Hindawi

Mathematical Problems in Engineering
Volume 2018, Article ID 5218205, 18 pages
https://doi.org/10.1155/2018/5218205

Research Article

Hindawi

A New Method for State of Charge and Capacity
Estimation of Lithium-Ion Battery Based on Dual Strong
Tracking Adaptive H Infinity Filter

Zheng Liu ®"? and Xuanju Dang

!School of Electronic and Automation, Guilin University of Electronic Technology, Guilin 541004, China
2School of Electronic and Automation, Guilin University of Aerospace Technology, Guilin 541004, China

Correspondence should be addressed to Xuanju Dang; xjd69@163.com

Received 19 April 2018; Revised 27 July 2018; Accepted 26 August 2018; Published 17 September 2018

Academic Editor: Laurent Dewasme

Copyright © 2018 Zheng Liu and Xuanju Dang. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

As one of the most important features representing the operating state of power battery in electric vehicles (EVs), state of charge
(SOC) and capacity estimation is a crucial assessment index in battery management system (BMS). This paper presents a fusion
method of SOC and capacity estimation with identified model parameters. The equivalent circuit model (ECM) parameters are
obtained online by variable forgetting factor recursive least squares (VFFRLS), which is based on incremental ECM analysis to
respond to the inconsistent rates of parameters variation. The independent open-circuit voltage (OCV) estimation way is designed
to reduce the effect of mutual coupling between OCV and ECM parameters. Based on the identified ECM parameters and OCV, a
dual adaptive H infinity filter (AHIF) combined with strong tracking filter (STF) is proposed to estimate battery SOC and capacity.
A new quadratic function as capacity error compensation is introduced to represent the relationship between capacity and OCV.
The adaptive strategy of the AHIF can adjust noise covariance and restricted factor, while the STF can regulate prior state covariance
by adding suboptimum fading factor. The results of experiment and simulation show the merits of proposed approach in SOC and

capacity estimation.

1. Introduction

For the sustainable development strategy of electric vehi-
cles (EVs), the rechargeable lithium-ion battery has been
extensively investigated in BMS for EVs in recent years [1,
2]. Reliable BMS is established to ensure the operational
safety and enhance the working performance in high energy
EVs. The research focuses on lithium-ion battery qualities,
especially SOC and instantaneous capacity, both of which are
two of the most crucial functions in the BMS, to provide
the essential basis for state of health (SOH) and EVs driving
safety [3, 4]. Since lithium-ion battery can be thought of
as a strong nonlinear system with complex electrochemical
characteristics, the SOC and capacity cannot directly mea-
sured by sensors, while they can be estimated by utilizing
ECM-based mathematical method and so on. Therefore, a
reliable and high precision joint estimation method of SOC

and instantaneous capacity is significant for EV's applications
[5,6].

Various methods concentrating on the estimation of SOC
have been developed over the past few years. The traditional
classical approach is open-circuit voltage (OCV) measure-
ment [7, 8] using fitting function of OCV-SOC in the charge
and discharge experiments. Because the battery’s steady state
cannot be achieved until the long rest time, OCV method is
not suitable for real-time SOC estimation. Another approach
is the Ampere-Hour counting (AH) method [9, 10] with
speed calculation and simple implementation. However, an
accurate initialization SOC and the high precision measure-
ment current are required simultaneously. As an open loop
method, AH with accumulative error and rounding error is
unavoidable in practical measurement, such as diffusion and
drift current. In addition, the black box-based forecasting
technique, such as the artificial neural network (ANN) [11,
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12], the fuzzy logic [13], and the support vector machine
(SVM) [14, 15], does not demand accurate measurement data,
but is limited by many factors like heavy training burden and
being very time consuming. Compared with electrochemical
model based method, ECM-based simplified approach has
the advantages of low computational complexity and high
estimation precision. As one reduced form of complex elec-
trochemical model, the ECM has been extensively researched
to describe dynamic hysteresis characteristics of lithium-
ion battery through composition of basic electrical circuit
elements. In [16, 17], the dynamic response of lithium-ion
battery can be simulated by one-order RC ECM with a
simple topology structure, and a recursive least squares (RLS)
method is presented for parameters identification. However,
the RLS with constant forgetting factor mismatches the ECM
parameters with different changing rates.

In the ECM-based state observer method, the flexible
usage of Kalman filter (KF) which assumes some special
properties of model error-free and known noise statistics has
been generally accepted for its better performance of optimal
estimation. For example, the extended Kalman filter (EKF) is
applied for lithium-ion battery parameters identification [18].
However, the error of first order Taylor series approximation
results in slowness of the convergence rate or even in filtering
divergence. The unscented Kalman filter (UKF) is utilized to
estimate lithium-ion battery SOC [18, 19], and the estimation
results show that the UKF has better robustness and higher
precision than the EKFE. The adaptive EKF (AEKF) and adap-
tive UKF (AUKF) are adopted in state estimator to achieve
the goal of higher precision and better stability than EKF and
UKEF [20, 21]. The H infinity filter (HIF) is also applied to
the model parameters identification and state estimation [22-
27] and has better performance than UKF and EKE Even so,
for the above filtering method based on ECM with model
uncertainty, the obvious disadvantages can be represented
as oversimplified ECM, unknown noise characteristics, and
fast (slow) time-varying model parameters [28-30], which
can show that ECM cannot fully reflect battery dynamic
behavior. Therefore, the tracking performance of ECM-based
filtering approach becomes poor or even there exists filtering
divergence. To overcome this weakness, the STF and KFs
are combined to estimate battery state. In [31], the cubature
Kalman filter (CKF) with STF is introduced to improve the
robustness and accuracy of SOC estimation. A strong track-
ing estimator is proposed in [32], and the model parameters
are identified with genetic algorithm; meanwhile a strong
tracking UKF is used to estimate SOC. A composite filtering
method is proposed in [20], the criterion of selecting proper
innovation flows following chi-square distribution has been
introduced to define model uncertainty, and a combination
algorithm of strong tracking UKF and adaptive UKF has
been developed to estimate SOC. In order to ensure that
the covariance matrix always keeps nonnegative definiteness
matrix, square root CKF plus STF is proposed to estimate
SOC in [33], which can restrain the divergence effectively.

