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The crack presence causes nonlinear stress distributions along the sections of a beam, which change the neutral axis of the sections
and further affect the beam stiffness. Thus, this paper presents a method for the stiffness estimation of cracked beams based on
the stress distributions. First, regions whose stresses are affected by the crack are analyzed, and according to the distance to the
crack, different nonlinear stress distributions are modeled for the effect regions. The inertia moments of section are evaluated by
substituting these stress distributions into the internal force equilibrium of section. Then the finite-element technique is adopted to
estimate the stiffness of the cracked beam. The estimated stiffness is used to predict the displacements of simply supported beams
with a crack, and the results show that both static and vibrational displacements are accurately predicted, which indicates that the
estimated stiffness is precise enough. Besides, as the section shape of beam is not limited in the process of modeling the stress
distributions, the method could be applicable not only to the stiffness estimation of cracked beams with a rectangular section, but

also to that of the beams with a T-shaped section if the crack depth ratio is not larger than 0.7.

1. Introduction

Cracks tend to appear in beam-like structures owing to
overloading, improper construction, temperature effects, and
other causes. The presence of a crack induces changes in
the structural stiffness and may result in adverse effects on
the static and dynamic behaviors of the beam. So in the last
four decades, numerous researchers have paid considerable
attention to cracked beams [1], and different methods are
reported for crack modeling in the beams to describe the
changes in the beam stiffness. A majority of the considered
methods can be attributed to one of the following categories:
rotational spring model and continuous flexibility model.

In numerous works including those using crack models
with rotational springs, the cracked beam was treated as
two undamaged beams connected by a rotational spring at
the cracked section. The stiffness of the spring was related
to the crack depth and section geometry, and its value was
estimated by using fracture mechanics methods to quantify
the relation between the applied load and stress concentration
around the tip of the crack [2-7]. This spring caused the
rotation discontinuity owing to the concentrated flexibility

and produced an additional relative rotation of the cracked
section.

Based on this rotational spring model, the behaviors of
cracked beams were studied. Mahmoud and Abou Zaid [8]
adopted the spring model for a crack and developed an
iterative modal approach to analyze the vibration of cracked
beams subjected to moving loads. Jaksic et al. [9] deduced
the eigenvalues of a cracked beam based on the assumption
that the spring stiffness was a polynomial function of crack
depth ratio and formulated the motion equations of the
beam-vehicle interaction. By modeling the crack as a spring,
Ariaei et al. [10] used the finite-element approach to analyze
the responses of cracked beams under moving masses.

Various continuous flexibility models were also proposed
for modeling cracks to develop structural vibration equa-
tions. Christides and Barr [11] firstly assumed that the stress
around a crack decayed exponentially with the distance
from the crack and exhibited a stiffness reduction in the
region near the crack tip with an exponential variation.
However, Sinha et al. [12] proposed a stiffness reduction with
a local effect governed by a triangular variation. Bilello [13]
analyzed the effect of a crack in terms of the ineffective area
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FIGURE 1: Model of a simply supported beam: (a) simply supported beam and (b) free body of beam segment.

delimited by a linear reduction of its height, starting from
the cracked section. Chondros et al. [14] modeled a crack
as continuous flexibility by using the displacement field in
the vicinity of the crack tip, found with fracture mechanics
methods. Yang et al. [15] computed the equivalent bending
stiffness by using the strain energy variation around the crack
and considered the cracked beam as a continuous system
with varying moments of inertia. Abdel Wahab et al. [16]
described the stiffness reduction by using a cosine function
with three parameters that were determined by the vibration
characteristics extracted from the experimental data.

