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Accurate truck travel time prediction (TTP) is one of the critical factors in the dynamic optimal dispatch of open-pit mines. This
study divides the roads of open-pit mines into two types: fixed and temporary link roads. The experiment uses data obtained
from Fushun West Open-pit Mine (FWOM) to train three types of machine learning (ML) prediction models based on k-nearest
neighbors (kNN), support vector machine (SVM), and random forest (RF) algorithms for each link road. The results show that
the TTP models based on SVM and RF are better than that based on kNN. The prediction accuracy calculated in this study
is approximately 15.79% higher than that calculated by traditional methods. Meteorological features added to the TTP model
improved the prediction accuracy by 5.13%. Moreover, this study uses the link rather than the route as the minimum TTP unit,
and the former shows an increase in prediction accuracy of 11.82%.

1. Introduction

At present, shovel-truck systems (STSs) are commonly used
in open-pit mining operations [1-3], especially for large
open-pit mines. This is because STSs do not require extensive
infrastructure in conjunction with a high mining intensity
[4]. Although the trucks are very flexible, with a strong
climbing ability, they also consume a large amount of fuel
[5]. Related statistics showed that STSs contribute 50% of the
operating costs in open-pit mines [6]. Therefore, almost all
large open-pit mines are trying to optimize truck dispatching
to achieve lower costs and higher mining efficiency [7-10].

Many open-pit mines have begun to use an open-pit
automated truck dispatching system (OPATDS) in recent
decades [9, 11]. Mining efficiency has increased through the
integration of some truck dynamic dispatching principles
(TDDPs) into the OPATDS [9, 11, 12]. The TDDPs rely heavily
on an accurate truck cycle time [7, 8, 10], and one of its
fundamental techniques is predicting the travel time of the
trucks [11-14].

Several researchers have been working on travel time
prediction (TTP) for open-pit trucks (OPTs) for many years.

Sun [15] first defined the average value for the predicted travel
time of a truck based on artificial statistical data. However,
the travel time is influenced by many factors, including truck
type, load status, road properties, and weather conditions,
making it difficult to predict the average travel time accurately
and efficiently.

Run-cai [16] used an artificial neural network (ANN) to
predict the travel time of OPTs. Considering the randomness
of TTP, they took several factors, namely, road conditions,
truck type, and truck load status, into consideration. A total
of 336 data records were used in their ANN model, and
the results were better than those obtained using manual
statistical methods.

Jiangang [17] proposed a real-time dynamic TTP model
based on the adaptive network-based fuzzy inference system
(ANFIS) and discussed the theory and method of the ANFIS
network. The ANFIS is a hybrid learning algorithm consisting
of an error backpropagation algorithm, which performs with
ahigher calculation speed and better accuracy than the ANNs
used in [16].

Chanda and Gardiner [18] compared the predictive capa-
bility of three truck cycle time estimation methods, that is,
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TABLE 1: Summary of the current state of TTP for OPTs.
Year Authors Methods Conclusions Ref.
1998 Sun Manual statistics An available method [15]
2005 Run-cai ANNs Better than [15] [16]
2005 Jiangang ANFIS Better than [16] [17]
2010 Chanda and Gardiner ANNs, MRs, and TALPAC Each has its advantages (18]
2010 Xue et al. LS-SVR An available method [21]
2013 Edwards and Griffiths MRs and ANNs ANN is better than MR [19]
2013 Erarslan A computer-aided system An available method [20]
2014 Meng BP-ANNs and SVM SVM is better than BP-ANN [22]

computer simulation, ANN, and multiple regression (MR),
in open-pit mining using TALPAC software and MATLAB.
The results indicated that both the ANN and MR models
showed better predictive abilities than the TALPAC model,
which usually overestimated the travel time of longer haul
routes while underestimating that of shorter haul routes.
However, the difference between the time predicted by these
two methods and the realistic travel time was insignificant.

Edwards and Griffiths [19] attempted to predict the travel
time of open-pit excavators through the development of
ESTIVATE. Initially, ESTIVATE utilized a MR equation to
predict the time, although it failed to provide an adequately
robust predictor. Subsequently, improvement to ESTIVATE’s
predictive capacity was sought through the use of ANNS,
which provided a significant improvement over the MR
approach.

