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Semiautomatic 2D-to-3D conversion plays an important role in generating 3D contents for display. However,most existingmethods
assume that user scribbles are perfectly correct, and only give acceptable results when user provides accurate labels. To address this
problem,WelschM-estimator data fidelity is used to resist erroneous scribbles.TheWelschM-estimator data fidelity which is able to
alleviate the influence of inaccurate scribbles has theoretical guarantee by means of its redescending property. First, the Welsch M-
estimator is introduced to measure the fidelity between estimated depth and user provided depth; then local smoothness is built by
using color weightedWelschM-estimator tomake neighboring pixels with similar colors have similar depth values. Finally, we solve
the problem using generalized iteratively reweighted least squares algorithm. Experiments demonstrate that our method obtains
competitive performance in the absence of inaccurate scribbles and outperforms the state of the art both visually and quantitatively
in the presence of inaccurate scribbles.

1. Introduction

3D videos have gained much attention as 3D viewing became
popular and Virtual Reality (VR) market emerged. The
biggest issue of 3D industry is lack of program material.
2D-to-3D conversion is a practical solution to alleviate
such content shortage by estimating depth information from
monoscopic images [1]. High quality depth extraction plays a
key role in 2D-to-3D conversion [2].

Depending on whether human intervention is utilized,
2D-to-3D conversion can be divided into three categories:
manual, automatic, and semiautomatic method [3]. Man-
ual method can provide high quality results with per-
pixel depth assignment by labeling; thus, this makes the
process of conversion both cumbersome and expensive
[4]. Automatic method attempts to estimate depth from
monoscopic images utilizing various cues such as defocus,
texture gradients, and scattering [5]. Recently, deep-learning-
inspired approaches have been proposed for automatically
converting 2D video/image to 3D format [5–10]. Although
these methods can produce depth maps automatically, they

are hard to provide robust and stable conversion results in
any general content. Semiautomatic method can balance 3D
quality with conversion cost which consists of the following
steps: first let user label on chosen key frames to provide
sparse depth, then obtain dense depth maps of key frames
via sparse-to-dense propagation, and finally generate depth
maps of nonkey frames by depth propagation from the
key frames [3]. The conversion quality largely depends on
the accuracy of depth maps for key frames. Therefore, we
focus on the most relevant work of semiautomatic 2D-to-3D
conversion about sparse-to-dense depth propagation for key
frames.

Various methods have been proposed for dense depth
estimation from user scribbles. Rzeszutek et al. [11] exploit
random walks (RW) to generate dense depth based on
the user input, but RW has problems in preserving strong
edges [12], thus resulting in blurring artifacts at object
boundaries. Phan and Androutsos [12] attempt to enhance
depth discontinuities of RWby introducing the hard segmen-
tation constraints provided by graph-cuts (GC). However,
GC is hard to locate object boundaries at the transition
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Figure 1: Depth estimation with erroneous user input, where (a) is user labeled image (erroneous scribbles at object boundaries are marked
by white circles, and errors inside objects or background are marked by yellow circles), (b) is ground truth depth, (c) is result of Rzeszutek et
al. [11], (d) is result of Phan and Androutsos [12], (e) is result of Yuan et al. [14], (f) is result of Wu et al. [15], (g) is result of Ham et al. [24],
and (h) is result of the proposed method.

from foreground to background with low contrast [13]
and may introduce fake boundaries. Our previous work
[14] demonstrates that depth discontinuities of RW can
be enhanced with nonlocal pairwise constraints. Wu et al.
[15] enhance depth boundaries with superpixel constraints
which can prevent depth propagation across low contrast
edge regions. Lopez et al. [16] formulate depth estimation
from user scribbles as a graph based optimization problem
with equality, inequality, and perspective constraints. Becker
et al. [17] let user annotate depth discontinuities in key
frames and learn depth edges of nonkey frames with random
forests, which can produce dense depth maps with sharp
edges at discontinuities but with more cumbersome labeling
work. Kawai and Sasaki [18] propose to generate dense
depth from user provided anchor points on the outline
of objects at key frames, but this increases user labeling
difficulties since it is hard to locate the outline of objects.
Donatsch et al. [19] employ user provided geometric features
to generate stereo pairs directly, but mainly suitable for
images with buildings. Zhang et al. [20] utilize interactive
segmentation to refine foreground depth, but inaccurate
segmentation may introduce depth artifacts. Iizuka et al.
[21] show that geodesic distance based interpolation can