These continuous flexibility models were adopted to
analyze the behaviors of cracked beams. Law et al. [17] used
the continuous model proposed by Abdel Wahab et al. [16]
to simulate cracks in concrete simply supported beam and
adopted the modal analysis approach to build an interaction
model between the cracked beam and a moving vehicle.
Fu [18] adopted the same approach to analyze the dynamic
responses of a continuous cracked beam under moving vehi-
cles. Chondros et al. [19] employed the continuous flexibility
model [14] to predict the changes in vibration frequencies of
a simply supported beam with a breathing crack. Caddemi et
al. [20] modeled the crack influence by means of generalized
functions and studied the nonlinear dynamic response of a
beam with switching cracks.

From the crack models used in the literature, it is
found that all the models considered the local flexibility
due to a crack appearance and most of them assessed the
flexibility magnitudes either by experiment or by fracture
mechanics methods [2, 16]. If experiments are desired, then
the responses of cracked beams cannot be predicted only by
theoretical calculations [16]. When fracture mechanics meth-
ods are adopted, the cracked beam should have a rectangular
section [2,16]. This is because in fracture mechanics methods,
the beam is considered as a two-dimensional plane with the
stress concentration being focused near the crack tip.

In fact, the crack presence does not affect only the stress
of the vicinity of the crack tip but also the stress of regions
adjacent to the vicinity. As the neutral axis of section is
directly related to the stress distributions along the section
height, there is a change in the neutral axis, which also can
be observed from two-dimensional numerical simulations of
cracked beams [21, 22]. So the inertia moments of the sections
and the stiffness of these regions also vary with the stress
distributions.

Meanwhile, the length of these regions may be larger
than that of the vicinity, so the stiffness of these regions will
influence the global stiffness of the beam, and it is necessary
to estimate the global stiffness from the perspective of the

stress distributions of the regions. Besides, in the estimation
of stress distributions, the section shape of the beam is not
limited, and the analysis may be applicable for cracked beams
with irregular sections such as T-shaped sections.

In this paper, the nonlinear stress distributions of the
beam are modeled. Then, with the aid of the internal force
equilibria, the inertia moments of the sections are estimated,
whereas the local stiffness matrices are determined by using
the finite-element technique. Finally, these matrices are
assembled to form the global stiffness of the beam.

2. Stiffness Formulation for a Cracked Beam

A simply supported beam with an open transverse crack is
shown in Figure 1(a). The axial direction of the beam is taken
as the x axis and the vertical direction as the y axis. It is
assumed that the beam is homogeneous and cross-section is
uniform along the x axis. The two supports are denoted as
Support A and Support B, and a crack with a depth of d_ is
located at the bottom of Section C.

2.1. Models of Stress Distributions Near the Crack. Suppose
that a couple of static moments act on the two ends of the
beam, such that both of their values are equal to M, and
the action length of each moment is equal to the height h
of the section at the end. Next, the beam is subjected to
pure moments according to the mechanical characteristics of
simply supported beams.

If the beam is cut by a cracked section perpendicular to
the axial direction of the beam, the free body of the beam AC
is produced as shown in Figure 1(b). The equivalent moment
of force acting on the cut is M, but its action length is equal
to the height (h-d,) of the cracked section.

The stress of the free body should be firstly analyzed to
acquire the stress of the beam. The body is only subjected
to the pure moments at its ends, and the solution problem
of its stress can be viewed as Saint-Venant’s problem of pure
bending. The stress in the part near the loaded ends is affected
by the local load [23]. According to the existing findings, the
effect region is not longer than the loading action [24]. For a
pure bending beam, the action length is equal to the height of
the section. Therefore, the length [ of the effect region is set
as the section height h.

The stress in the effect region will be investigated in
detail. For a bending beam, the stress in the axial direction
is strongly related to the load, and it changes both along the
axis and cross-section of beam. Therefore, the axial stress is
selected as the main study object, and to simplify the analysis,
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FIGURE 2: Stress distributions in the three models: (a) bilinear distribution model, (b) curve distribution model, and (c) highly nonlinear

distribution model.

itis split into stresses along the axis of the beam and the cross-
section. These two types of stress will be analyzed.