Erarslan [20] focused on the truck speed and developed a
computer-aided system to estimate the speed data for differ-
ent resistances. Then, the truck travel time was equivalent to
the length of the road divided by the truck speed.

Considering the various influencing factors on TTP, Xue
et al. [21] proposed a dynamic prediction method that com-
prised an ensemble learning algorithm using least squares
support vector regression (LS-SVR). The results obtained
from the MATLAB model showed the effectiveness and high
accuracy of their algorithms.

Meng [22] compared the support vector machine (SVM)
approach with the backpropagation (BP) algorithm and
observed that the SVM model performed with a higher
accuracy than the BP neural network model in T'TP.

Reported studies on the T'TP of OPTs are summarized in
Table 1. Several aspects of the table require further discussion:

(1) Most of the existing studies have considered open-
pit roads as a single category. Unlike urban traffic
networks, there are many temporary roads in open-
pit mines, for example, coal mines in Kuzbass, where
temporary roads constitute up to 80% of the total
road length [23]. A TTP model based on commonly
fixed roads may not be reliable because the tempo-
rary roads between load and dump points change
frequently.

(2) Most experiments reported in the literature were
based on the route travel time prediction (RTTP),
although the number of routes from A to B exceeds

one. Thus, the RTTP with uncertainty must be
improved.

(3) Reported studies have seldom considered the meteo-
rological factors when the open-pit mine is extracting.
For example, snow or heavy rain decreases the speed
of trucks and has an adverse effect on the travel time
of vehicles [24-27].

(4) Available predictive models have been based on
small-scale datasets; for example, only hundreds of
data records were used in [15-17, 21]. Better results
are usually obtained when using large-scale training
datasets.

With the rapid development of machine learning (ML)
and big data technology, the TTP of OPTs is expected to
become faster and more accurate. In this study, the primary
objectives and improved measures are as follows:

(1) The open-pit mine roads are divided into two types:
long-term fixed roads and temporary roads. Experi-
ments explore the results of TTP on the two different
types of roads.

(2) This paper uses the link rather than the route as the
minimum prediction unit. The difference between the
link and route is that the route contains multiple road
nodes. Independent TTP models are used to train
each link road instead of using the same TTP model
for the entire road network.

(3) The experiments in this paper explore the impact
of meteorological conditions on TTP, which means
meteorological features are added to the model train-
ing process.

(4) The OPATDS database stores a large amount of truck
condition data. For large-scale data, machine learning
methods tend to have good prediction performance.
More than a million records are used to train the link
travel time prediction (LTTP) model in this study.

2. Models and Experiments

2.1. Experimental Roadmap and Methods. As shown in Fig-
ure 1, Fushun West Open-pit Mine (FWOM, Fushun Mining
Group Co., Ltd.) is located in Fushun city, Liaoning province,



Mathematical Problems in Engineering

FIGURE 1: Location of the Fushun West Open-pit Mine.
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FIGURE 2: Experimental roadmap of the FWOM.

China, approximately 50 km east of Shenyang. The FWOM
is the largest open-pit coal mine in Asia and produces an
estimated 1.5 billion tons of coal [28].

The roadmap used in this experiment is shown in Fig-
ure 2, which is part of the road networks of the FWOM.

The nodes of transportation roads typically remain the
same at a specified time, whereas roads to load points and
dump points change with mining activities. According to the
changing road nodes, link roads can be divided into two
categories:

(1) Fixed link roads, for example, the link roads between
node B and node E, node E and node H, and node H
and node J.

(2) Temporary link roads, for example, the link roads
between node B and node D, node E and node F, and
node G and node H.

ML, which is a field of computer science, gives computers
the ability to learn without being explicitly programmed
[35,36]. ML is related to computational statistics and suitable

for predicting tasks because of its self-adaptation and self-
feedback characteristics [37, 38]. An experimental flow chart
used in the ML method is given in Figure 3. Note that the
LTTP model of each experimental link road is independently
trained.