obtain dense depth efficiently from user input with few
scribbles. Liao et al. [22] let user assign diffusion strength
during sparse-to-dense propagation to influence the depth
estimation.

Existing approaches mainly focus on enhancing depth
quality and assume that user scribbles are entirely accurate.
Therefore, they generate correct depth only with accurate
user scribbles, and even small errors in the input may
degrade the depth quality significantly as shown in Fig-
ure 1. The erroneous scribbles inside objects or background
can be easily removed by users during conversion process.
However, it is hard for users to make adjustments when
erroneous input appears at object boundaries. The user
friendly semiautomatic 2D-to-3D conversionmethod should
have the ability to remove erroneous input automatically.
Handling of inaccurate user labels has been addressed in
semiautomatic image segmentation [23, 25, 26]. While Subr
et al. [25] and Bai and Wu [26] can discriminate accurate
and inaccurate input, they focus on binary labels which
cannot be applied to 2D-to-3D conversion directly. Oh
et al. [23] utilize occurrence and cooccurrence probability
(OCP) of color values for labeled pixels to estimate the
reliability of each label, but may mistake correct labels
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Figure 2: Semiautomatic 2D-to-3D conversion based on the proposed method.

for incorrect labels. Surprisingly, there are few 2D-to-3D
conversion methods to handle inaccurate user labels. To
address this issue, we propose a robust method based on
Welsch M-estimator for data fidelity motivated by the fact
that Welsch loss based redescending M-estimator can be
efficiently resistant to extreme outliers [27]. We note that
Welsch M-estimator has been used to construct the regu-
larizer for depth superresolution in recent years [24, 28–31].
Although employing Welsch M-estimator for regularization
handles structural difference between texture and depth
images like these methods, we leverage it for data fidelity
to resist the influence of inaccurate input on the estimated
depth.

Thanks to Welsch M-estimator for data fidelity, our
approach outperforms existing methods in the presence of
inaccurate input and provides at least comparable perfor-
mance in the absence of erroneous input. The remainder of
this paper is divided into three sections. In Section 2, our
method for robust semiautomatic 2D-to-3D conversion is
presented. Experimental results are provided in Section 3.
Finally, we give conclusion in Section 4.

2. Proposed Approach

The semiautomatic 2D-to-3D conversion framework based
on the proposed method is shown in Figure 2. First,
we provide an interaction tool (https://github.com/tcyhx/
brush2depth) for user to brush sparse scribbles on input
2D images or key frames, indicating initial depth. Second,
sparse depth map is obtained from the intensities of user
scribbles, where lighter and darker denote closer and farther
from the viewer, respectively.Third, we construct data fidelity
and regularization terms using Welsch M-estimator and
formulate the sparse-to-dense depth propagation as a robust
optimization, which will be illustrated in Section 2.1. Then,
we solve the optimization problem via generalized iteratively
reweighted least squares (IRLS) [32], which will be discussed
in Section 2.2. Finally, we produce 3D content using a depth
image based rendering (DIBR) technique proposed in our
previous work [33].

