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of a 6-DOF Polishing Hybrid Robot Using a Laser Tracker
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A general methodology for ensuring the geometric accuracy of a 6-DOF polishing hybrid robot having a 3UPS and UP parallel
mechanism and a 3-DOF wrist is presented. The process is implemented in three steps: formulation of the error model containing
complete source errors such as offset errors of the actuated joints and structural errors of the joints and links utilizing product
of exponentials formula and screw theory. Measurement of the full pose error twist with a specially designed measurement tool
having three reference points was undertaken. Identification of the source errors by a stepwise identification strategy to overcome
the ill-conditioned problem arising from the multicollinearity and development of a linearized error compensator was completed.
An experiment has been carried out on the prototype, and the results show that, after calibration, a position volumetric error of
0.07mm and an orientation error of 0.07 degrees can be achieved over the cubic task workspace with repeatability of 0.016mm and
0.010 degrees.

1. Introduction

Theapplication of optical components has increased in recent
years thanks to the rapid development of astronomy, space
exploration, and high-end optical instruments. Computer
ControlOptimal Surfacing (CCOS) [1] is significant in optical
component machining, which affects the material removal
by controlling the dwell time and the pressure on the com-
ponent surface; however, the high cost of a five-axis polishing
machine tool restricts its large-scale application. Hybrid
robots, as an alternative solution, which not only meet the re-
quirements of accuracy and stability [2] but also are more
cost-effective and flexible than polishing machine tools [3],
have been used for many polishing processes [4–6].

As one of the most important performance specifications
for industrial robots, geometric accuracy can be enhanced
by kinematic calibration, which usually involves four steps:
modelling, measurement, identification, and compensation
[7, 8].

Error measurement in a robotic system has been inves-
tigated in many previous studies. The approaches can be
classified into two categories: self-calibration or autonomous

calibration [9–11] and external calibration [12–14]. The for-
mer is implemented based on the sensors being placed
on the active, passive, and/or redundant joint. Although
this approach allows easy automatic calibration and online
compensation, the installation of a large number of sensors
increases the complexity of the system and its manufacturing
cost.Therefore, this method is still very limited in application
[15]. As a more common method, external calibration is
carried out byminimizing the residual between themeasured
and nominal values of the robot end-effector with the aid of
external pose sensors. Zhuang [16] and Vischer [17] used a
theodolite and a 3D coordinate measuring machine to meas-
ure the full pose error of a robot, respectively; however, the
measurement process is extremely complex, which leads to
a reduction in practicability. Grosso [18] and Hager [19] pre-
sented a measurement scheme utilizing two cameras to cap-
ture a 3D image, whichmakes it difficult tomeet the accuracy
requirements of robot calibration. To complete the full pose
error measurement in a simple way with less time cost, the
most commonly used method is to measure three or more
reference points fixed on the end-effector and then the pose
error can be computed [20, 21]. For example, Nubiola [22]
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proposed a measurement method using a single telescoping
ball-bar and two fixtures and Nguyen [23] proposed another
strategy based on a set of discrete points on a circular trajec-
tory; however, the former has limitations on its measurement
range and the number of measurable orientations, and the
latter can only be applied to robots that have wholly revolute
joints or ones inwhich only the last joint is revolute.Therefore
an important issue to be solved in the kinematic calibration
of hybrid robots is how to measure the full pose error in an
economic way.

The kernel step in kinematic calibration is to identify
complete source errors based on the measured pose errors,
which is a parameter estimation problem in regression anal-
ysis. There have been many algorithms applied to robot cali-
bration: the Levenberg-Marquardt (LM) method [24] is a
classical nonlinear optimization algorithm that can effectively
overcome the problem of the overparameterization and sin-
gularities. To overcome the deficiency in the LM method in
which the convergence rate decreases if the search path is
far from the optimal solution, a Trust Region (TR) method
[25] is investigated to identify the source errors of the robot.
Nevertheless, the number of iterations and optimization
results of the nonlinear algorithm are significantly affected by
the initial value, so the least square (LS)method [26, 27] based
on the linear model is widely employed in practice because it
is simpler and easier to use. The LS method can be directly
adopted for the well-conditioned identification Jacobian;
however, as themechanical structure becomesmore complex,
more attention should be paid to deal with the ill-conditioned
identification problem caused by multicollinearity between
the source errors.

Driven by the practical need to ensure polishing accuracy,
a general approach for kinematic calibration of the hybrid
robot with “the parallel mechanism and 3-DOF wrist” struc-
ture is presented. The remainder of this paper is organized as
follows: in Section 2, a linearized error model is formulated
by product of exponentials and screw theory containing all
source errors, which include offset errors in the actuated
joints and structural errors in the joints and links. In Sec-
tion 3, the pose error twists of the robot at different measure-
ment configurations are computed using position data from
three reference points on a special tool and the identification
Jacobian is constructed. This is followed, in Section 4, by
source error identification using a stepwise identification
strategy based on multicollinearity diagnosis, which offers a
more reliable estimation of source errors than the LS method
when dealing with an ill-conditioned problem.Then, a linear
error compensator is developed for real-time implementa-
tion. In Section 5, experiments are carried out on a prototype
machine to verify the effectiveness of the proposed approach
before conclusions are drawn in Section 6.