Figure 3 shows the three steps of LTTP using ML. As
the most crucial step, training the LTTP model consists of
two parts: ML algorithms and training data. These two parts
are indispensable because training the ML prediction models
requires a large amount of data provided by the OPATDS. In
the second step, LT TP model predictions are obtained from
the test data, and the prediction performance of the model
can also be evaluated. The final step involves modifying the
parameters of the LTTP model until the result is acceptable.
In particular, the test dataset is a dataset that is independent
of the training dataset [39].

2.2. ML Algorithms Selection. ML tasks are typically classified
into four broad categories [40]: supervised learning, unsuper-
vised learning, reinforcement learning, and semisupervised
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TABLE 2: Adaptability analysis between ML algorithms and LTTP.
Algorithms Adaptability analysis Apply
ANNs The effect has been thoroughly verified by many existing studies. No
BNs A probabilistic model that is not suitable for this study [29]. No
SVM Perfect theoretical basis with high generalization ability [30]. Yes
RF An ensemble learning method evolved from DT; better than DT [31]. Yes
LR It solves the classification problems; not suitable for this study [32]. No
kNN An eficient algorithm for the classification and regression tasks [33]. Yes
DT RF has been chosen; there is no need to choose DT. No
HM A probabilistic model that is not suitable for this study [34]. No

learning [41]. The LTTP of OPTs belongs to the typical
supervised learning task due to the labeled training data from
the OPATDS [42]. Prediction models output the travel time
values of OPTs, which can be considered to be a regression
problem of supervised learning.

There are many ML algorithms that can be used to
solve the regression problem of supervised learning, such
as ANN, Bayesian network (BN), SVM, random forest (RF),
logistic regression (LR), k-nearest neighbors (kNN), decision
tree (DT), AdaBoost [43], and hidden Markov model (HM)
approaches [44]. The adaptability analysis between LTTP and
the various ML algorithms is given in Table 2. Based on the
comparison results, this paper chooses the kNN, SVM, and
RF algorithms to build the LTTP models of OPTs.

kNN is a nonparametric method used for classification
and regression, and the kNN regression computes the mean
of the function values of its k-nearest neighbors [33, 45]. The
goal function regression fi(x) of KNN regression is written
as follows [45]:

S (%) = % : Z Yis @

i€N(x)

where x is an unknown pattern; N(x) is the indices of the
k-nearest neighbors of x; and y; is the predicted labels.

The original SVM algorithm was invented by Cortes
and Vapnik [46], and its efficiency in classification has been
verified in many case studies [47]. The detailed introduction
of SVM can be found in Smola and Schélkopf [48], in
which they published the complete tutorial on support vector

regression. To train the SVM regression model, the following
must be solved:
minimize % Jw]® (2a)
subject to  y; — (w,x;) —b<e
(2b)
(w,x;) +b-y; <¢,

where x; represents the training features with target value y;;
(w, x;) + b is the prediction value; and ¢ is a free parameter
that serves as a threshold.

The RF algorithm evolved from DT theory and was
created by Ho in 1995 [31]. This approach incorporates
the bootstrap aggregating (Bagging) algorithm, which is a
method for generating multiple versions of a predictor and
then using these to obtain an aggregated predictor [49]. The
RF method has a higher degree of efficiency and accuracy
than the DT method because of Bagging.

2.3. Training Data Structure. The training dataset is the
most critical factor when training ML prediction models,
and it consists of several features and corresponding target
values [50]. Many features commonly affect the LTTP of
OPTs, which can be broadly classified into three categories:
truck features, road features, and meteorological features.
The meteorological features are considered in this paper
because rainy and snowy weather reduces both the friction
coefficient of roads and the truck driver’s vision. According
to the relevant statistics reported by the U.S. Federal Highway
Administration, bad weather can lead to a 35% reduction in
car speed [51].
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TABLE 3: Preprocessed data for training the ML prediction models.