2.1. Model. Let Ω denote a set containing user labeled pixel
locations. Given the 𝑛-pixel input image 𝐼, user provided
sparse depth map 𝑢, and the estimated dense depth map 𝑑,
we denote by 𝐼𝑖, 𝑢𝑖, and 𝑑𝑖 the corresponding values of pixel
𝑖. Without loss of generality, we assume that 𝐼𝑖, 𝑢𝑖, and 𝑑𝑖 are
normalized in the range 0 to 1. We minimize the following
objective function to estimate 𝑑 from 𝑢:

𝜀 (𝑑) = ∑
𝑖∈Ω

𝜑𝜂1 (𝑑𝑖 − 𝑢𝑖)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
data fidelity term

+ 𝜆
𝑛

∑
𝑖=1

∑
𝑗∈N𝑖

𝑤𝑖𝑗𝜑𝜂2 (𝑑𝑖 − 𝑑𝑗)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

regularization term

,
(1)

where 𝜑𝜂(𝑥) = (1/𝜂)(1 − 𝑒−𝜂𝑥2) denotes Welsch function
and 𝜂 is a bandwidth parameter which has influence on the
strength of penalty to outliers, N𝑖 is the local neighboring
index set of the pixel 𝑖, 𝑤𝑖𝑗 represents Gaussian weighting
function measuring appearance similarities between pixel 𝑖
and 𝑗, which is given by𝑤𝑖𝑗 = 𝑒−𝜇(𝐼𝑖−𝐼𝑗)

2

, and𝜆 is the parameter
to balance data fidelity with regularizer.

It can be seen from formula (1) that we introduce the data
consistency by Welsch’s function to suppress user erroneous
input while adapting the Welsch loss for regularization.
Since Welsch M-estimator can deal with outliers with large
magnitudes [27], we can ignore inaccurate scribbles with the
data fidelity term while minimizing depth blurring caused
by structural differences between texture and depth images
via the regularizer. Recently, Ham et al. [24], Kim et al.
[28, 29], and Liu et al. [30, 31] have introduced the regularity
of depth maps by Welsch M-estimator. Our model differs
from [24, 28–31] in its data fidelity. These methods all use
a quadratic data fidelity, which cannot handle inaccuracies
in user scribbles. As shown in Figure 3, Welsch M-estimator
data fidelity can help to reduce visual artifacts caused by
inaccurate input but quadratic data fidelity cannot suppress
erroneous input. The characteristics of our model will be
further illustrated in Section 2.3.

2.2. Solver. The optimization problem to minimize (1) is
nonconvex, and can be solved by the GIRLS algorithm [32].

https://github.com/tcyhx/brush2depth
https://github.com/tcyhx/brush2depth
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Figure 3: Depths obtained byminimizing quadratic andWelschM-estimator data fidelity based objective functions, where (a) is input image,
(b) is user labeled image (erroneous scribbles at object boundaries are marked by white circles, and errors inside objects or background are
marked by yellow circles), (c) is sparse depthmapobtained from (b), (d) is ground truth depth, (e) is dense depthmap generated byminimizing
the quadratic data fidelity based objective function, and (f) is dense depthmap generated byminimizing theWelschM-estimator data fidelity
based objective function.

The idea of GIRLS is to determine an upper bound quadratic
function and then iteratively minimize the quadratic approx-
imations to obtain a local minimum.

The quadratic upper bound of Welsch function can be
obtained by [24]

𝜑𝜂 (𝑥) ≤ 𝜑𝜂 (𝑦) + (1 − 𝜂𝜑𝜂 (𝑦)) (𝑥2 − 𝑦2) , (2)

with equality only if 𝑥 = 𝑦.
Thus the quadratic upper bound of formula (1) is given by

𝜀𝜂1;𝜂2 (𝑑; 𝑑
𝑘)

= ∑
𝑖∈Ω

𝑒−𝜂1(𝑑𝑘𝑖 −𝑢𝑖)2 (𝑑𝑖 − 𝑢𝑖)2

+ 𝜆
𝑛

∑
𝑖=1

∑
𝑗∈Ni

𝑤𝑖𝑗𝑒−𝜂2(𝑑
𝑘
𝑖 −𝑑
𝑘
𝑗 )
2 (𝑑𝑖 − 𝑑𝑗)

2 + 𝑐,

(3)

where 𝑐 is a constant termwhich has nothing to dowith 𝑑 and
will be ignored in the solving process, 𝑑𝑘 denotes estimated
depth map at 𝑘th iteration, and 𝑑𝑘𝑖 represents its value of the
pixel 𝑖.