2. Error Modelling

Figure 1 shows 3D modelling of the hybrid robot, which
is composed of a parallel mechanism, a wrist, and an end-
effector. Only constrained by the nonactuated UP limb in the
middle, the parallel mechanism with one-translational two-
rotational (1T2R) DOF has the advantage of large position

workspace, which is actuated by three 6-DOF UPS limbs.
Here, U, S, and P represent, respectively, universal, spherical,
and prismatic joints, and the underlined P denotes an actu-
ated prismatic joint. Considering that the position and orien-
tation of the platform are dependent, a 3-DOF wrist is con-
nected to the end of the platform to ensure the orientation
capability of the end-effector, which constitutes the 6-DOF
serial limb together with the parallel mechanism. As the end-
effector is rigidly mounted at the end of the wrist, we treat
the wrist and the end-effector as wrist for simplicity in the
following. In this section, we will formulate the linear map
between the pose error twist of the robot and all possible
geometric source errors in joints and links.

To describe the source errors, the following frames are
defined as shown in Figure 2: for convenience, we treat uni-
versal/spherical joints as two/three revolute joints having
mutually orthogonal joint axes and number the UPS limbs
as 1, 2, and 3 and the UP limb plus the wrist as limb 4. The
base reference frame {𝑅0} is located at the median point of
the base, which also acts as the reference frame {𝑅0,𝑖} of limb
i. Meanwhile, we place body fixed frames {𝑅𝑗,𝑖} (𝑗 = 1 . . . 6)
attached to the jth joint of limb i and place body fixed frames{𝑅7,𝑖} attached to the end-link of limb i. So, {𝑅7,4} is the
tool frame {𝑅𝑡}. The aforementioned frames are all built by
following the Denavit-Hartenberg (D-H) conventions with𝐴𝑗,𝑖 being the origin. Finally, we place floating frames {𝑅󸀠4,4}
and {𝑅󸀠0} at point𝐴4,4 and𝑃, respectively, with their three axes
remaining parallel to those of {𝑅0}.

According to the structure characteristics of the hybrid
robot, the following error modelling process can be divided
into the parallel mechanism and the serial limb.

2.1. Error Modelling of the Parallel Mechanism. Based on
the local POE (product of exponentials) formula method
presented in [27], the homogeneous transformation matrix
of {𝑅𝑗+1,𝑖} with respect to {𝑅𝑗,𝑖} can be expressed as

𝑔
𝑗
𝑗+1,𝑖 = 6∏

𝑘=1

exp (𝜉̂𝑘,𝑗,𝑖𝜁𝑘,𝑗,𝑖) (1)

with

exp (𝜉̂𝑘,𝑗,𝑖𝜁𝑘,𝑗,𝑖) = I4 + 𝜉𝑘,𝑗,𝑖𝜁𝑘,𝑗,𝑖 + (1 − cos 𝜁𝑘,𝑗,𝑖) 𝜉̂2𝑘,𝑗,𝑖+ (𝜁𝑘,𝑗,𝑖 − sin 𝜁𝑘,𝑗,𝑖) 𝜉̂3𝑘,𝑗,𝑖 (2)

where 𝜉̂𝑘,𝑗,𝑖 (𝑘 = 1, . . . , 6) constitutes a basis of 𝑠𝑒(3); 𝜁1,𝑗,𝑖,𝜁2,𝑗,𝑖, and 𝜁3,𝑗,𝑖 (𝜁4,𝑗,𝑖, 𝜁5,𝑗,𝑖, and 𝜁6,𝑗,𝑖) are the translations along
(rotations about) 𝑥𝑗,𝑖, 𝑦𝑗,𝑖, and 𝑧𝑗,𝑖, respectively.

Differentiating (1) with respect to {𝑅󸀠4,4} and applying
appropriate adjoint transformation (for more details, see
[27]), the pose error twist of {𝑅𝑗+1,𝑖} can be made such that𝛿𝜌4,4󸀠𝑗+1,𝑖 = Ad

𝑔4,4
󸀠

𝑗,𝑖

𝛿𝜁𝑗,𝑖 (3)

with
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Figure 1: 3D modelling of the hybrid robot.
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Figure 2: Schematic diagram and the frame establishment of the hybrid robot.

Ad
𝑔4,4
󸀠

𝑗,𝑖

= [[R4,4󸀠𝑗,𝑖 [r4,4󸀠𝑗,𝑖 ×]R4,4󸀠𝑗,𝑖03×3 R4,4
󸀠

𝑗,𝑖

]]𝛿𝜁𝑗,𝑖 = (𝛿𝜁1,𝑗,𝑖 𝛿𝜁2,𝑗,𝑖 𝛿𝜁3,𝑗,𝑖 𝛿𝜁4,𝑗,𝑖 𝛿𝜁5,𝑗,𝑖 𝛿𝜁6,𝑗,𝑖)T (4)

where R4,4
󸀠

𝑗,𝑖 is the orientation matrix of {𝑅𝑗,𝑖} with respect to{𝑅󸀠4,4}, r4,4󸀠𝑗,𝑖 is the vector from𝐴4,4 to𝐴𝑗,𝑖, and [r4,4󸀠𝑗,𝑖 ×] denotes
the corresponding skew matrix; 03×3 is a 3 × 3 zero matrix.
It means that the source errors vector can be converted to
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the error twist evaluated in {𝑅󸀠4,4} through the adjoint matrix
transformation.