Date Start time Arrival time Truck Id Truck type
2017-03-01 16:23:20 16:26:57 202 BELAZ-L
2017-03-02 20:12:09 20:18:12 503 MT-86
Truck status x-axis start y-axis start x-axis arrival y-axis arrival
Run 1344 1188 2191 968
Run 2576 783 3095 327
Load status Start node Arrival node I(’lr g(s)s}l:;)e Wir(li/sgeed
Empty B E 1002 1
Coal G H 999 0.6
Temperature Relative humidity Precipitation Rain Travel time
(°C) (%) (mm) (hour:min:sec)
2 90 0 No 00:03:37
1 96 0 No 00:06:03
TABLE 4: Description of the variables used in the prediction.
Variables Type Role Description
Truck Id Numeric Feature The serial number of truck.
Truck type Categorical Feature The type of the truck (i.e., BELAZ-L, BELAZ-M, and MT86).
Truck status Categorical Feature The status of the truck (i.e., running, waiting, and stop).
x-axis start Numeric Feature The x coordinate of the truck at the starting position.
y-axis start Numeric Feature The y coordinate of the truck at the starting position.
x-axis arrival Numeric Feature The x coordinate of the truck at the ending position.
y-axis arrival Numeric Feature The y coordinate of the truck at the ending position.
Load status Categorical Feature The load status of the truck (i.e., empty and coal).
Start node Categorical Feature The node code of the starting position of the road.
Arrival node Categorical Feature The node code of the ending position of the road.
Pressure Numeric Feature A fundamental atmospheric quantity.
Wind speed Numeric Feature A fundamental atmospheric quantity.
Temperature Numeric Feature A fundamental atmospheric quantity.
Relative humidity Numeric Feature A fundamental atmospheric quantity.
Precipitation Numeric Feature A fundamental atmospheric quantity.
Rain Categorical Feature A fundamental atmospheric quantity (i.e., yes and no).
Travel time Date time Target The travel time of the truck on each link.

The data used in the following experiments originate
from the FWOM. The truck and road feature data are from
the OPATDS, while the weather data are collected from
the China Meteorological Administration (CMA) Number
54351 monitoring station. The preprocessed training dataset
samples in this experiment are listed in Table 3. There are 16
variables serving as the features, and the target is the truck
travel time. Table 4 shows the description of the target and
each feature used for the prediction in this study.

2.4. Program and Pseudocode. This study used sophisticated
algorithms to predict the link travel time in open-pit mines,
and the three ML algorithms in the prediction models were
based on scikit-learn, which is an open-source ML module in

the Python programming language [52, 53]. The pseudocode
of the methodology in this study is illustrated in Figure 4.

3. Results and Discussion

3.1. Predictions of the ML Models. For the training datasets,
2,246,746 historical records from March 2017 were exported
from the OPATDS database of the FWOM. After data
preprocessing, the structure of the training data was similar to
those in Table 3. The experimental parameters encompassed
one type of link road trained by three different ML algorithms
(kNN, SVM, and RF) resulting in 18 LTTP models. The
prediction results for the last 50 records of the test datasets
are shown in Figure 5.
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from sklearn.neighbors import KNeighborsRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split

dataset = pd.read_sql("Preprocessed Dataset")

features_train, features_test, target_train, target_test = train_test_split(

features, target,
test_size=0.3,
random_state=50

SVR_Model = SVR(
gamma='auto’,
kernel="'rbf'

)

KNN_Model = KNeighborsRegressor(
algorithm="'auto',
metric='minkowski',
n_neighbors=10

)

RF_Model = RandomForestRegressor(
bootstrap=True,
criterion='mse',
max_features='auto'

in [SVR_Model, KNN_Model, RF_Modell]:
fit(features_train, target_train)

predict(features_test)
score(features_test, target_test)

FIGURE 4: The pseudocode of the ML methodology.

To derive the best LTTP model for each link road, the
aforementioned prediction results were evaluated based on
the mean absolute deviation (MAD) and the mean absolute
percentage error (MAPE) methods, which are commonly
used for regression problem evaluation.

The MAD, as expressed in (3a), is a summary statistic of
statistical dispersion or variability [54, 55]. The MAPE is a
measure of the accuracy of a prediction method in statistics,
as written in (3b) [56]. Because the MAPE is a percentage,
it is often easier to understand than the other statistics. For
example, if the MAPE is 5, on average, the forecast is off by
5% [57].

Yt [Xobsi — *modell
MAD = i=1 obs,i model,i , (33)
n

Z?:l |(x0bs,i - xmodel,i) /xobs,i|
n

MAPE = x 100 (%), (3b)

where x,; represents the observation values; x40, rep-
resents the prediction values; and #n is the number of data
records.