In addition to SOC, the capacity representing the age
of battery is also an essential part in BMS. Only when
capacity is assumed to be known and the value remains
the same, the ECM-based SOC estimation method can be
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used to achieve good performance. However, it is inevitable
for the capacity to fade with battery aging. In order to get
a more accurate SOC estimation, the capacity has to be
updated exactly. To address this problem, some ways have
been investigated to estimate real-time capacity [34]. The
difference between SOC, and SOC, is utilized to calculate
capacity online through using OCV-SOC fitting function
[35]. The calculated results depend on high precision current
which is difficult to be obtained in actual working conditions.
In [36], the capacity fitting models are time consuming since
they get capacity estimation by a set of cycle experimental
data. In general, the capacity is either as an expanding
model parameter or as an additional state to be estimated
with various kinds of observers. Dual EKF has been used
to estimate SOC and capacity simultaneously with certain
model parameters in [37]. The obvious drawback of this
approach is that the offline parameters cannot represent
all the dynamic aspects of operating condition and aging
situation. In [38-40], the capacity is integrated into a set of
parameters, and then the SOC and capacity are estimated
with dual EKE. The experimental results show its robustness
to operating condition and aging situation with assistance of
adaptive updating parameters. Some types of proportional-
integral observers are used to estimate parameters, SOC,
and capacity simultaneously based on electrochemical model
[41]. A combined estimator based on EKF is introduced in
[42], the model parameters are identified by adaptive RLS,
and then SOC and capacity are estimated with reduced order
EKE In [43] a single EKF is used to estimate SOC, and RLS
is designed to estimate capacity. The dimension of matrix is
decreased, relative to combined estimator. Significantly, the
model uncertainty which causes negative effect on estimation
performance has not been addressed through the above-
mentioned methods.

Compared with the existing researches, the main con-
tributions of this paper include the following: (1) a sim-
plified ECM is established, and the VFFRLS method based
on incremental model analysis is designed to identify the
battery model parameters online; (2) an independent OCV
estimator excluding model parameters is adopted to accu-
rately capture the OCV; (3) with the adaptive HIF (AHIF)
including noise covariance and restricted factor adjustment,
the SOC and capacity are directly estimated; and (4) a new
dual strong tracking AHIF (ST-AHIF) method with capacity
error compensation (EC) for SOC and capacity estimation is
introduced to improve the robustness and precision of the
AHIF algorithm. Compared with the wide usage of AEKF
and AHIEF, the proposed method has the features of strong
robustness and high precision.

The rest of this paper is arranged as follows. Section 2
presents details of derivation of battery ECM and the model
parameters identification based on VFFRLS with incremental
model analysis. The independent OCV estimator without
model parameters is presented in Section 3. Then based
on the identified parameters, a dual ST-AHIF based SOC
and capacity joint estimator including EC is proposed in
Section 4. Section 5 compares the experimental and simu-
lation results under the DST and FUDS conditions. Finally,
some conclusions are drawn in Section 6.
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FIGURE 1: Schematic diagram of Thevenin ECM.

2. Battery Model and
Parameters Identification

The simplified battery model and corresponding parameters
identification based on incremental analysis are detailed in
this section.

2.1. Battery Model Derivation. Considering the trade-off be-
tween model complexity and estimated accuracy, the
dynamic electrical characteristic of the lithium-ion battery
can be represented by the one-order Thevenin ECM [18], as
shown in Figure 1.

According to circuit principle, Thevenin ECM can be
expressed as

V _ VPvf It
"~"RC,"C,
pep “p @
Vout,t = Voc,t - Vp,t - ROIt

where V. is used to describe OCV associated with SOC, R,
indicates the ohmic resistance, the parallel Rp,C,, composed
of a polarization resistance Rp and a polarization capacitance
C,» V, represents polarization voltage across RpC,, I is
the charging-discharging current, and V,,, represents the
terminal voltage.

The nonlinear time series forecasting method is adopted
to analyze ECM. Let u and y be the charge-discharge current
and the terminal voltage of ECM, respectively. The ECM in (1)
to be identified can be redefined as a multivariable regression
expression:

Vi = a1Yk-1 + 3Vkoa + 0+ @Y per + Dyl
()
+byuey + o+ boty_gyy
where p and q are the orders of regression expression and
ay, @y, ...a, and by, by, ...b, are the undetermined coeflicient.