Then, GIRLS for minimizing (1) is to iteratively solve the
following problem:

𝑑𝑘+1 = arg min
𝑑

𝜀𝜂1 ;𝜂2 (𝑑; 𝑑
𝑘) . (4)

Let u = [𝑢𝑖]𝑛×1 and d𝑘+1 = [𝑑𝑘+1𝑖 ]𝑛×1; the problem in (4)
can be solved in a matrix form as follows:

d𝑘+1 = (M𝑘 + 𝜆L𝑘)−1M𝑘u, (5)

whereM𝑘 is an 𝑛 × 𝑛 diagonal matrix with 𝑖th diagonal entry
𝑚𝑘𝑖𝑖 defined in (6), L𝑘 = Λ𝑘−A𝑘 represents the 𝑛 × 𝑛 Laplacian
matrix at 𝑘th iteration, where A𝑘 denotes an 𝑛 × 𝑛 affinity
matrix with entry 𝑎𝑘𝑖𝑗 of the 𝑖th row and 𝑗th column defined
in (7), and Λ𝑘 is an 𝑛 × 𝑛 diagonal matrix with 𝑖th diagonal
entry Λ𝑘𝑖𝑖 defined in (8).

𝑚𝑘𝑖𝑖 =
{
{
{

𝑒−𝜂1(𝑑𝑘𝑖 −𝑢𝑖)2 if 𝑖 ∈ Ω,
0 otherwise,

(6)

𝑎𝑘𝑖𝑗 =
{
{
{

𝑤𝑖𝑗𝑒−𝜂2(𝑑
𝑘
𝑖 −𝑑
𝑘
𝑗 )
2

if 𝑗 ∈N𝑖,
0 otherwise,

(7)
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Figure 4: Change curve for weight of data fidelity during iterative solution process where green and blue curves are for labels marked by
green and blue circles, respectively.

Λ𝑘𝑖𝑖 = ∑
𝑗∈N𝑖

𝑤𝑖𝑗𝑒−𝜂2(𝑑
𝑘
𝑖 −𝑑
𝑘
𝑗 )
2 . (8)

In summary, the whole procedure used to minimize (1) is
illustrated as follows.

Algorithm 1. The GIRLS algorithm for Welsch data fidelity
based sparse-to-dense depth propagation is as follows:

(1) Initialization: give parameters 𝜂1, 𝜂2, 𝜇, 𝜆, 𝑘max;
initialize 𝑘 = 0, d0 = u.
while 𝑘 < 𝑘max do

(2) Calculate the diagonal entries of M𝑘 and Λ𝑘 by
formula (6) and (8) respectively.

(3) Update the entries of A𝑘 by formula (7).
(4) Update the Laplacian matrix with L𝑘 = Λ𝑘 − A𝑘.
(5) Solve for d𝑘+1 by formula (5).
(6) 𝑘 = 𝑘 + 1.

end while.
Final estimated dense depth d = d𝑘.

Here, 𝑘max denotes the maximal number of iterations.

2.3. Analysis. Looking at formula (3), we can observe that
the data fidelity will be weighted by a Gaussian function of
differences between the latest estimated and user input depth
values.

At erroneous input regions, inaccurate scribbles will let
their depth values be different from neighboring pixels; thus
smoothness imposed by regularizer will make estimated
depth deviate from user provided depth, and the weight of
data fidelity will be decreased to zero during the iteratively
solving process. Therefore, the proposed model can suppress
inaccurate user scribbles.

At accurate input regions, the depth values of labeled
pixels will be consistent with their neighbors; thus the result
mainly relies on data fidelity term which makes estimated
depth approach user assigned depth. Therefore, the weight
of data fidelity will approach 1 during the iterative solution
process, and the accurate user scribbles will not be affected
by the proposed model.