Table 5 lists the MAD and MAPE values obtained from
the three ML methods for each experimental link road.

Smaller MAD and MAPE values reflect better prediction
performance of each LTTP model, and the smallest records
are highlighted in Table 5. The results of the six experimental
link roads indicate that the LTTP models built using the
SVM and RF methods are better than those using the kNN
algorithm. Table 6 summarizes the optimal ML prediction
models for each link road.

The coefficient of determination, R?, is widely used in
statistical tests to evaluate the predictive capability of a
model and is also used in this study. The R* value with one
independent variable is written as follows [58]:

1 G- 0-D]
R= N Z (ax*ay) ’ *)
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FIGURE 5: Prediction results for the different ML methods.

where N is the number of observations used to fit the model;
x and y are the mean values of x and y, respectively; x; and y;
are the values of observation i; and o, and o, are the standard
deviations of x and y, respectively.

Table 7 shows the R* values of the three ML models for
each link road. The R* values range from 0 to 1, and R* equal
to 1 indicates perfect accurate prediction. There are some
differences between Tables 6 and 7, that is, the optimal ML
model of B-E, H-], and G-H. However, the MAPE was still
selected for choosing the optimal model because the R* value
cannot be used to evaluate predictive errors.

3.2. Discussion of Traditional Averaging Methods and ML
Models. To compare the LT'TP of ML models and traditional
averaging methods, controlled experiments were performed.
The flow chart of traditional averaging methods is illustrated
in Figure 6.

For each record in the test dataset, the experiments
traced back the corresponding top 10, 20, 30, 40, and 50
records and then calculated the average value as the final
prediction. To improve the accuracy of the traditional aver-
aging methods, each calculation used only historical data for
the same truck type and load status. The results obtained
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TABLE 5: LTTP evaluation based on the different ML models.
Link road Road type Evaluation kNN SVM RF
B-E MAD 591E - 04 5.09E - 04 4.56E - 04
MAPE 1.78E + 01 1.58E + 01 1.44E + 01
E-H Fixed MAD 9.44E - 04 3.32E- 04 6.37E — 04
MAPE 249E + 01 9.57E + 00 1.81E + 01
H-J MAD 5.16E — 04 3.55E - 04 3.54E - 04
MAPE 2.14E + 01 1.59E + 01 1.48E + 01
B-D MAD 1.71E-03 5.44E - 04 6.70E — 04
MAPE 2.75E + 01 8.09E + 00 9.90E + 00
E-F Temporary MAD 9.59E - 04 8.05E - 04 5.63E - 04
MAPE 3.13E + 01 2.94E + 01 1.82E + 01
G-H MAD 1.18E-03 7.35E - 04 7.85E — 04
MAPE 3.42E + 01 1.94E + 01 2.38E + 01

(BE )—(BELAZ )—( Empty »—(BF -

(CB-E )—(BELAZ )—(Empty }—(00:13:57 )~

(BE )—(M1-86 —( Empty »—(00:17:15 )-~,

Calculating
the average time:

(BE »—(M1-86 )~ Load »—(00:18:21 )--"

(i) Same link road
(ii) Same load status

Recent historical data

(iii) Same truck type

(BE )—(BELAZ )—( Empty )—(00:1421

FIGURE 6: The flow chart of traditional averaging methods.

TABLE 6: Summary of the optimal ML prediction models for each
link road.

Road Type Optimal ML model
B-E RF

E-H Fixed SVM

H-J RF

B-D SVM

E-F Temporary RF

G-H SVM

TaBLE 7: R? values of the different ML models for each link road.

Road SVM KNN RF Optimal ML model
B-E 0.28 0.16 0.41 SVM

E-H 0.83 0.16 0.67 SVM

H-J 0.72 0.13 0.56 SVM

B-D 0.89 0.23 0.7 SVM

E-F 0.54 0.24 0.73 RF

G-H 0.61 0.19 0.62 RF

from the traditional averaging methods are summarized in
Table 8.