Based on (3), the pose error twist of all the limbs of
the parallel mechanism evaluated in {𝑅󸀠4,4} can be developed
directly such that

𝛿𝜌4,4󸀠𝑖 = 6∑
𝑗=0

Ad
𝑔4,4
󸀠

𝑗,𝑖

𝛿𝜁𝑗,𝑖, 𝑖 = 1, 2, 3 (5)

𝛿𝜌4,4󸀠4 = 3∑
𝑗=0

Ad
𝑔4,4
󸀠

𝑗,4

𝛿𝜁𝑗,4 (6)

Note that 𝛿𝜁𝑗,𝑖 can be divided into amotion error along/about
the jth joint axis and other errors except 𝛿𝜁0,𝑖, so (5) and (6)
can be modified such that

𝛿𝜌4,4󸀠𝑖 = 6∑
𝑗=1

𝛿𝜍𝑗,𝑖𝜉𝑡𝑎,𝑗,𝑖 + 6∑
𝑗=0

Ad
𝑔4,4
󸀠

𝑗,𝑖

𝛿𝜁𝑗,𝑖, 𝑖 = 1, 2, 3 (7)

𝛿𝜌4,4󸀠4 = 3∑
𝑗=1

𝛿𝜍𝑗,4𝜉𝑡𝑎,𝑗,4 + 3∑
𝑗=0

Ad
𝑔4,4
󸀠

𝑗,4

𝛿𝜁𝑗,4 (8)

with𝛿𝜍𝑗,𝑖 = 𝑚𝑗,𝑖𝛿𝜁3,𝑗,𝑖 + (1 − 𝑚)𝑗,𝑖 𝛿𝜁6,𝑗,𝑖,𝑚 = {{{1 prismatic joint0 rotation joint𝛿𝜁𝑗,𝑖= (𝛿𝜁1,𝑗,𝑖 𝛿𝜁2,𝑗,𝑖 (1 − 𝑚) 𝛿𝜁3,𝑗,𝑖 𝛿𝜁4,𝑗,𝑖 𝛿𝜁5,𝑗,𝑖 𝑚𝛿𝜁6,𝑗,𝑖)T
(9)

where 𝜉𝑡𝑎,𝑗,𝑖 is the unit twist of the jth joint axis of limb i. Note
that the UPS limbs and UP limb share the same platform, so𝛿𝜌4,4󸀠𝑃 = 𝛿𝜌4,4󸀠𝑖 = 𝛿𝜌4,4󸀠4 (10)

In order to generate the error model of the parallel
mechanism, the motion errors of all the passive joints should
be eliminated because they are dependent on the other source
errors arising from the closed-loop structure of the parallel
mechanism. With the help of the reciprocal screw theory
[28], taking inner products on both sides of (7) with the unit
wrench of actuations 𝜉𝑤𝑎,3,𝑖 and (8) with the unit wrench of
constraints 𝜉𝑤𝑐,𝑗𝑐,4 and then rewriting them in matrix form
yield

𝛿𝜌4,4󸀠𝑃 = [J𝑃𝑎
J𝑃𝑐
]−1 ((𝛿𝜍𝑃𝑎

0
) + [G𝑃𝑎

G𝑃𝑐
](𝛿𝜁𝑃𝑎𝛿𝜁𝑃𝑐))= J−1𝑃 𝛿𝜍𝑃 + J−1𝑃 G𝑃𝛿𝜁𝑃 (11)

with
J𝑃𝑎 = [𝜉𝑤𝑎,3,1 𝜉𝑤𝑎,3,2 𝜉𝑤𝑎,3,3] ,
J𝑃𝑐 = [𝜉𝑤𝑐,1,4 𝜉𝑤𝑐,2,4 𝜉𝑤𝑐,3,4]
G𝑃𝑎 = [[[[

𝜉T𝑤𝑎,3,1Ad1 0 0

0 𝜉T𝑤𝑎,3,2Ad2 0

0 0 𝜉T𝑤𝑎,3,3Ad3

]]]] ,
G𝑃𝑐 = (𝜉T𝑤𝑐,1,4Ad4𝜉T𝑤𝑐,2,4Ad4

𝜉T𝑤𝑐,3,4Ad4

)
Ad𝑖 = [Ad𝑔4,4󸀠0,𝑖 . . . Ad

𝑔4,4
󸀠

6,𝑖
] ,

𝛿𝜁𝑃𝑎 = (𝛿𝜁T1 𝛿𝜁T2 𝛿𝜁T3 )T
Ad4 = [Ad𝑔4,4󸀠0,4 . . . Ad𝑔4,4󸀠3,4 ] ,𝛿𝜁𝑃𝑐 = 𝛿𝜁4𝛿𝜍𝑃𝑎 = (𝛿𝜍3,1 𝛿𝜍3,2 𝛿𝜍3,3)T ,𝛿𝜁𝑖 = (𝛿𝜁T0,𝑖 . . . 𝛿𝜁T6,𝑖)T ,𝛿𝜁4 = (𝛿𝜁T0,4 . . . 𝛿𝜁T3,4)T

(12)

2.2. Error Modelling of the Serial Limb. On the basis of the
method mentioned in the previous section, the pose error
twist of the serial limb, which is composed of a “UP+RRR”
kinematic chain, evaluated in {𝑅󸀠0} can be expressed as𝛿𝜌 = 6∑

𝑗=1

𝛿𝜍𝑗,4𝜉𝑡𝑎,𝑗,4 + 6∑
𝑗=0

Ad
𝑔0
󸀠

𝑗,4

𝛿𝜁𝑗,4
= 3∑
𝑗=1

𝛿𝜍𝑗,4𝜉𝑡𝑎,𝑗,4 + 3∑
𝑗=0

Ad
𝑔0
󸀠

𝑗,4

𝛿𝜁𝑗,4 + 6∑
𝑗=4

𝛿𝜍𝑗,4𝜉𝑡𝑎,𝑗,4
+ 6∑
𝑗=4

Ad
𝑔0
󸀠

𝑗,4

𝛿𝜁𝑗,4
(13)