First, the stress along the axis direction is studied, and
the stress of the beam bottom is taken as the studied object.
For Section C in Figure 1(b), this stress is equal to 0, because
the equivalent moment acts on the upper part of the section
and there is no load near the beam bottom, as shown in
Figure 1(b). However, for Section D in Figure 1(b) which
is just located at the end of the effect region, the stress is
no longer affected by the loaded end and its value can be
obtained using the classical beam theory.

M
Opxo = I_Ohb 1)
0

where I, denotes the inertia moment of the uncracked section
and hy, is the vertical distance from the bottom to the
neutral axis. Therefore, the bottom stress varies gradually
from Section C to Section D.

In the proof of Saint-Venant’s principle, Toupin found
that the stress near the loaded end changed exponentially
with the distance from the end [25]. Referring to this finding
and taking the effects of the crack depth into account, this
study assumes the stress 0;,,. of the beam bottom in the effect
region is expressed as

2)

where [; denotes the axial distance from the studied section
to Section C, y denotes the change rate, and is set as 6; (A + o)
denotes the crack effect on the change rate, where the depth
ratio of the crack A is equal to d,/h, and the constant « is set
as 0.5.

Next, the stress along the cross-section of the beam is
analyzed. This stress is assumed to be constant along the
width of the section, and it changes only along the section
height. As Section D is sufficiently far from the loaded end,
its stress is not affected by the local load and, according to the
classical beam theory, can be expressed as [26].

Opy (ld) — O.bxoe—)’(/lwc)(1—l¢1/lef)3 (O < ld < lef)

M,
o, (y) = 1—00 (=) (3)

where y, is the vertical coordinate of the neutral axis. So the
stress of Section D is linearly related to the height.

However, for sections closer to Section C, the stress along
the height exhibits a nonlinear characteristic, which becomes
more obvious with the decrease in the distance to Section C
owing to the local load or, more precisely, the crack effects. To
simulate the variable nonlinear characteristics, three models
of the stress distribution are built.

2.1.1. Bilinear Distribution Model. The crack opens in the
lower part of Section C, but the upper part is intact. This
behavior will affect the stress distribution in the studied sec-
tion and cause different distributions to appear in the lower
and upper parts of the section. To simulate this difference, a
bilinear distribution, the simplest nonlinear distribution, is
used. The stresses in both the parts are linear, but the slopes
are distinct. There is an inflection point between these parts,
whose y-axis coordinate is set to be equal to d_, as shown in
Figure 2(a). The stress along the height is expressed as

o, (y)

(o}

tx
h- Va
Ot Yy
h—xy (dc_yu)_abx d_+0bx y<dc
a c
where o,, denotes the axial stress of the beam top.

The nonlinearity in the bilinear distribution model is
slight, and the stress is moderately affected by the crack.
Therefore, this model is applicable to the sections that are in
the effect region but closer to Section D rather than Section
C.

(y = ya) y=d,

2.1.2. Curve Distribution Model. With decreasing the distance
to the crack, the stress of the beam bottom reduces according
to (2), but the stress of the inflection point increases. If the for-
mer is higher than the latter, the bilinear distribution model
can be applicable; otherwise, the nonlinearity is considered,
and for the part of the section below the inflection point,
the change in the stress along the height follows a quadratic



curve, as shown in Figure 2(b). The stress along the height is
expressed as

o, ()
y=de ()

2
h_—yu(dc_yu)_o-bx] (6%) + Opxe y<dc

Crack presence obviously affects the stress distribution,
particularly the distribution on the part below the inflection
point. Therefore, this model is applicable to the sections near
the middle of the effect region.

2.1.3. Highly Nonlinear Distribution Model. When the dis-
tance to Section C is less than 0.2 I, the section is regarded
to be in the vicinity of the crack tip and the stress distribution
becomes highly nonlinear because the crack tip exhibits the
stress concentration phenomenon.