Figure 4 illustrates the change curve for the data fidelity
weight of an input image. We can see that the fidelity weight
at erroneous input regions rapidly drops to 0 and it is close to
1 at accurate labeled regions.

3. Experiments

In this section, we report experiments on sparse-to-dense
depth propagation for 2D-to-3D conversion with nine rep-
resentative images, RGBZ 01-09, which are from the RGBZ
dataset [34]. Our method was compared to the state of the
art: RW [11], hybrid graph-cuts and randomwalks (HGCRW)
[12], nonlocal random walks (NRW) [14], soft segmentation
constrained optimization (SCO) [15], OCP [23], and joint
static and dynamic guided filtering (SDF) [24]. The exper-
iments were performed on a PC with Intel Core i7 Quad
Processor (4GHz) (more experimental results and source
code are available at https://github.com/tcyhx/rme 2dto3d).

As the quantitative evaluation metric, we used structural
similarity (SSIM) [35] since it can predict human perception
of image quality. Similar to Konno et al. [36], the standard
deviation of Gaussian function in SSIM was set to 4 so that it
can evaluate the similarity of semiglobal structure.Thehigher
SSIM value shows a better performance.

3.1. Choice of the Parameters. The parameters 𝜆, 𝜇, 𝜂1, 𝜂2,
and 𝑘max should be set to begin with our sparse-to-dense
depth propagation algorithm. The parameter 𝜆 is used to
balance data fidelity with regularizer and has impact on

https://github.com/tcyhx/rme_2dto3d
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Figure 5: Results of different methods on RGBZ 01 in the presence of erroneous scribbles. (a) is input image. (b) is user labeled image
(scribbles inside white and yellow circles are inaccurate). (c) is ground truth depth. (d) is result of RW. (e) is result of HGCRW. (f) is result of
NRW. (g) is result of SCO. (h) is result of OCP. (i) is result of SDF. (j) is result of the proposed method.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6: Results of different methods on RGBZ 02 in the presence of erroneous scribbles. (a) is input image. (b) is user labeled image
(scribbles inside white and yellow circles are inaccurate). (c) is ground truth depth. (d) is result of RW. (e) is result of HGCRW. (f) is result of
NRW. (g) is result of SCO. (h) is result of OCP. (i) is result of SDF. (j) is result of the proposed method.

depth smoothness. The bandwidth parameters 𝜇 and 𝜂2 are
utilized to adjust the performance of depth discontinuities
preservation. Liu et al. [37] have proposed an adaptive
method to calculate the bandwidth according to the local
depth smoothness. The parameter 𝜂1 has influence on the
strength of resistance to outliers. 𝑘max is used to terminate
iterations. Our algorithm typically converges in less than 10
iterations. Thus 𝑘max is fixed to 10 in our method. We find
that the choice for 𝜆 = 10, 𝜇 = 2000, 𝜂1 = 1000, and 𝜂2 = 0.1
is proper for most cases.

3.2. Comparison with Existing Methods in the Presence of
Erroneous Scribbles. In this subsection, we roughly draw
labels across some randomly selected object boundaries, and
these erroneous labeled regions are marked by white circles
in Figures 5(b), 6(b), 7(b), 8(b), 9(b), 10(b), 11(b), 12(b),

and 13(b). We also randomly add erroneous scribbles inside
objects or background which are marked by yellow circles
in Figures 5(b), 6(b), 7(b), 8(b), 9(b), 10(b), 11(b), 12(b), and
13(b).

Table 1 shows quantitative comparisons in the presence
of erroneous scribbles. It can be seen from Table 1 that the
proposedmethod achieves the best performance for all scenes
in terms of the SSIM.