Substituting (8) and (11) into (13) and rewriting in matrix
form yield𝛿𝜌 = Ad

𝑔0
󸀠

4,4

𝛿𝜌4,4󸀠𝑃 + J𝑆𝛿𝜍𝑆 + G𝑆𝛿𝜁𝑆= Ad
𝑔0
󸀠

4,4

J−1𝑃 𝛿𝜍𝑃 + Ad𝑔0󸀠
4,4

J−1𝑃 G𝑃𝛿𝜁𝑃 + J𝑆𝛿𝜍𝑆 + G𝑆𝛿𝜁𝑆= B𝛿𝜒 (14)
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where 𝛿𝜒 = (𝛿𝜍𝛿𝜁) ,𝛿𝜍 = (𝛿𝜍P𝛿𝜍S) ,𝛿𝜁 = (𝛿𝜁P𝛿𝜁S)
B = [J G] ,
J = [Ad𝑔0󸀠4,4J−1𝑃 J𝑆] ,
G = [Ad𝑔0󸀠4,4J−1𝑃 G𝑃 G𝑆]
J𝑆 = [𝜉𝑡𝑎,4,4 𝜉𝑡𝑎,5,4 𝜉𝑡𝑎,6,4] ,
G𝑆 = [Ad𝑔0󸀠4,4 Ad

𝑔0
󸀠

5,4

Ad
𝑔0
󸀠

6,4
]𝛿𝜍𝑆 = (𝛿𝜍4,4 𝛿𝜍5,4 𝛿𝜍6,4)T ,𝛿𝜁𝑆 = (𝛿𝜁T4,4 𝛿𝜁T5,4 𝛿𝜁T6,4)T

(15)

3. Pose Error Twist Measurement

Since it is difficult to obtain all the source errors by direct
measurement, parameter identification offers an effective way
of obtaining them from pose error measurements. In this
section, the focus is on the formulation of the identification
Jacobian using position measurement.

Firstly, the workpiece frame {𝑅𝑤} is defined as the
measurement frame (Figure 3). To facilitate computation, the
measurement frame is then translated to the middle point of
the task workspace, as the reference pose, where the nominal𝑧5,4-axis is coincident with 𝑦-axis, and the nominal 𝑧6,4-
axis is coincident with 𝑥-axis of {𝑅𝑤}. Hence, the following
adjoint transformation is made to obtain the pose error twist
evaluated in {𝑅𝑤}:𝛿𝜌𝑤 = Ad𝑔𝑤

0󸀠
𝛿𝜌0󸀠 = Ad𝑔𝑤

0󸀠
B𝛿𝜒 (16)

with

Ad𝑔𝑤
0󸀠
= [𝑤R0 0

0 𝑤R0
] ,
𝑤R0 = Rot(𝑧, 𝜋2 )Rot (𝑥, 𝜋 − 𝛾) (17)

where 𝛿𝜌0󸀠 = 𝛿𝜌 given in (14) and 𝛾 = 𝜋/6 is the nominal
structural angle between 𝑧-axis and 𝑧0-axis. We still denote𝛿𝜌𝑤 as 𝛿𝜌 and Ad𝑔𝑤

0󸀠
B as B for simplicity below.

According to [29], the necessary conditions for 𝛿𝜒 to be
identifiable are as follows: (1) in the process of movement
between measurement configurations, all of the actuated
joints must be in motion; (2) the number of measurement

configurations 𝑛 ≥ 𝑚/6, where𝑚 is the number of irreducible
source errors to be identified; (3) the six components of the
pose error connected with each measurement configuration
should be included.

The main difficulty of the above conditions is the pose
error twistmeasurement because the orientation error cannot
be measured directly. As shown in Figure 3, here, the pose
error is developed with the aid of a special measurement tool,
which is attached to the end-effector with three measurement
points𝑀𝑖 (𝑖 = 1, 2, 3). Meanwhile, 󳨀󳨀󳨀󳨀󳨀→𝑀2𝑀3 is ideally aligned
with 𝑦-axis of {𝑅𝑤} at the reference pose.

To generate the orientation error in the kth measurement
configuration, the plane formed by themeasurement tool can
be expressed as 𝑎𝑘𝑥 + 𝑏𝑘𝑦 + 𝑐𝑘𝑧 = 1 (18)

where 𝑎𝑘, 𝑏𝑘, 𝑐𝑘 are unknown parameters. Considering all
measurement points, (18) can be rewritten as

A𝑘X𝑘 = L𝑘 (19)

with

A𝑘 = [[[
𝑥1,𝑘 𝑦1,𝑘 𝑧1,𝑘𝑥2,𝑘 𝑦2,𝑘 𝑧2,𝑘𝑥3,𝑘 𝑦3,𝑘 𝑧3,𝑘]]] ,

X𝑘 = (𝑎𝑘𝑏𝑘𝑐𝑘),
L𝑘 = (111)

(20)

So the unknown parameters are determined from

X𝑘 = A−1𝑘 L𝑘 (21)

Then the rotation matrix of {𝑅7,4} relative to {𝑅𝑤} at the kth
measurement configuration can be defined by

R𝑚,𝑘 = [n1,𝑘 n2,𝑘 n3.𝑘] (22)

where n1,𝑘, n2,𝑘, n3,𝑘 are the unit vectors of the 𝑥7,4, 𝑦7,4, 𝑧7,4-
axes evaluated in {𝑅𝑤}, n3,𝑘 = X𝑘/‖X𝑘‖2, n2,𝑘 = (m3,𝑘 −
m2,𝑘)/‖(m3,𝑘 − m2,𝑘)‖2, and n1,𝑘 = n2,𝑘 × n3,𝑘. According
to [12], the measured orientation 𝜃𝑚,𝑘 can be easily obtained
through R𝑚,𝑘 and the measured position r𝑚,𝑘 = (m2,𝑘 +
m3,𝑘)/2. The pose error twist of point𝑀 at the kth measure-
ment configuration can be expressed as𝛿𝜌𝑚,𝑘 = (rT𝑚,𝑘 𝜃T𝑚,𝑘)T − (rT𝑐,𝑘 𝜃T𝑐,𝑘)T (23)

where r𝑐,𝑘 and 𝜃𝑐,𝑘 denote the command position and orien-
tation, respectively.
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Figure 3: The method of the full pose error measurement.