As the stress near the tip is concentrated, its value is much
higher than that of the top stress, so that the stress of the upper
part of the section becomes nonlinear to the section height. It
is assumed that the stress distribution on this part is bilinear
and the inflection point is located at the neutral axis of the
section.

For Section C, the stress of the part below the crack tip
is equal to 0, because there is no force on the crack surface.
The closer the studied section to Section C, the larger the part
whose stress is approximately equal to 0. The height of this
part is assumed to linearly vary along the axial direction of
the beam. At Section C, the height is equal to be the crack
depth d,. At the section whose distance to Section Cis 0.2,
the height is equal to 0.

Concurrently, the concentrated stresses are tensile, and
the resultant force of these stresses is large. As the beam is
subjected to pure moments, to balance this large tensile force,
the resultant force of the compressed stress should be large
and the compared area of the section should not be small. In
this model, the compressed area is assumed to be constant
and set as the compressed area of the section whose distance
to Section C is 0.2 ;. Consequently, the neutral axis of the
section is also kept fixed in this model.

The stress in this model based on the above assumptions
is shown in Figure 2(c) and can be expressed as

o, ()
Gtx _

h_ya(y Ya) Y2y,
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= y/dc—ld/0.2h> ( ld)

HE AR g s ysd (1- -4

01’"( 1-1,/0.2h =Y h l 0.2h

0 <d 1——d>

‘ = < 0.2k

where 0, denotes the stress of the inflection point whose y-
axis coordinate is d,..

Although the above stress distributions are assumed, their
validity will be discussed in Section 3. In addition, these
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assumptions do not limit the shape of the beam cross-section,
and the stress distributions are valid irrespective of the shape.

2.2. Calculation of Inertia Moments. The inertia moments of
the effect region cannot be obtained directly based on these
distribution models, as the stress of the beam top and neutral
axis of the section are still unknown. To obtain the top stress
and neutral axis, the internal force equilibrium of the section
should be adopted. As the studied body is subjected to pure
bending, the following force equilibria are satisfied for each
section:

J 0. dA =0 (7a)
A

JA Ox (y - ya) dA = M, (7b)

where A denotes the area of the studied section. Using these
force equilibriums, the top stress and neutral axis will be
calculated successively for the sections in the macro elements.

First, the sections whose distances to Section C are not
less than 0.2],,, are analyzed. The stresses of these sections
follow a bilinear or curve distribution. The bilinear distri-
bution model is initially used to simulate the stresses and
substituted into (7a) and (7b) so that the following equations
are obtained:

Ux
J —— (y-y,)dA
A

th_ya
(8a)
atx y
+ d.—y,) -0y | 5 +0,,dA=0
JAb[h_ya( c ya) hx] dc bx
Ux
L ﬁ(y—)’u)zdf\
Otx Y (8b)
+ d.—y,) -0y | 5 +0
jAb{[h_ya( c ya) hx] dc bx}

(¥ = y.)dA = M,

where A, and A, denote the areas of the parts above
and below the inflection point, respectively, in the bilinear
distribution model.

The bottom stress in (8a) and (8b) can be obtained
considering (2); however, there are still two unknowns: the
top stress o,, and the coordinate of the neutral axis y,.
Therefore, (8a) and (8b) form a set of nonlinear equations
with two unknowns, and Newton’s method can be used to
solve this set. After obtaining the solution, these unknowns
can be determined and the stress 0,,, at the inflection point
can be obtained as

Utx

apx = h—)/ (dc_ya) (9)

According to the assumptions of the stress distribution
models, if o, is lower than the bottom stress oy, the bilinear
distribution model is applicable for the studied section and
the two unknowns, the top stress o,, and the coordinate
of the neutral axis y,, are obtained. Otherwise, the curve
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FIGURE 3: Elements of the beam.

distribution model is adopted and o,, and y, should be
recalculated as follows.