2.2. Parameters Identification. By comparing (1) with (2),
the polarization voltage V, can be eliminated from (1). The
discretization form of (1) by bilinear transformation method:
s= (2/TS)((1—z_1)/(1+z_1)) (zis the discretization operator)
is given as

Vout,k = alvout,k—l + bl Ik + bZIk—l + [Voc,k - aIVoc,k—l] (3)

where V1, Vi1 1 and I indicate the OCV, terminal voltage,
and load current at the kth sampling time, respectively,
and the corresponding coeflicient can be obtained by g, =
(ZRPCP - 1)/(1+ 2RPCP), b = —(2R0RPCP + R, + RP)/(l +
2R,C,), b, = (2R,R,C, — Ry — R,)/(1 + 2R,C,). Then
Ry, Rp, and C, can be obtained according to the inverse
equations of a;, b;, and by; thus, R, = (b, — b)/(1 + a,),
R, =2(b, + ab)/(a; - 1),C, = —(a; + 1)2/4(b, + a;b)).

By comparing (3) with (2), the immeasurable part (V. —
a,Vyk—1) is assumed as the residual model error (RME) of
ECM.

Similarly, the terminal voltage of the previous step (k-1)
could be expressed as

V,

outk—1 = alvout,k—Z + bIIk—l + bZIk—Z

+ (Voc,k—l — 0 Voc,k—Z) .

(4)

By subtracting (3) from (4), the incremental equation will
be derived as

AV = A AV iy + b AL+ B,AL

(5)
+A (Voc,k — 0 Voc,k—l)

where AV, 1, Al}, and A(V,., — a,V, ;) are calculated as
(Vout,k - Vout,k—l)’ (Ik - Ik—l)’ and (Voc,k - alvoc,k—l) - (Voc,k—l -
a4, Ve k_2)> respectively. Meanwhile the immeasurable part
AV = a1 V,ej_1) is also assumed as the RME of ECM based
on incremental analysis.

From (5), it is seen that the y and u of the ECM are
AV, and A, respectively. In accordance with nonlinear
regression mode principle, (5) can be rewritten as least
squares form:

AVout,k = (/);1;0]( (6)
where

b = [AVyuey Al ALy 1]

. @)
9k = [al bl b2 A [Voc,k - alvoc,k]] .

In (6), 6y is the unknown parameter and ¢, is the known
coefficient determined by measurement.

The RLS is often used to solve the regression model
described in (6). However, the RLS with constant forgetting
factor A may encounter the difficulties of balancing between
stability and convergence. Seeking to address this problem,
we apply the VFFRLS with variable forgetting factors [44-
46] for identification in this paper. The process of parameters
estimation of VFERLS is realized as follows:

e
e = Y — P Okn

I+ ¢Z_1_,,Pk-1¢k-1-n o’

__Badi
A+ ¢]7;Pk—l¢k

A =1
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FIGURE 2: Parameters identification algorithm for the Thevenin ECM.

P - P, —Kk</>sz_1 characterization. The V,, in (1) can be rewritten in the
k= A discrete-time form.

6, =6, 4+ K e _ _
e = Or1 + Kiee " Vo =e I/RPCPVp’k_l +(1-e 1/RPCP) R, 9)

where 0, is the identification of the parameters matrix, e, ~ From (1), obviously V,  can be expressed in the following
is the prediction error of the terminal voltage, K is the discrete-time relationship.
gain vector, P, is the covariance matrix, Ay is the variable

forgetting factor, n is the forgetting step, o? is the expected Vi = Voek-1 = Voutk-1 — Rolk-1 (10)
measurement variance, and P = 10~I. Substituting (10) into (9) yields the following.

With the VFFRLS, the forgetting factors can be decoupled
and tuned separately to improve the parameters stability R.C UR.C
and tracking accuracy of SOC estimation. The procedure of Voek =€ P Voekoy =€ (Vo oy + Roliy)
identification method is illustrated in Figure 2. (1)

+(1-e "SR I, +V,

out,

T Roli

3. Independent OCV Estimator

Since the OCV can be described as a slow time-varying
In this section, an independent OCV estimator is intro-  variable, the OCV can be solved by the expression of Ry, R,
duced. The OCV is observed with the aid of battery ECM  and C, as follows.

_1/R.C -1/R,C
V _ Vout,k + ROIk —€ VG (Vout,k—l + ROIk—l) + (1 —€ VE P)RpIk—l (12)
ock 1 — e VRG,

Once the OCV is obtained, the look-up table of  experimental data by the polynomial curve fitting meth-
OCV-SOC can be easily obtained under high precision  ods.
experimental conditions [42]. The nonlinear characteris- N
tic relationship of OCV-SOC is built in processing the v, (k) = Zdisoc k)’ 13)

i=0
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TABLE 1: Summary of HIF with tunable restricted factor.