Above all, the pose error twist of point P can be developed
such that 𝛿𝜌𝑘 = Ad

𝑔𝑤
󸀠

𝑚

𝛿𝜌𝑚,𝑘 (24)

with

Ad
𝑔𝑤
󸀠

𝑚

= [I3 [p𝑀/𝑃×]
0 I3

] (25)

where p𝑀/𝑃 is 󳨀󳨀→𝑃𝑀 evaluated in {𝑅𝑤} and [p𝑀/𝑃×] is the
corresponding skew matrix of p𝑀/𝑃. It can be seen from
(24) that this step should be carried out after kinematic
calibration, so hereafter we will focus on the identification
and compensation based on 𝛿𝜌𝑚,𝑘. For convenience, we also
denote 𝛿𝜌𝑚,𝑘 as 𝛿𝜌𝑘.

Considering the entire measurement configurations, (16)
can be rewritten as 𝛿Ρ = H𝛿𝜒 + 𝜀 (26)

with

𝛿Ρ =(𝛿𝜌1𝛿𝜌2...𝛿𝜌𝑛),
H =(B1

B2...
B𝑛

)
(27)

where H denotes the identification Jacobian determined by
the method of elementary transformations, 𝛿𝜒 denotes a
corresponding set of irreducible source errors, 𝜀 is the noise
satisfying the Gauss-Markov process, that is, 𝐸(𝜀) = 0 and
Cov(𝜀) = 𝜎2I6𝑛, representing the expectation and covariance
matrices of 𝜀.

4. Source Error Identification and
Pose Error Compensation

In this section, a robust estimation algorithm for source
errors identification will be investigated. Then, a linear error
compensator is designed for real-time implementation.

4.1. Source Error Estimation Based on Multicollinearity Diag-
nosis. Although a set of linearly dependent source errors have
been provided in (26), some approximate linear relationships,
namely, multicollinearity, persist. At this point, the source
error estimation produced by the LS method is no longer
stable. It is difficult to satisfy the accuracy requirements of
identification and calibration; therefore, a two-step estima-
tionmethod is presented based onmulticollinearity diagnosis
to solve this problem.

Condition index and variance decomposition proportion
(CIVDP) is a reliable way of diagnosing multicollinearity
in the identification matrix, which not only can detect the
number of multicollinearity relationships in 𝛿𝜒 but also
can determine the source errors in 𝛿𝜒 and corresponding
columns inH.

Note that 𝛿𝜒 is composed of encoder offsets and struc-
tural errors of limb i, andH can be divided into

H = [J󸀠 G󸀠1 G󸀠2 G󸀠3 G󸀠4] (28)

where J󸀠 is thematrix composed of columns corresponding to
the encoder offsets andG󸀠𝑖 is thematrix composed of columns
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corresponding to the structural errors in limb i. The encoder
offsets are the motion errors along/about actuated joint axes,
so there is nomulticollinearity in J󸀠.Then 𝜅𝐽, the condition of
J󸀠, can be treated as the criteria in condition index diagnosis.
The condition index (CI) of G󸀠𝑖 can be calculated by𝜂𝑗,𝑖 = 𝜇𝑖,max𝜇𝑗,𝑖 (29)

where 𝜇𝑖,max denotes the maximum singular value of G󸀠𝑖 and𝜇𝑗,𝑖 denotes the jth singular value of G󸀠𝑖 . The larger values of
CI (> 30𝜅𝐽) indicate the number of multicollinearities in G󸀠𝑖
[30].

The variance decomposition proportion (VDP)matrixΠ𝑖
ofG󸀠𝑖 , in which there is amulticollinearity relationship, can be
further formulated such that𝜋𝑗𝑘,𝑖 = (𝑡2𝑘𝑗,𝑖/𝜇2𝑗,𝑖)∑𝑝𝑘=1 (𝑡2𝑘𝑗,𝑖/𝜇2𝑗,𝑖) (30)

where 𝜋𝑗𝑘,𝑖 denotes the term (𝑗, 𝑘) of Π𝑖, 𝑡𝑘𝑗,𝑖 denotes the kth
element in the jth eigenvector of G󸀠T𝑖 G

󸀠
𝑖 , and 𝑝 denotes the

dimension of the eigenvector. It is interesting to find that the
jth row of Π𝑖 denotes the proportion of the variance in the
source errors contributed by 𝜇𝑗,𝑖. Finding the VDP value such
that 𝜋𝑗𝑘,𝑖 > 0.5 [30] means that the source errors in 𝛿𝜒 and
the columns in G󸀠𝑖 can be sorted correspondingly: these are
those columns affected by multicollinearity.