Figures 5–13 showvisual comparisons for estimated depth
when erroneous scribbles are present. The RW [11] algorithm
does not change user provided labels during the solution
process. Therefore, it cannot obtain correct depth values
around the inaccurate labels (see Figures 5(d), 6(d), 7(d),
8(d), 9(d), 10(d), 11(d), 12(d), and 13(d)). The HGCRW
[12] attempts to enhance the depth discontinuities of RW
using hard constraints provided by GC segmentation, but
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Figure 7: Results of different methods on RGBZ 03 in the presence of erroneous scribbles. (a) is input image. (b) is user labeled image
(scribbles inside white and yellow circles are inaccurate). (c) is ground truth depth. (d) is result of RW. (e) is result of HGCRW. (f) is result of
NRW. (g) is result of SCO. (h) is result of OCP. (i) is result of SDF. (j) is result of the proposed method.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8: Results of different methods on RGBZ 04 in the presence of erroneous scribbles. (a) is input image. (b) is user labeled image
(scribbles inside white and yellow circles are inaccurate). (c) is ground truth depth. (d) is result of RW. (e) is result of HGCRW. (f) is result of
NRW. (g) is result of SCO. (h) is result of OCP. (i) is result of SDF. (j) is result of the proposed method.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9: Results of different methods on RGBZ 05 in the presence of erroneous scribbles. (a) is input image. (b) is user labeled image
(scribbles inside white and yellow circles are inaccurate). (c) is ground truth depth. (d) is result of RW. (e) is result of HGCRW. (f) is result of
NRW. (g) is result of SCO. (h) is result of OCP. (i) is result of SDF. (j) is result of the proposed method.
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Figure 10: Results of different methods on RGBZ 06 in the presence of erroneous scribbles. (a) is input image. (b) is user labeled image
(scribbles inside white and yellow circles are inaccurate). (c) is ground truth depth. (d) is result of RW. (e) is result of HGCRW. (f) is result of
NRW. (g) is result of SCO. (h) is result of OCP. (i) is result of SDF. (j) is result of the proposed method.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 11: Results of different methods on RGBZ 07 in the presence of erroneous scribbles. (a) is input image. (b) is user labeled image
(scribbles inside white and yellow circles are inaccurate). (c) is ground truth depth. (d) is result of RW. (e) is result of HGCRW. (f) is result of
NRW. (g) is result of SCO. (h) is result of OCP. (i) is result of SDF. (j) is result of the proposed method.

Table 1: SSIM comparison in the presence of erroneous input. The first and second best SSIM at each row are shown in bold and italic,
respectively.

Images Methods
RW [11] HGCRW [12] NRW [14] SCO [15] OCP [23] SDF [24] Ours

RGBZ 01 0.69 0.69 0.71 0.72 0.84 0.72 0.89
RGBZ 02 0.66 0.73 0.67 0.66 0.65 0.66 0.88
RGBZ 03 0.70 0.77 0.73 0.67 0.74 0.75 0.86
RGBZ 04 0.70 0.68 0.73 0.66 0.85 0.75 0.91
RGBZ 05 0.78 0.78 0.81 0.74 0.86 0.81 0.89
RGBZ 06 0.84 0.82 0.84 0.78 0.85 0.83 0.88
RGBZ 07 0.83 0.81 0.82 0.80 0.85 0.83 0.86
RGBZ 08 0.86 0.85 0.86 0.83 0.91 0.87 0.91
RGBZ 09 0.79 0.74 0.81 0.67 0.81 0.81 0.92
Average 0.76 0.76 0.78 0.73 0.82 0.78 0.89
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 12: Results of different methods on RGBZ 08 in the presence of erroneous scribbles. (a) is input image. (b) is user labeled image
(scribbles inside white and yellow circles are inaccurate). (c) is ground truth depth. (d) is result of RW. (e) is result of HGCRW. (f) is result of
NRW. (g) is result of SCO. (h) is result of OCP. (i) is result of SDF. (j) is result of the proposed method.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 13: Results of different methods on RGBZ 09 in the presence of erroneous scribbles. (a) is input image. (b) is user labeled image
(scribbles inside white and yellow circles are inaccurate). (c) is ground truth depth. (d) is result of RW. (e) is result of HGCRW. (f) is result of
NRW. (g) is result of SCO. (h) is result of OCP. (i) is result of SDF. (j) is result of the proposed method.