(1) Initialization

Xgs Yor Py 580 5 Qo 5 Ry

(2) State estimation

Prior state estimation

X1 = Frgpem1 Xemapim1 + Bioi fiy

Prior state covariance

~ T
Prk-1 = Fgeor Pecapemt By + Qi

Symmetric positive definite matrix update

Se = LiSiLy

(3) Measurement correction

Gain matrix update

- =T _
Ky = Py (I ~ ViSi P + HIZRlekPklk—l) HkTRkl

Posterior state update

Posterior state covariance update

X = Xgrer + Kie (k= FiFpgpeer — Dka)l
Prie = Prps (I ~ VY5 Pper + HZRllekPklk—l) + Ry

Tunable restricted factor update

e = 00\ A (L1 (B + FE) )
B

o =1+—
T
(AP

where V_ is the OCV, d; is the polynomial fitting coeflicient,
N is the order of fitting function, and N is set to 8.

4. Dual ST-AHIF Based SOC and Capacity
Integrated Estimator

4.1. Tunable Restricted Factor Derivation. In general, the
deterministic model and known noise statistics is the pre-
condition to bring into play the KFs advantages. However,
the KFs cannot be guaranteed to work steadily all the time
when these conditions cannot be satisfied. The H infinity
filter (HIF), which is designed to minimize the maximum
estimation error, can make up those inadequate aspects; thus
it is commonly used for identifying system parameters [22].
The cost function of HIF is defined as shown below:

A
_ Yico (k= %) S (xi - z)" (14)

PR T - - -
(%o = Xo) Py (%0 — %) + ZkN=01 (we Q' wf + iR vf

where x; is the state value, X} is state estimation, and x, and
X, are the initial states values. w; and v, are the process noise
vector and measurement noise vector, respectively. Py, Qy, Ry,
and S, are the symmetric positive definite matrixes.

Since it is difficult to directly minimize cost function, a
user-specified restricted factor y* which is set to a fixed value
is preset to guarantee an optimized boundary constrained
condition [24], making sure that J, satisfies J, < y*. For
ensuring both robustness and precision, the self-adapting
restricted factor is incorporated into HIFE.

By applying the matrix inversion lemma to Py, Py
should be positive definiteness.

- - -1
Pogo=LiLi (Pgey +FLF) -y I20 (19
In other words, the restricted factor y should satisty

V22 A (LiLe (Poiy + FLE) ) (16)

where A, (A)™" denotes the greatest eigenvalue of matrix
(A)"L. Therefore, self-adapting method for restricted factor
yis

y=a \/Amax (L, (Pgi, +ETR) ) D)

where «, is used to correct y and «; > 1; the quadratic
sum of innovation error e, is used as estimation error
e e, As the restricted factor y is inversely proportional to
the estimation error, the correction coefficient expression is
shown as follows:

P (18)

where f; is an unknown coefficient associated with experi-
ments and f3; > 0; once the 3, is determined, the correction
coeflicient «, is only dependent on innovation error e;.

The calculation process of the HIF with tunable restricted
factor is shown in Table 1.

4.2. Adjustable Noise Covariance Derivation. Multiple adap-
tive methods have been integrated into original KFs such as
the correlation method, maximum likelihood criterion, and
covariance matching method. As mentioned before, the HIF
approaches KF when y — o©0. Hence it can be concluded
that the noise covariance matrix Q; and R, in HIF should
be adjusted properly. Therefore, an adaptive HIF with the
maximum likelihood criterion is designed to update the noise
covariance at each stage of measurement correction.

The innovation error can be written as an expression
of difference between measurement estimation and true
measurement value.

ex = Vi = (HiXygeor + Dily) = Hy (x5 = Xgggemr) + v (19)

The measurement innovation covariance is deduced
through probability theory.

Pek = CkPklk_ICZ + Rk (20)



The definition of innovation estimation variance Cj is
introduced to describe P, through using moving window
method of innovation.

1
Ck:Z Z ejej (21)

By combining (20)-(21), the following observation noise
covariance equation can be drawn.

ﬁk = Ck + HkPk|k—1HI’5 (22)
Similarly, the state noise can be expressed as follows.
Wiy = X — By %54 (23)

Substituting state a priori estimate X_; into (23) yields
the following.

Wiy = (% = X)) = Feoy (o1 = Rpoyper) + Kier (24)

Based on the principle of orthogonality between the
innovation and the residual, the state noise covariance Qy, is
taken on both sides of (24).

Q= Fk—1Pk|k—1FkT—1 + K CpKy (25)

The iteration approach detailed in (22) and (25) is
utilized to compensate for process and measurement noises
uncertainties in HIF algorithm.

4.3. STF Derivation. Although HIF has advantages of good
robustness to model uncertainty, it loses fast tracking capa-
bility for state with abrupt fluctuation when the estimator
reaches a stable state. More specifically, when the estimator
suffers abnormal disturbance, the gain matrix of HIF will
not increase rapidly with the growing of residual error but
will still be close to a minimum. To solve this problem,
strong tracking filter (STF) is introduced in HIF to regulate
gain matrix with incorporating fading factor into prior state
covariance matrix.

The basic idea of STF based on orthogonality principle
is to select an appropriate filter gain online and satisfy the
following requirements:

E [(x — %) (v~ %) | = min
(26)
Vk =E [Sk_'_jgl’f] =0

where E[(x; — X)(x; — ﬁ?k)T] represents the minimum state

error covariance and V; denotes the residual covariance

matrix that keeps mutually orthogonal at arbitrary times.
The residual covariance matrix V; can be defined as

e k=1

V=1 pVis + &6 P (27)
1+p B
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where output residual ¢ is defined as & = yj — Jj-; and pis
forgetting factor whose the range of value is from 0 to 1, 0.95
is commonly adopted.