According to the multicollinearity diagnosis in 𝛿𝜒, (26)
can be rewritten as𝛿Ρ = [H󸀠1 H󸀠2] (𝛿𝜒1𝛿𝜒2) + 𝜀 (31)

where 𝛿𝜒2(𝛿𝜒1) is (not) affected by multicollinearity and
H󸀠2(H󸀠1) is the corresponding identification Jacobian, so the
LS estimate of 𝛿𝜒 can be expressed as

𝛿𝜒̂ = (𝛿𝜒̂1𝛿𝜒̂2) = [H󸀠T1 H󸀠1 H󸀠T1 H
󸀠
2

H󸀠T2 H
󸀠
1 H󸀠T2 H

󸀠
2

]−1 [H󸀠T1
H󸀠T2
]𝛿Ρ (32)

where 𝛿𝜒̂1(𝛿𝜒̂2) is the LS estimate of 𝛿𝜒1(𝛿𝜒2). Although,
during calculation, H󸀠2 is used to generate 𝛿𝜒̂1, the stability
of 𝛿𝜒̂1 is unaffected [31], so 𝛿𝜒̂1 can be used as a reliable
estimate. For 𝛿𝜒̂2, the PCA (Principal Component Analy-
sis) estimator is introduced to resolve the poor robustness
problem caused by multicollinearity, which is an improved
LSmethod that involves relinquishing the unbiased nature of
the LSmethod to obtain amore reliable regression coefficient.

Taking 𝛿𝜒̂1 into (31) leads to𝛿Ρ̂2 = 𝛿Ρ −H󸀠1𝛿𝜒̂1 = H󸀠2𝛿𝜒2 + 𝜀 (33)

According to [30], the PCA estimator of 𝛿𝜒2 is expressed as𝛿𝜒̂2𝑃𝐶𝐴 = V𝑃𝐶𝐴𝛽̂𝑃𝐶𝐴 (34)

with

𝛽̂𝑃𝐶𝐴 = (CT
𝑃𝐶𝐴C𝑃𝐶𝐴)−1 CT

𝑃𝐶𝐴𝛿Ρ̂2 (35)

where C𝑃𝐶𝐴 denotes the matrix that is composed of the
principle component inC = H󸀠2V andV is the matrix formed
by the eigenvectors of H󸀠T2 H

󸀠
2 (for more details, see [30]).

Finally, a reliable estimate of 𝛿𝜒 can be developed such that𝛿𝜒̂ = (𝛿𝜒̂T1 𝛿𝜒̂T2𝑃𝐶𝐴)T (36)

4.2. Pose Error Compensation. Pose error compensation is
the final step of the kinematic calibration. Once the source
errors have been estimated, the pose error of the hybrid robot
in the task workspace can be decreased with a linear error
compensator by adjusting the command input of the actuated
joint. Based on the above principle, (16) can be rewritten as𝛿𝜌 = B𝛿𝜒̂ + J𝛿𝜍𝑐 (37)

where 𝛿𝜍𝑐 is the command input of actuated joints modified
by the linear error compensator. A linear error compensator
can be designed by forcing the pose error twist to be zero;
namely, 𝛿𝜌 ≡ 0. Hence, the modified command can be
obtained such that 𝛿𝜍𝑐 = −J−1B𝛿𝜒̂ (38)

It is also important to note that some larger source errors
make the error model nonlinear, so in practice compensation
processing should be implemented in the Gauss-Newton iter-
ative method until the compensation results converge. Based
on the above description, Figure 4 shows the full procedures
of the kinematic calibration of the 6-DOF polishing hybrid
robot.

5. Experimental Validation

In this section, the multicollinearity diagnosis of all measure-
ment configurations is implemented, and experiments are
carried out on a prototype robot to validate the effectiveness
of the proposed calibration method.

5.1. Multicollinearity Diagnosis. The task workspace of the
hybrid robot is a 500mm × 500mm × 120mm cube and the
nominal dimensions of the robot are given in Table 1. To
fully reflect the multicollinearity of source errors in the whole
task workspace, the measurement configurations are chosen
as 36 points evenly distributed in each of the upper (z = 60
mm), middle (z = 0 mm), and lower (z = -60 mm) layers
with respect to the reference orientation. In this way, all the
actuated joints can be jointly driven and all position data
can be measured by one installation of the reflector, which
satisfies the requirements of identifiability and handleability
at the same time.

Table 2 shows the 44 linear independent source errors
in error model, including six encoder offsets of actuated
joint, four structural errors of limb 1, six structural errors
of limb 2, six structural errors of limb 3, and 22 structural
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Figure 4: The flowchart of the kinematic calibration of the 6-DOF hybrid robot.

Table 1: Nominal geometric parameters of the hybrid robot (unit:
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errors of limb 4. Then the CIs of G󸀠𝑖 are deduced (Table 3).
Accordingly, there are five multicollinearity relationships in
the structural errors of limb 4. It should be noted that Table 3
only lists the six larger CIs of G󸀠𝑖 , which are sufficient to
determine the number of multicollinearity relationships, and
there is no need to describe the remaining items. It is also
interesting to see that limbs 2 and 3 have the same linear
independent structural errors and CIs, because the two limbs,
and the chosen measurement configurations, are all sym-
metrical about the layer 𝑦 = 0.