Smaller MAD and MAPE values mean better prediction
performance of the traditional averaging methods, and the

smallest records are highlighted in Table 8. The predicted val-
ues obtained from the optimal ML method and a traditional
average method for each link road are given in Table 9; the
decrease in the MAPE is also shown.

Table 9 shows that the tested ML models are superior
to the traditional averaging method in the context of LTTP
because the former has smaller MAPEs. An average increase
0f15.79% in prediction accuracy is achieved in all experimen-
tal link roads, in which increases of 12.54% and 19.30% for
three fixed and three temporary roads, respectively, are also
obtained.

3.3. Discussion of Meteorological Features. This study also
considered the influence of meteorological features on the
LTTP of an open-pit mine. The data were obtained from
a CMA monitoring station, including 5 variables: pressure,
wind speed, temperature, relative humidity, and precipita-
tion.

The Pearson correlation coefficient (PCC), an evaluation
method developed by Pearson [59], was used to evaluate the
linear correlation between two variables. The expression of
the PPC is as follows:

_cov(X,Y)

- 3 5
Pxy o (5)
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TABLE 8: Results obtained from the traditional averaging methods.

Traditional averaging methods

Road Evaluation
10 records 20 records 30 records 40 records 50 records
B-E MAD 1.02E - 03 9.49E - 04 9.17E - 04 9.18E - 04 9.04E - 04
MAPE 3.06E + 01 2.81E + 01 2.66E + 01 2.64E + 01 2.58E + 01
E-H MAD 1.22E - 03 1.13E-03 1.09E - 03 1.09E - 03 1.07E - 03
MAPE 3.29E + 01 3.00E + 01 2.84E + 01 2.81E +01 2.73E + 01
HYJ MAD 6.29E - 04 6.09E - 04 5.87E - 04 5.81E - 04 5.80E - 04
MAPE 2.54E + 01 247E + 01 2.36E + 01 2.34E + 01 2.33E + 01
B-D MAD 2.15E - 03 1.83E-03 2.46E - 03 2.36E - 03 2.05E-03
MAPE 3.17E + 01 2.69E + 01 3.86E + 01 3.62E + 01 3.25E + 01
E-F MAD 1.16E - 03 1.10E - 03 1.14E - 03 1.15E-03 1.16E - 03
MAPE 3.91E + 01 3.63E + 01 3.81E +01 3.90E + 01 3.95E + 01
G-H MAD 1.29E - 03 1.38E - 03 1.36E - 03 1.32E-03 1.30E - 03
MAPE 4.04E + 01 4.12E + 01 391E +01 3.70E + 01 3.57E + 01
TABLE 9: Comparison between the optimal ML model and the optimal averaging method.
Road Type Optimal average method (MAPE) Optimal ML model (MAPE) MAPE decrease Average
B-E 2.58E + 01 1.44E + 01 11.40%
E-H Fixed 2.73E + 01 9.57E + 00 17.73% 12.54%
H-J 2.33E + 01 1.48E + 01 8.50%
B-D 2.69E + 01 8.09E + 00 18.81%
E-F Temporary 3.63E + 01 1.82E + 01 18.10% 19.30%
G-H 4.04E + 01 1.94E + 01 21.00%
Average 15.79%
TABLE 10: Prediction results after including meteorological data.
Type Road Methods Meteorological features MAD MAPE MAPE decrease (no-yes)%
B-E RF No 6.90E — 04 2.07E + 01 6.30%
Yes 4.56E - 04 1.44E + 01
Temporary E-H SVM No 341E - 04 1.69E + 01 728%
Yes 3.32E - 04 9.57E + 00
H.J RE No 4.16E - 04 1.86E + 01 3.80%
Yes 3.54E - 04 1.48E + 01
B-D SVM No 6.35E — 04 1.22E + 01 4.08%
Yes 5.44E - 04 8.09E + 00
Fied o RE No 6.60E — 04 2.17E + 01 350%
Yes 5.63E - 04 1.82E + 01
G-H SVM No 8.42E - 04 2.52E + 01 5.80%
Yes 7.35E - 04 1.94E + 01
Average 5.13%

where cov(X,Y) is the covariance; oy is the standard devia-
tion of X; and oy is the standard deviation of Y.