By substituting (5), the stress expression of the curve
distribution model, (7a) and (7b), a nonlinear equation set
similar to (8a) and (8Db) is obtained. Solving this set yields o,
and y,.

Next, the sections whose distances to Section C are less
than 0.2/, are studied. The highly nonlinear distribution
model is applicable to these sections. In this model, the
compressed area of each section is assumed to be constant
and the y-axis coordinates of the neutral axis are equal to the
coordinate for the section whose distance to the crack is equal
to 0.2,,,, which is calculated by using the abovementioned
method.

Although the neutral axis is known, there are still two
unknowns in this model: the top stress o,, and the stress
0y Of the inflection point. By substituting (6), the stress
expression of the highly nonlinear distribution model, into
(7a) and (7b), nonlinear equations similar to (8a) and (8b)
are obtained. Solving these equations yields the stresses o,
and 0,,,.

In Section D, the stress is linear to the height, as expressed
in (3). If the top stress and neutral axis are known, then based
on (3) the inertia moment can be expressed as

I = (1= %) 10)
Oix

In other sections of the effect region, the stress is also
linear from the beam top to the neutral axis according to the
three stress distribution models. In addition, the top stress
and neutral axis are determined by solving the nonlinear
equations. Similar to the inertia moment of Section D, the
inertia moment in the effect region can be expressed using
the known top stress and neutral axis, and its formulation is
the same as (10).

Although the inertia moment of each section in the effect
region can be obtained by using the above method, it is
unnecessary to calculate the moments of all the sections,
because the variation curve of the moments along the region
length can be fitted using the moments of some given
sections. If the number of the given sections is sufficient, the
fitted curve can represent the real change in the moments.

2.3. Formulation of Stiffness Matrix. If the finite-element
method is adopted to analyze the cracked beam, the structure
can be divided into n beam elements, including (n — 2)
common elements and two cracked elements, as shown in
Figure 3. Each element has four degrees (node displacements
at each end, vertical displacement, and rotation). The com-
mon element can be viewed as a beam element with constant

cross sections. So its stiffness is not affected by the crack and
easily obtained by a variational method [27].

However, the cracked elements are located near the crack,
and their stiffness is significantly affected by the crack. For
example, the region from Section D to Section C can be
taken as a cracked element with variable sections, whose local
stiffness matrix is expressed as [27]

1 ENE)\ ENE)
K [ o0 (R2) T )

where E denotes the elastic modulus of the beam material, I
is the fitted curve of the inertia moments along the element
length, & is equal to (x — x,,;)/1,,.> where x,,; is the x-axis
coordinate of the left node of the macro element, and N is
the Hermite interpolation function, expressed as [27]

N (&)
_ [1_3§2+2£3 (5—252-}-63)[ 3{2_253 (_EZ+E3)I]

The global stiffness matrices for cracked elements are
developed by using transformation matrices and then assem-
bled to form the stiffness matrix K, of the beam, which can
be written as

12)

2
T
Kb = Kco + Z Ami KmeiAm,- (13)
i=1
where K, is the stiffness matrix of the common elements,
K_ . denotes the stiffness matrix of the ith cracked element,

mei

A,, is the transformation matrix of the ith cracked element,

and m; denotes the serial number of the element. A,, canbe
written as

(Zmi— l)th column
l
01 000000O0---0
(14)
001 00000---0
--00010000---0
0

-00001000O0---

o o o O

4x(2n+2)
When the beam is subjected to dynamic loads, the
governing equations of the beam can be expressed as

d’u, d

U,
Mb? + Cb 7 + KbUd = FV (15)

d

where M, and C, are, respectively, the mass and damp
matrices of the beam and F, denotes the vector of the
moving load. Explicit expressions for these characteristic
matrices and the vector are provided in [27]. U; =
[wgy 641 .. wy Oy ...wy, 04,] is the displacement vec-
tor of the beam, where wy; and 6; are the vertical displace-
ment and sectional rotation at the section centroid of the ith
node, respectively.