The variance decomposition proportion matrix of limb
4 is further constructed to detect the multicollinearity rela-
tionship in 𝛿𝜒. As shown in Table 4, it can be seen that there
are five multicollinearity relationships existing, respectively,
between (among) 0𝛿𝑦1,4 and 3𝛿𝑦4,4, 0𝛿𝑥1,4 and 2𝛿𝑧3,4, 4𝛿𝑦5,4
and 5𝛿𝑧6,4, 0𝛿𝑧1,4, 2𝛿𝑥3,4, and 3𝛿𝛽4,4, 4𝛿𝑥5,4, 4𝛿𝑧5,4, 4𝛿𝛽5,4, and
6𝛿𝑥7,4. This means that the influence of a certain source error
on the end-effector pose error can be deemed approximately
equivalent to the linear superposition of the other source
errors in the same multicollinearity relationship.

5.2. Experiment Implementation. To verify the effectiveness
of the proposed method, kinematic calibration is carried out
on a hybrid robot driven by an “IPC+PMAC” controller
(Figure 5). According to the principle outlined in ISO
9283, the position volumetric error |𝛿r| and the orientation
volumetric error |𝛿𝜃| (simplified as position error and orien-
tation error hereinafter) are taken as the evaluation stand-
ard of the pose error. A Leica AT901-LR laser tracker with
a maximum observed deviation of 0.005 mm/m is used

to measure the position data of each reference point. Pre-
liminary experiments show that the prototype robot has
volumetric position repeatability of 0.016 mm and volu-
metric orientation repeatability of 0.010 degrees in the task
workspace.

First, the workpiece frame is established with the aid of a
square gaugemounted at a corner of the worktable (Figure 5).
Then, the origin of the frame is translated to point𝑀 at the
reference pose defined in Section 3, which is obtained with
the aid of a laser tracker and mechanical means by driving
the JOG motion of all of the actuated joints to the nominal
required position. The pose error of a given measurement
configuration evaluated in {𝑅} can thus be generated through
the position data from three reference points, which is ac-
quired by the laser tracker in the same measurement config-
uration.

The experiment is carried out with the laser tracker
according to the compensation strategy described in Sec-
tion 4. To reduce the influence of thermal error, the hybrid
robot is run for an hour to attain a relatively stable ther-
mal state and the environmental temperature fluctuation is
controlled to within 20.1 ± 0.5∘C during the experiment. The
measurement configurations are measured three times and
then the mean values are substituted into future calculations.
Figure 6 shows the pose errors of the workspace measured
before calibration. It can be seen that the position error and
orientation error are all approximately symmetric about x-
axis and have the same regularity in their distribution.During
the experiment, the modified command 𝛿𝜍𝑐 is determined
by use of (38). After three “measurement-identification-com-
pensation” looped iterations, the calibration comes to an
end when the measured pose errors undergo no significant
change before, and after, compensation. Comparing the data
shown in Figures 6 and 7, the maximum position error is
reduced from 6.886 mm to 0.065 mm and the maximum ori-
entation error is reduced from0.499 degrees to 0.069 degrees.
The pose errors of the robot are thus effectively compensat-
ed.
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Table 2: A set of linear independent source errors.

Limb 𝛿𝜍 𝛿𝜁0,𝑖 𝛿𝜁1,𝑖 𝛿𝜁2,𝑖
1 𝛿𝜍3,1 0𝛿𝑥1,1, 0𝛿𝑦1,1, 0𝛿𝑧1,1 N/A 2𝛿𝑥3,1
2 𝛿𝜍3,2 0𝛿𝑥1,2, 0𝛿𝑦1,2, 0𝛿𝑧1,2 N/A 2𝛿𝑥3,2
3 𝛿𝜍3,3 0𝛿𝑥1,3, 0𝛿𝑦1,3, 0𝛿𝑧1,3 N/A 2𝛿𝑥3,3
4 𝛿𝜍4,4, 𝛿𝜍5,4, 𝛿𝜍6,4 𝛿𝜁0,4 N/A 2𝛿𝑥3,4, 2𝛿𝑧3,4, 2𝛿𝛼3,4
Limb 𝛿𝜁3,𝑖 𝛿𝜁4,𝑖 𝛿𝜁5,𝑖 𝛿𝜁6,𝑖
1 N/A N/A N/A N/A
2 N/A N/A N/A 6𝛿𝑥7,2, 6𝛿𝑧7,2
3 N/A N/A N/A 6𝛿𝑥7,3, 6𝛿𝑧7,3
4 3𝛿𝑦4,4, 3𝛿𝛼4,4, 3𝛿𝛽4,4 𝛿𝜁4,4 5𝛿𝑥6,4, 5𝛿𝑧6,4, 5𝛿𝛼6,4 6𝛿𝑥7,4, 6𝛿𝛼7,4

(a)

(b) (c)

Figure 5: The kinematic calibration experiment on a prototype robot. (a) The polishing hybrid robot, (b) workpiece frame establishment,
and (c) position error measurement.

To evaluate the effectiveness of the kinematic calibration,
extra measurements on the layers at z = 30 mm and z =
-30 mm are taken. After calibration using the source errors
listed in Table 5, the pose errors of the 36 points, evenly
distributed in each of the two layers, are as listed in Table 6.
It can be seen that the maximum position error and the
maximum orientation error are 0.066mm and 0.064 degrees,

respectively.These results further confirmed the effectiveness
of the proposed method. It should be noted that, under
the influence of the linear independent source errors and
the biased estimation algorithm, the identified source errors
cannot reflect the corresponding errors that exist in the
prototype robot; however, they can still predict the pose
errors of the robot effectively.
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Table 3: Condition indices of 𝐺󸀠𝑖∗.
Limb 𝜂1,𝑖 𝜂2,𝑖 𝜂3,𝑖 𝜂4,𝑖 𝜂5,𝑖 𝜂6,𝑖
1 296.04 11.43 11.22 1 N/A N/A
2 628.76 331.72 245.92 17.40 13.71 1
3 628.76 331.72 245.92 17.40 13.71 1
4 8.22 × 105 5.71 × 105 2.12 × 105 2.03 × 105 1.06 × 105 7.00 × 104
∗ indicates 𝜅𝐽 = 2.35 × 10

3 .