The matrixes N and M are defined in (28), which is used
for calculating the fading factor.

T
Ny = Vi — HQi_ Hy — BRy

- (28)
My = HiF_y P Fy_ Hy,
tr [Ny ]
=max| 1, 29
He ( r [Mk]> 2

where H, and F,_, are the measurement and state matrix,
respectively, and Q,_, and R, are the noise covariance of state
and measurement, respectively. 4 is called the fading factor
which adjusts gain matrix to realize orthogonality principle.
tr[N,] and tr[M,] are the trace of the matrixes N, and M,,
respectively, which are used for calculating the fading factor
P

The new prior state covariance matrix Pk*| 4 is obtained
by introducing fading factor py into original prior state
covariance matrix Py_;.

* T
Prior = eFe1 Py oy + Qi (30)

Based on the above analysis, the estimator can maintain
its ability to track state with abrupt fluctuation or model
uncertainty by the combined algorithm of STF with HIF.

4.4. SOC and Capacity Joint Estimator Based on Dual ST-
AHIF. According to ECM in Figure 1, the discretization of (1)
and definition formula of SOC can be rewritten as follows:

Voutk = Vock = Vo = Roix

A% L= e—l/RP,k—lC‘p,k—1VP’k_l

P>
+ (1 _ e_l/Rp,k*le,kfl ) Rp,k—lik—l (31)
-
SOC, = SOC,_, - 1= k1
Ccup,k

where V1> Voo o and V,,  are the OCV, terminal voltage, and
polarization voltage at the sample time k, respectively, and the
Ceap i is the capacity which is considered as an independence
state.

From the discrete ECM expression shown in (31), the
two state-space equations including SOC and capacity can be
described in (32) and (33), respectively.

X
X = f (Kot Qoo Uper) + Wiy
. X
= F_ Xy + By + Wiy (32)

X .
Vi = h (x5 @i tye) + vie = H g + Dyl + v
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Pk = Pr-1t w](f_l
(33)

Vi = h (0 Qo ) + v = H;f(/)k + Dy + vy

where x, = [SOCy Vp,k]T’ Px [Ceapils D =
[Roul By = [~03At/Cp) (1= RmaCrunyr ],
F, = (df (Xp—1> Pip—ro i)/ dxp g, =
6 ctmpncpn | Hy = (dhCoo @ ) fdx)lg, | =

[0V, 4 (SOCss Cyp)19SOC,, ~1]7,

HY = (dh(Zyp_1> po w)[dp)lg,, > the symbols wi_, and

w? | represent the state noise of the x; and ¢y, respectively,

and the symbol v, is the measurement noise.

It is worth noting that parameter HZ’ of measurement
equation is associated with SOC, so the HZ can be expanded
as follows:

dh (fkuc—p Pr> ”k)

HY =
d(Pk ¢k\k—1

k

T
[ds d; dg ds d, dy d, dy dy] =a, [égap,k

where «, is the undetermined coefficient between capacity
and OCV and is obtained via iterative method and dg —d, are
the coeflicients of fitting function describing the relationship
between OCV and SOC.

oh ()?klk—l’ Pre> ”k)
Oy

x [ SGZap,k

Compare to [37] and [47], in which, without consid-
eration of the relevant degree between OCV and capacity,
the Oh(Xyjk—1> Pr> Ux) /0@y can be used as fine-tuning factor
for capacity error compensation (EC). With the identified
ECM parameters and OCV, the battery SOC and capacity
are estimated iteratively. The process of the HIF with tunable
restricted factor can be seen in Table 1, the noise covariance
adaptive adjusted strategy is given in (22) and (25), the ST
correction factor is listed in (30), and the general flowchart of
the dual ST-AHIF based SOC and capacity joint estimation
method is illustrated in Figure 3.

5. Verification and Discussion

The 20Ah/24V lithium-ion phosphate battery is selected as
the test object based on a high precise battery test plat-
form shown in Figure 4, which consists of a programmable
temperature chamber, a connected computer, and a power
battery test system (Arbin EVTS) with current (0 to 300A)

cap,k

7
_ oh (2k|k—1’¢k’”k)
a(Pk ¢k\k71
oh (xp P i) dx;
T do,
Xk Rkt Pk Pre-1

(34)
where Oh(xy, ¢, u)/0x, = Hy, dxi/deo, = Of (xp_y,

1)@y + (Of Xy Ppys g 1)/0x 1) (doxyy/
dgy) = nTi_,/ C?ap +Fy(dxy, /dey,).