incorrect segmentation caused by erroneous scribbles intro-
duces serious depth artifacts (see Figures 5(e), 6(e), 7(e), 8(e),
9(e), 10(e), 11(e), 12(e), and 13(e)). The NRW [14] utilizes the
nonlocal pairwise constraints to improve depth quality, but
this cannot suppress inaccurate labels (see Figures 5(f), 6(f),
7(f), 8(f), 9(f), 10(f), 11(f), 12(f), and 13(f)). The SCO [15]
employs depth consistency between pixels and superpixels
to preserve depth boundaries, but may propagate erroneous
scribbles to more regions (see Figures 5(g), 6(g), 7(g), 8(g),
9(g), 10(g), 11(g), 12(g), and 13(g)).TheOCP [23] alleviates the
influence of inaccurate scribbles using global and local color
distribution underlying the user provided scribbles, but still
cannot suppress some erroneous scribbles (see Figures 5(h),
6(h), 7(h), 8(h), 9(h), 10(h), 11(h), 12(h), and 13(h)). The SDF

[24] uses the Welsch function for the regularizer to suppress
depth artifacts caused by structural differences between
color and depth images, but cannot handle erroneous labels
(see Figures 5(i), 6(i), 7(i), 8(i), 9(i), 10(i), 11(i), 12(i), and
13(i)). Thanks to the Welsch M-estimator data fidelity, our
method suppresses erroneous input successfully and obtains
robust depth estimation results in the presence of erroneous
scribbles (see Figures 5(j), 6(j), 7(j), 8(j), 9(j), 10(j), 11(j), 12(j),
and 13(j)).

3.3. Comparison with ExistingMethods in the Absence of Erro-
neous Scribbles. In this subsection, we perform experiments
on depth estimation with human interactions for 2D-to-3D
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 14: Results of different methods on RGBZ 01 in the absence of erroneous scribbles. (a) is input image. (b) is user labeled image. (c) is
ground truth depth. (d) is result of RW. (e) is result of HGCRW. (f) is result of NRW. (g) is result of SCO. (h) is result of OCP. (i) is result of
SDF. (j) is result of the proposed method.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 15: Results of different methods on RGBZ 02 in the absence of erroneous scribbles. (a) is input image. (b) is user labeled image. (c) is
ground truth depth. (d) is result of RW. (e) is result of HGCRW. (f) is result of NRW. (g) is result of SCO. (h) is result of OCP. (i) is result of
SDF. (j) is result of the proposed method.

conversion when erroneous input is absent. Table 2 presents
SSIM comparisons for estimated depth. Visual comparisons
are shown in Figures 14–22.

In Table 2, it shows that our method has the same
performance as SDF [24] in terms of SSIM. The reason is
that the proposed method generates weights approaching 1
for data fidelity in the absence of erroneous input, which
has been illustrated in Figure 4. From the data in Table 2,
we can find that our method has the second highest SSIM
in average. Therefore, the proposed method has comparable
performance to the state of the art approaches in the absence
of erroneous scribbles.

From the above experiments, we can see that the pro-
posed method outperforms the state of the art methods both
qualitatively and quantitatively in the presence of inaccu-
rate scribbles. In addition, our method shows comparable

performance when accurate scribbles are provided. There-
fore, the proposed method can be used in depth estimation
problems for 2D-to-3D conversion under various cases.