Table 4: Rows in Π4 V: larger condition indices.

Larger
CIs

0𝛿𝑥1,4 0𝛿𝑦1,4 0𝛿𝑧1,4 0𝛿𝛼1,4 0𝛿𝛽1,4 0𝛿𝛾1,4 2𝛿𝑥3,4 2𝛿𝑧3,4 2𝛿𝛼3,4 3𝛿𝑦4,4 3𝛿𝛼4,4(3𝛿𝛽4,4) (4𝛿𝑥5,4) (4𝛿𝑦5,4) (4𝛿𝑧5,4) (4𝛿𝛼5,4) (4𝛿𝛽5,4) (5𝛿𝑥6,4) (5𝛿𝑧6,4) (5𝛿𝛼6,4) (6𝛿𝑥7,4) (6𝛿𝛼7,4)
8.22 × 105 0 0.98 0.01 0.03 0 0 0.23 0 0 0.95 0

(0.01) (0.11) (0) (0.31) (0) (0.23) (0.05) (0) (0) (0.32) (0)

5.71 × 105 0.99 0 0 0 0.01 0.49 0 0.99 0.48 0 0.03
(0) (0) (0.01) (0) (0.04) (0) (0) (0.02) (0.03) (0) (0.01)

2.12 × 105 0 0.02 0.70 0.29 0 0 0.75 0 0 0.04 0
(0.87) (0.20) (0) (0.01) (0) (0.05) (0.28) (0) (0) (0.01) (0)

2.03 × 105 0.02 0 0 0 0.04 0.03 0 0 0.01 0 0.05
(0) (0) (0.98) (0) (0.02) (0) (0) (0.98) (0) (0) (0.17)

1.06 × 105 0 0.03 0.04 0.07 0 0 0.02 0 0 0 0
(0.04) (0.61) (0) (0.62) (0) (0.65) (0.49) (0) (0) (0.63) (0)

Table 5: Identified geometric source errors∗.𝜉3,1 𝜉3,2 𝜉3,3 𝜉4,4 𝜉5,4 𝜉6,4 0𝛿𝑥1,1 0𝛿𝑦1,1 0𝛿𝑧1,1 2𝛿𝑥3,1 0𝛿𝑥1,2
3.139 -6.236 -15.964 0.020 0.005 -0.030 -6.152 1.932 1.325 -0.347 0.518
0𝛿𝑦1,2 0𝛿𝑧1,2 2𝛿𝑥3,2 6𝛿𝑥7,2 6𝛿𝑧7,2 0𝛿𝑥1,3 0𝛿𝑦1,3 0𝛿𝑧1,3 2𝛿𝑥3,3 6𝛿𝑥7,3 6𝛿𝑧7,3
5.305 0.311 1.303 0.160 -0.106 -0.318 -2.714 0.201 -0.840 0.353 0.489
0𝛿𝑥1,4 0𝛿𝑦1,4 0𝛿𝑧1,4 0𝛿𝛼1,4 0𝛿𝛽1,4 0𝛿𝛾1,4 2𝛿𝑥3,4 2𝛿𝑧3,4 2𝛿𝛼3,4 3𝛿𝑦4,4 3𝛿𝛼4,4
-0.019 -1.012 1.162 0.031 0.020 -0.065 5.067 0.020 -0.545 0.022 0.117
3𝛿𝛽4,4 4𝛿𝑥5,4 4𝛿𝑦5,4 4𝛿𝑧5,4 4𝛿𝛼5,4 4𝛿𝛽5,4 5𝛿𝑥6,4 5𝛿𝑧6,4 5𝛿𝛼6,4 6𝛿𝑥7,4 6𝛿𝛼7,4
0.075 0.301 -2.191 1.110 -0.062 0.027 -2.868 9.868 0.023 -0.531 1.143
∗ indicates length unit: mm and angle unit: degree

Table 6: Pose errors of the verification layers after fine calibration.

Pose error Maximum value Mean value
z = 30 mm z = -30 mm z = 30 mm z = -30 mm

Position error (mm) 0.062 0.066 0.041 0.042
Orientation error (deg) 0.057 0.064 0.051 0.050

6. Conclusions

An approach to the kinematic calibration of a 6-DOF polish-
ing hybrid robot was investigated and the following conclu-
sions were drawn:

(1) The linearized error model of the hybrid robot was
formulated by use of screw theory, and it contained the
encoder offsets and all structural errors in the joints and links.

(2) A full pose error measurement approach for a pol-
ishing hybrid robot was proposed with the use of a special

measurement tool and a stepwise identification strategy was
proposed to deal with the ill-conditioned problem caused by
multicollinearity in the source errors.

(3) Experimental results obtained by use of the laser
tracker showed that the pose error throughout the entire task
workspace was improved significantly by use of the proposed
approach. It remained to be seen how the calibration was
related to practical optimal polishing and corresponding
investigations are underway (at time of writing) based on the
prototype robot.
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Figure 6: Error distributions before calibration of the workspace: position error: (a) in the upper layer, (b) in the middle layer, and (c) in the
lower layer; orientation error: (d) in the upper layer, (e) in the middle layer, and (f) in the lower layer.
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Figure 7: Error distributions after calibration of the workspace: position error: (a) in the upper layer, (b) in the middle layer, and (c) in the
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