The PPC values of different variables are shown in
Figure 7, including the 5 meteorological variables and truck
travel time. A high PCC value indicates a closer relationship
between the two variables.

Following controlled experiments, the effect of meteo-
rological features was investigated by adding or removing
individual features. We selected the optimal ML model for

each link road. The raw (observation) values and predicted
results with/without meteorological features are shown in
Figure 8.

The results of the controlled experiments are shown
in Table 10; the calculated decrease in the MAPE is also
shown. The results considering meteorological features are
better than those without meteorological features. The MAPE
decreased by 5.13% on average for all link roads after adding
the meteorological data.
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FIGURE 7: The PCC heat map of meteorological features.
TaBLE 11: Evaluation of LTTP based on different ML models.
Link road Road type Evaluation kNN SVM RF
AB Fixed MAD 4.95E - 04 3.28E - 04 2.99E - 04
MAPE 4.69E + 01 3.40E + 01 3.36E + 01

3.4. Discussion of LITP and RTTP. The above experiments
used the link rather than the route to predict the travel time
of OPTs. However, the differences between LTTP and RTTP
need to be further discussed. In the ensuing discussion, the
longest route between dump point A and load point G is
selected, as shown in Figure 9.

The A-G route consists of 4 links: A-B, B-E, E-H, and H-
G. Among them, the optimal ML prediction models of B-E,
E-H, and H-G are SVM, RF, and SVM, respectively. The same
experimental procedure as used in Section 3.1 was used to
obtain the optimal ML model for A-B, and Table 11 shows the
MAD and MAPE values of the three ML methods. It can be
seen that the RF model is the best ML method for link A-B.

The SVM and RF methods are used to predict the RTTP
of A-G because those two models have a good prediction
performance. Thus, the experiments are summarized as
follows:

(i) RTTP (SVM): using the SVM algorithm to train the
TTP model for the route A-G.

(ii) RTTP (RF): using the RF algorithm to train the TTP
model for the route A-G.

(iii) LTTP: using the optimal ML model for each link, that
is, A-B (RF), B-E (SVM), E-H (RF), and H-G (SVM),
and the truck travel time of A-G is the sum of each
LTTP result.

Raw values and predicted results of the above three
experiments are shown in Figure 10, while the evaluated

TABLE 12: Evaluation of the results between LT'TP and RTTP.

Method Model Evaluation Values
RTTP SVM MAD 1.55E - 03
MAPE 2.08E + 01
RTTP RE MAD 1.78E - 03
MAPE 2.35E + 01
LTTP Assemble MAD 8.34E - 04
MAPE 8.98E + 00

results of those experiments are shown in Table 12. Both the
MAD and MAPE values of the LTTP approach are smaller
than the two RTTP methods. Thus, using the link as the
prediction unit is better than using the route.

4. Conclusions

The link roads of an open-pit mine are divided into fixed
and temporary roads in this paper. Three ML algorithms,
that is, kKNN, SVM, and RE, are used for the LTTP of OPTs.
The experimental results not only reflect the self-adaptive and
self-feedback characteristics of the ML algorithms but also
demonstrate the practicality of the method for road segments.
The conclusions based on the results are as follows:

(1) LTTP models based on ML are more efficient and
accurate than traditional averaging methods. An
overall average increase of 15.79% in the prediction
accuracy is obtained for six experimental link roads.
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FIGURE 8: Comparison forecast results including and excluding meteorological features.

For temporary roads, the average accuracy increases
by 19.30%.

(2) LTTP models established using the SVM and RF
algorithms are better than those established using the
kNN approach. There is no large difference between
the SVM and RF results, although the RF algorithm
requires less space and time complexity than the SVM
algorithm.

(3) This paper is original in that it considers the effect
of meteorological features on LTTP. The results show

that considering the effect of meteorological features
on LTTP increases the prediction accuracy by 5.13%.

(4) The differences between LTTP and RTTP are also
discussed, and the former has a higher prediction
accuracy. The MAPE decreases by 11.82% for the
LTTP method.

Some work is already underway to incorporate the ML
prediction models into the OPATDS of the FWOM, which
will be helpful in improving the dispatching efficiency of the
OPTs.
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