4. Conclusion and Future Work

We propose a robust sparse-to-dense depth propagation
method for images or key frames in semiautomatic 2D-to-3D
conversion. Depth estimation is formulated as a nonconvex
problem. We leverage the Welsch M-estimator to construct
data fidelity term, and exploit the outlier resistance property
of redescendingM-estimator to suppress erroneous scribbles.
The experiments demonstrate that ourmethod ismore robust
than the state of the art methods when inaccurate input is
present, and obtains comparable performance in the absence
of erroneous scribbles.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 16: Results of different methods on RGBZ 03 in the absence of erroneous scribbles. (a) is input image. (b) is user labeled image. (c) is
ground truth depth. (d) is result of RW. (e) is result of HGCRW. (f) is result of NRW. (g) is result of SCO. (h) is result of OCP. (i) is result of
SDF. (j) is result of the proposed method.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 17: Results of different methods on RGBZ 04 in the absence of erroneous scribbles. (a) is input image. (b) is user labeled image. (c) is
ground truth depth. (d) is result of RW. (e) is result of HGCRW. (f) is result of NRW. (g) is result of SCO. (h) is result of OCP. (i) is result of
SDF. (j) is result of the proposed method.

Table 2: SSIM comparison in the absence of erroneous input. The first and second best SSIM at each row are shown in bold and italic,
respectively.

Images Methods
RW [11] HGCRW [12] NRW [14] SCO [15] OCP [23] SDF [24] Ours

RGBZ 01 0.89 0.87 0.90 0.87 0.89 0.90 0.90
RGBZ 02 0.89 0.85 0.89 0.86 0.86 0.87 0.87
RGBZ 03 0.86 0.87 0.87 0.85 0.85 0.86 0.86
RGBZ 04 0.90 0.91 0.92 0.87 0.88 0.91 0.91
RGBZ 05 0.88 0.89 0.90 0.86 0.88 0.89 0.89
RGBZ 06 0.89 0.85 0.89 0.85 0.86 0.88 0.88
RGBZ 07 0.86 0.84 0.86 0.84 0.86 0.86 0.86
RGBZ 08 0.92 0.88 0.92 0.89 0.91 0.91 0.91
RGBZ 09 0.92 0.84 0.93 0.91 0.91 0.92 0.92
Average 0.89 0.87 0.90 0.87 0.88 0.89 0.89
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 18: Results of different methods on RGBZ 05 in the absence of erroneous scribbles. (a) is input image. (b) is user labeled image. (c) is
ground truth depth. (d) is result of RW. (e) is result of HGCRW. (f) is result of NRW. (g) is result of SCO. (h) is result of OCP. (i) is result of
SDF. (j) is result of the proposed method.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 19: Results of different methods on RGBZ 06 in the absence of erroneous scribbles. (a) is input image. (b) is user labeled image. (c) is
ground truth depth. (d) is result of RW. (e) is result of HGCRW. (f) is result of NRW. (g) is result of SCO. (h) is result of OCP. (i) is result of
SDF. (j) is result of the proposed method.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 20: Results of different methods on RGBZ 07 in the absence of erroneous scribbles. (a) is input image. (b) is user labeled image. (c)
is ground truth depth. (d) is result of RW. (e) is result of HGCRW. (f) is result of NRW. (g) is result of SCO. (h) is result of OCP. (i) is result
of SDF. (j) is result of the proposed method.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 21: Results of different methods on RGBZ 08 in the absence of erroneous scribbles. (a) is input image. (b) is user labeled image. (c) is
ground truth depth. (d) is result of RW. (e) is result of HGCRW. (f) is result of NRW. (g) is result of SCO. (h) is result of OCP. (i) is result of
SDF. (j) is result of the proposed method.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 22: Results of different methods on RGBZ 09 in the absence of erroneous scribbles. (a) is input image. (b) is user labeled image. (c)
is ground truth depth. (d) is result of RW. (e) is result of HGCRW. (f) is result of NRW. (g) is result of SCO. (h) is result of OCP. (i) is result
of SDF. (j) is result of the proposed method.

The parameters of our method are set empirically. In the
future, an optimal parameters setting scheme according to
depth properties should be proposed. In addition, we will
apply our method to perform depth propagation from key
frames to nonkey frames.
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