Although [37] considers that capacity is not associated
with measurement equation from a simplification point of
view, the relationship between OCV and capacity cannot
be ignored [47]. Inspired by [47], a new quadratic function

describing capacity and coefficient of fitting function is
defined as

=6 =5 ~4 3 =2 A1 T
Ccap,k Ccap,k Ccap,k Ccap,k Ccap,k Ccap,k 1] (35)

On the basis of the above methods,

= [SOC} SOC; SOC; SOC; SOC; SOC; SOC; SOC, 1]xa,

(36)

=6 =5 =~ =3 =2 =1 T
7Ceupk 7Coapr 5C 4C, 4 3C 0k 2Cipx 1 0]

cap,k

and voltage (0 to 400V), while the voltage and current
measurement error limits are both within 0.1%. The com-
puter connecting with Arbin EVTS is used to collect and
store experimental data such as charge/discharge current
and terminal voltage at a time interval of 1s. The data of
two operating conditions including Dynamic Stress Test
(DST) and Federal Urban Driving Schedule (FUDS) at a
constant temperature 25°C for the battery are collected to
evaluate the effectiveness of model parameters identification
and state estimation method. The reference SOC should
be determined accurately to evaluate the suitability of the
proposed dual ST-AHIF method. The coulomb counting
(CC) method with high reliability is used to calculate the ref-
erence SOC under a certain condition; that is, initial SOC is
known.

In addition, the statistical indexes such as maximum
absolute error (MAE) and average absolute error (AAE) are
used to represent quantization performance of the identifica-
tion and estimation algorithms.
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FIGURE 3: The flowchart of the dual ST-AHIF based SOC and capacity estimator.

FIGURE 4: The battery test platform.

5.1. ECM Parameters Identification. The lithium-ion bat-
tery is fully charged by constant-current-constant-voltage
(CCCV) method, and then it is left to rest for two hours before
being discharged under two working conditions, respectively.
The discharge current-time distribution of the DST and
FUDS cycle, in which the duration of uninterrupted working
condition is 35000 seconds, is shown in Figure 5. With the
data flows of collected discharge current and terminal voltage,
the VFFRLS algorithm and incremental model analysis are

combined to identify the ECM parameters, OCV, and termi-
nal voltage.

The ECM parameters are identified by using recursion
procedure. To demonstrate the robustness of the VFFRLS
against unreliable initial value, imprecise initial values are
purposely set as follows: R, 0.05Q, R, 0.01Q), and
C, = 1000F. The identified ECM parameters versus time
are shown in Figures 6(a)-6(b); the identification values of
ECM parameters are able to converge to stable values rapidly
from the unreliable initial value under the DST and FUDS
cycle, respectively. Among them, the ohmic resistance R,
and the polarization resistance Rp exhibit similar tendencies
except for a little fluctuation. Specifically, R, keeps a higher
stability, as the ohmic resistance is equal to the ratio of
terminal voltage variation to transient current when the
variable current is turned off. By contrast to R, and Ry, the
polarization capacitance C, varied significantly because Rp
and Cp have direct correlation to intricate electrochemical
activity. Based on the incremental analysis adaption in ECM,
the VFFRLS can be robust against the varying variables such
as initialization error of parameters.

With the extracted R, Rp, and Cp, the terminal voltage
as ECM observation is recursively obtained in each sampling
period. Figures 7(a)-7(b) and 7(c)-7(d) demonstrate the
identified results under DST and FUDS cycle, respectively.
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FIGURE 6: (a) Value of Ry, Rp, and C, under DST cycle; (b) value of Ry, Ry, and C, under FUDS cycle.

As can be seen, although the ECM is reduced to the one-
order Thevenin ECM, the error stabilization of the terminal
voltage by single RLS and incremental VFFRLS, respectively,
still has been achieved as the whole discharging process,
but it has various amplitude fluctuations. Compared with
original RLS, the terminal voltage estimation error of the
incremental VFFRLS is obviously decreased and always keeps
stability of error. As summarized in Table 2, the maximum
terminal voltage error (MTVE) of the RLS is up to 0.1356V
and 0.1467V under the DST and FUDS cycle, respectively;
correspondingly, the MTVE of the incremental VFFRLS is
only 0.0211V and 0.0304V under the DST and FUDS cycle,
respectively, indicating a high identification precision. The
average terminal voltage error (ATVE) of the incremental
VFERLS is only 0.0003V and 0.0015V under the DST and
FUDS cycle, respectively, which can be neglected regarding
the sensors precision. The high identification precision of
terminal voltage reaffirms the validity of the ECM parameter

identification method by VFFRLS and further proves the
credibility of the Thevenin ECM with incremental analysis.

5.2. SOC Estimation. Based on the identified ECM param-
eters and terminal voltage, the SOC estimation results can
be obtained with AHIF algorithm. As shown in Figure 8,
the black line presents the reference SOC, while the blue
line indicates the SOC estimation. Figure 8(a) shows that the
estimated SOC is adaptive and capable of tracking reference
SOC dynamic after a short period of time. Figure 8(b)
indicates that the SOC estimation error of AHIF can not
only converge to the reference SOC but also stay within
1.5% except at the beginning of discharge. It is observed that
the SOC error is relatively large from 7.7 h to 8.6h which
corresponds to the SOC range between 30% and 20%. Two
reasons might be that (1) there exists a flat area in the OCV-
SOC fitting curve in that region and (2) the precision of
the measurement like current and voltage directly affects the
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under FUDS.

TaBLE 2: Comparison for terminal voltage estimation results.

RLS RLS Incremental-VFFRLS Incremental-VFFRLS
(DST) (FUDS) (DST) (FUDS)
MTVE(V) 0.1356 0.1467 0.0211 0.0304
ATVE(V) 0.0123 0.0141 0.0003 0.0015

precision of OCV, and any small disturbances on OCV may
cause larger SOC error that cannot be avoided. The AAE of
AHIF is 0.4363% and the corresponding MAE is 2.1966%.
Although the overall results seem to be acceptable, there is
scope for improvement.

