNN

Figure 6: The fused results obtained by different wavelets and the TT-PCNN.
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Table 1: The comparison of the fused results.

Method type Evaluation standards
IE MI 𝑄𝐴𝐵/𝐹

DWT 7.1282 7.7468 0.0191
CT 6.3092 8.7047 0.0078
NSCT 5.9518 9.0469 0.0239
TT 6.9637 7.9843 0.0255
TT-PCNN 6.7853 11.5794 0.0377

(a) CT-PCNN (b) NSCT-PCNN

(c) NSCT (d) TT-PCNN

Figure 7: The fused results of the CT-PCNN, NSCT-PCNN, NSCT, and TT-PCNN.

information and extracts more edge information from source
images effectively. The objective evaluation meets the visual
observation.

4.3. The Second Group of the Fused Results. The fusion
results of the NSCT-PCNN, CT-PCNN, NSCT, and TT-
PCNN are displayed in Figures 7(a)–7(d). As can be seen
from Figures 7(a)–7(d), all of the methods successfully fuse
the PMMW and visible images. All the fused images still
contain concealed targets information. However, the fused
image obtained by the CT-PCNN still has low contrast due
to the background differences between source images, which
is a common problem of the CT based methods. While the
NSCT-PCNN and NSCT achieve a better performance than
the CT-PCNN.Thepseudo-Gibbs phenomenon is eliminated
owing to the shift-invariant of NSCT. It is proven that the
PCNN is conducive to enhance the details of interesting

targets. So the PCNN is beneficial to the fusion of visible and
PMMW images. But the concealed objects and background
have low contrast. Especially, the information of the grenade
is difficult to discrimination. The TT-PCNN provides better
visual effects. The detailed information of gun and grenade
is preserved well. Table 2 shows the evaluation results of the
four methods. The IE of the fused image achieved by the TT-
PCNN is the second maximum. This means that the fused
result contains a lot of information inherited from source
images. MI and 𝑄𝐴𝐵/𝐹 of the fused image obtained by the
TT-PCNN gain the largest value. This demonstrates that the
proposed algorithm extracts abundant image information
from source images and achieves high contrast.

4.4. The Third Group of the Fused Results. As shown in
Figure 8, the source images and fused results are displayed
well. Figures 8(a) and 8(b) are the visible image and PMMW
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(a) The visible image (b) The PMMW image

(c) CT-PCNN (d) NSCT-PCNN

(e) NSCT (f) TT-PCNN

Figure 8: The fused results of the CT-PCNN, NSCT-PCNN, NSCT, and TT-PCNN.
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Table 2: The comparison of the fused results.

Method type Evaluation standards
IE MI 𝑄𝐴𝐵/𝐹

NSCT-PCNN [6] 6.8243 8.4638 0.0361
CT-PCNN [7] 6.5108 8.2892 0.0088
NSCT [8] 6.7329 8.4112 0.0299
TT-PCNN 6.7853 11.5794 0.0377

Table 3: The comparison of the fused results.

Method type Evaluation standards
IE MI 𝑄𝐴𝐵/𝐹

NSCT-PCNN [6] 7.2078 3.7030 0.5382
CT-PCNN [7] 7.6778 5.6082 0.4273
NSCT [8] 7.7781 4.7641 0.5802
TT-PCNN 7.8731 4.7673 0.5811

image. A single 94-Ghz radiometer on a scanning 24 in dish
antenna is used to detect the MMW energy of concealed
weapons [27]. As can be seen from Figures 8(c)–8(f), all of
the methods successfully synthesize the targets information
and the background information. But the contrast of the
fused image based on the CT-PCNN is relatively low. The
NSCT and NSCT-PCNN methods improve the fusion effect
and achieve high contrast. However these two methods still
enhanced useless information such as the radiated infor-
mation of the dress zipper. The TT-PCNN synthesizes the
PMMW and visible images, highlights the information of
concealed weapons, and suppresses the invalid information.
The objective evaluation of the fused results is listed in
Table 3. The TT-PCNN receives the maximum compared
with other algorithms. It proves that the fused result of the
proposed method contains abundant target information and
preserves more object features well.

5. Conclusion

In this paper, an improved PCNN for the fusion of the
PMMWand visible image is proposed in the Tetrolet domain.
The improved PCNNmodel ismore simple and adaptive with
fewer parameters. We firstly adopted the improved PCNN to
strengthen the high-pass coefficients of the PMMW image in
order to enhance the contour of concealed targets. And then
a Laplacian pyramid is introduced for the decomposition of
low-pass band after the TT.Next, the SF is applied tomotivate
the improved PCNN neurons. The flexible multiresolution
of the TT is associated with global coupling and pulse
synchronization characteristics of the PCNN. Finally, the
four groups of experiments are conducted for evaluating
the fusion performance. The results show that the proposed
algorithm has superior performance of fusing the visible
and PMMW images. The fused results have high contrast,
remarkable target information, and rich information of
background. The proposed method is suitable for fusing the
infrared and visible image, which is superior to the other

fusion algorithms in terms of visual quality and quantitative
evaluation.
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