To further eliminate SOC error with AHIF shown in
Figure 8, the STF is incorporated into AHIF to reduce
the effects of abrupt fluctuation in measurement when the

estimator reaches a stable state. Figures 9(a) and 9(b) show
the SOC estimation results and SOC estimation error. The
black line presents the reference SOC, the blue line indicates
the SOC estimation by ST-AHIF, and the red line denotes
the SOC estimation by AHIF. Figure 9(a) shows that the
estimated SOC by ST-AHIF can be adaptive and capable of
tracking reference SOC dynamic rapidly. Figure 9(b) indi-
cates that the SOC estimation error of ST-AHIF can not
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only converge to the reference SOC but also stay within 1%,
showing a sufficiently high accuracy. And, more remarkably,
the SOC error is dramatically inhibited in those special areas
that represent the relatively large SOC estimation error by the
AHIF because the STF has advantageous effects on tracking
sudden change and offsetting model uncertainty. The AAE
of ST-AHIF is only 0.2311% and the corresponding MAE is
1.3401%, which is significantly better than AHIE Therefore,
the combination of STF with AHIF has evident advantage
over single AHIF in SOC estimation.

Beyond that, the commonly used AEKF is used for SOC
estimation under the same condition. Figure 10 shows the
SOC estimation results by comparing the ST-AHIE, AHIF,

and AEKFE In Figure10(a), the black line represents the
reference SOC, the blue line indicates the SOC estimation by
ST-AHIF, the red line denotes the SOC estimation by AHIF,
and the green line is SOC estimation by AEKE The SOC
estimation error is plotted in Figure 10(b), where the blue line
indicates the SOC estimation error by ST-AHIF, the red line
denotes the SOC estimation error by AHIF, and the green
line is SOC estimation error by AEKE. Due to the problem
of model uncertainty and flat area in OCV-SOC fitting curve,
the special area which represents the relatively large SOC esti-
mation error still exists. In the view of this special area, AEKF
and AHIF suffer the common disadvantage with similar error,
both of which cannot overcome the disturbances on OCV.
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TaBLE 3: Comparison for the SOC estimation results.
Method ST-AHIF AHIF AEKF
MAE(%) 1. 3401 2.1966 3.5675
AAE(%) 0.2311 0.4363 0.7705
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F1GURE 10: The SOC comparison results of three algorithms: (a) SOC estimation; (b) SOC estimation error.

The AAE of AEKF is 0.7705% and the corresponding MAE
is 3.5675%, respectively. In summary, the SOC estimation
results of ST-AHIE, AHIE and AEKF are shown as in Table 3;
it is obvious that the proposed ST-AHIF is superior to AHIF
and AEKE

As the SOC estimation is reliably obtained based on
known initial value, SOC initialization error may have a
negative influence on the SOC estimation. To evaluate the
possible negative effect, three levels of initialization error on
SOC from 10%, 20%, and 30% are used for the proposed
ST-AHIE, respectively. The estimation results and estimation
error of SOC are shown in Figure 11. The black line rep-
resents the reference SOC, the blue line indicates the SOC
estimation with 10% initialization error, the red line denotes
the SOC estimation with 20% initialization error, and the
green line is SOC estimation with 30% initialization error.
It is clear that the global SOC estimation error with three
levels of initialization error is increased throughout the whole
discharge process. It is obvious that the special area which
represents the relatively large SOC estimation is observed.
However, the estimation error is still within reasonable
range; the convergence and accuracy have not been markedly
weakened. Although the SOC estimation error is relatively
large at the beginning of discharging process when SOC is
initialized with error of 10%, 20%, and 30%, respectively, the
estimated SOC can track reference SOC rapidly and closely
until the end of discharging. In summary, the SOC estimation
results with influence of three SOC initialization errors are
shown as in Table 4.

TaBLE 4: Comparison for the SOC estimation results with initializa-
tion error.

ST-AHIF
AAE(%)

90%
0.5441

80%
0.6684

70%
0.7336

5.3. Capacity Estimation

5.3.1. Evaluation of ST-AHIF and AHIF. With the FUDS
data at constant temperature 25°C, the capacity estimation
results by ST-AHIF and AHIE respectively, in which the
relationship between OCV and capacity has not been taken
into consideration, are plotted in Figure 12. The black line
represents the capacity reference value, the red line is the
capacity estimation results by AHIF, and the blue line is the
capacity estimation results by ST-AHIE. Figures 12(b) and
12(d) show that no matter the capacity estimated by AHIF or
ST-AHIEF, it has similar estimation trend. However, the ST-
AHIF has higher estimation accuracy than the AHIE Due to
the lacking of EC, both of the two capacity estimations have
relatively large error. Although the ST-AHIF has advantages
on the issue of restraining model uncertainty and abrupt
fluctuation compared with AHIE, the error tends to increase,
particularly the error of capacity estimation close to 4% in
the special areas corresponding to larger SOC estimation
error, which is beyond the acceptable range. Therefore, it is
necessary to improve capacity estimation precision through
adding appropriate EC into ST-AHIE
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5.3.2. Evaluation of Improved EC. In order to verify the effect
of improved EC, the capacity estimation results of the ST-
AHIF and the AHIF are plotted in Figure 13, where the two
different EC are introduced to compare the estimation per-
formance. Figures 13(a)-13(b) indicate the capacity estimation
results through AHIF with EC in [47] and improved EC,
respectively. Figures 13(c)-13(d) show the capacity estimation
results by ST-AHIF with two EC, respectively. The black line
represents the capacity reference value, the red line is the
capacity estimation results with EC in [47], and the blue line
is the capacity estimation results with improved EC. Figures
13(a) and 13(c) show that the capacity estimations with EC
can both fast converge to the reference capacity no matter
the EC in [47] or improved EC. Figures 13(b) and 13(d)

show that estimation error is significantly lower than that in
Figures 12(b) and 12(d). Among them, the capacity estimation
error obtained by EC in [47] can remain within 1% while the
capacity estimation error got by improved EC is kept in 0.5%
no matter whether in AHIF or ST-AHIF. Thus it can be seen
that introduction of EC is effective for improving dynamic
capacity estimation approach, and especially the relatively
big capacity estimation error is significantly reduced in
special areas corresponding to relatively big SOC estimation
error. By comparing these two EC in Figures 13(b) and
13(d), the capacity estimation error calculated with improved
EC has smaller fluctuation and higher precision than esti-
mation error with EC in [47]. The above results analyses
indicate that, under the same EC condition, the capacity
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TaBLE 5: Comparison for the capacity results.

Method ST-AHIF AHIF AEKF
MAE ([47]) 0.7915% 0.9050% 1.6812%
MAE (Improved) 0.2057% 0.2511% 0.4228%
AAE ([47]) 0.1697% 0.4326% 1.0933%
AAE (Improved) 0.0514% 0.1113% 0.2778%
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FIGURE 14: The comparison results with improved EC by three algorithms: (a) capacity estimation; (b) capacity estimation error.

estimation precision by ST-AHIF is higher than that by
AHIF.

Similarly, Figure 14(a) shows the reference and estimated
capacity results by AEKF, AHIF, and ST-AHIF with improved
EC, and Figure 14(b) shows their capacity estimation error.
The black line represents the capacity reference value, the
green line is the capacity estimation value by AEKE, the
red line denotes the capacity estimation value by AHIF, and
the blue line is the capacity estimation value by ST-AHIE.
Figure 14(a) shows that the three algorithms can quickly
converge to the reference capacity. Figure 14(b) indicates that
the capacity estimation error obtained from the AEKF goes
beyond 0.4%, and the capacity estimation error obtained
from the AHIF can keep in 0.26% while the capacity estima-
tion error obtained from the ST-AHIF can keep in 0.21%. It
can be concluded that the ST-AHIF has smaller estimation
error with improved EC than the AHIF and AEKE Compared
with Figures 13 and 14, the improved EC is suitable for the
three algorithms and is superior to [47]. The MAE and AAE
based on two EC are summarized in Table 5.

6. Conclusion

The battery model parameters identification and states esti-
mation suffer from model uncertainties and abrupt state
instability, which results in poor convergence and low pre-
cision. To solve this problem, this paper proposes a dual
ST-AHIF algorithm for SOC and capacity estimation based

on real-time identified model parameters. The incremental-
analysis-based one-order Thevenin ECM combined with
VFFRLS algorithm is utilized to identify model parameters;
meanwhile the AHIF including STF is used to estimate
SOC and capacity with consideration of relevant degree
between OCV and capacity. Therefore, the proposed method
for SOC and capacity estimation with fast convergence and
high precision can effectively reduce the impact of model
uncertainties and abrupt state instability. A high precision
experimental platform has been established to gather reliable
data of charge/discharge current and terminal voltage. Two
typical operation conditions (DST and FUDS) are adopted
to evaluate the performance of parameters identification and
state estimation. The simulation results indicate the favorable
estimation performances whose MAE of SOC is 1.3401% and
AAE of SOC is 0.2311%, while MAE of capacity is 0.2057%
and AAE of capacity is 0.0514%. The comparison with AHIF
and AEKF further validates the superiority of the proposed
integrated method in terms of precision and robustness.

Nomenclature

Abbreviations and Notations

SOC: State of charge

BMS: Battery management system
EVs: Electric vehicles

OCV: Open-circuit voltage
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KF:  Kalman filter

EKF: Extended Kalman filter
UKF: Unscented Kalman filter
HIF: H infinity filter

ECM: Equivalent circuit model
R, Ohmic resistance

Rp:  Polarization resistance
Cp:  Polarization capacitance
Voc:  Open-circuit voltage

Vp:  Polarization voltage across Cp
Vout: Terminal voltage

Voc:  Open-circuit voltage

L Current at time k

e Innovation at time k

a;/b;:  Coeflicient of parameters
AV,,,;: Change of terminal voltage
0: Identified parameters

¢: Measurements

di:  Polynomial coefficients

y: Restricted factor

«,;:  Corrected factor

Bi: Coefficient associated with experiments
Vi:  Residual covariance matrix

&: Output residuals

p:  Forgetting factor

Hy:  Fading factor

cap: Capacity

Ry:  Observation noise covariance

Qy: State noise covariance

x:  Estimated state including SOC
¢:  Estimated state including capacity
«,: Correlation coeflicient.
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