When the beam is under static loads, the inertial and
damping forces vanish in the governing equations. By solving
these equations, the static or dynamic displacements of the
beam can be obtained.
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FIGURE 4: Finite-element mesh of the region near the crack tip.

3. Examples

3.1. Cracked Beams with a Rectangular Section. To test the
proposed method, the cracked beam considered in this study
is a simply supported beam with a rectangular section used
by Mahmoud et al. [8]. The following beam and crack
parameters are adopted: L = 50 m, E = 2.1 X 101NN m_z, m=
3930kgm™', h=1m, b =0.5m,d, = 0.5m, and the distance
from the crack to the left-hand support I, = 25 m. The beam
is divided into 26 elements, including 2 cracked elements and
24 common beam elements. The intersection of the cracked
elements is the cracked section.

The beam finite-element method (BFEM) proposed in
this paper is adopted to calculate the responses of the beam,
and the obtained results are compared with the results of the
following two methods.

The first one is the solid finite-element method (SFEM)
using the commercial finite-element program ANSYS. The
beam is simulated with three-dimensional solid elements,
and the crack in the program is taken as a shot which is
formed by disjointing the nodes of the two adjacent elements
at the crack interface. The element size is set to 0.1 m, and
the smaller element size requirements near the crack tip
are provided by the refined meshing technique, as shown in
Figure 4.

The second approach is an iterative modal analysis
approach (IMAA) proposed by Mahmoud et al. [8], where
the crack is modeled as a rotational spring connecting two
undamaged beam segments. The stiffness of the rotational
spring is determined using fracture mechanics and derived
using the results of a beam with a rectangular section.

To obtain the inertia moments of the sections in the
cracked elements, a couple of static moments with a value of
1226 kN m are imposed on the ends of the beam to analyze
the stress distribution in the cracked elements. According to
the analysis in Section 2.2, the length of a cracked element is
equal to the height of the beam, which is equal to 1 m. Then,
thirteen sections are selected, which divide the element into
12 segments and the stresses of these sections are analyzed.

The bottom stresses of the sections are estimated using
(2), and the top stresses and the neutral axis are calculated
based on the stress distribution models and force equilibria.
These stress results are compared with the results obtained by
the SFEM, as shown in Figure 5.

From Figure 5, it is observed that the two results almost
completely overlap, except in the small region close to the
crack. This indicates that the assumed stress distributions
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in this study are in accordance with the solid finite-element
simulations for the sections that are not close to the crack.
Although there is a difference between the two results in the
region close to the crack because it is difficult to accurately
model the stress concentration phenomenon, the maximum
difference is less than 4% of the stress peak and the length of
the small region is less than 4% of the length of the cracked
elements. Because this difference is small, it may have a slight
effect on the calculation of the inertia moments.

Based on the calculated stresses and neutral axis, the
inertia moments of the selected sections are estimated con-
sidering (10) and used to fit the curve of the inertia moment
along the element length, as shown in Figure 6. It is found that
the inertia moment reaches its minimum value at the crack
and the farther away the section is from the crack, the larger
the inertia moment is. The inertia moment of the farthest
section in the cracked element is equal to the moment of the
uncracked section.

The local stiffness matrices of the cracked elements are
calculated by substituting the fitted inertia moments into (11),
and then the global stiffness matrices are obtained using the
transformation matrix presented in (13). Finally, the stiffness
matrix of the beam is formed by combining the global
stiffness matrices of the cracked elements and common beam
elements.

Suppose that a vertical load F with a value of 385.5kN
statically acts on the beam and it is located at the midspan of
the beam. The static displacement of the beam is calculated
by the proposed method and compared with the two results
obtained by the SFEM and IMAA, as shown in Figure 7. In
this paper, all displacements are normalized relative to the
value FL?/ (48EI,), which is the static displacement of the
beam with no crack due to F at the midspan. From Figure 6,
it is observed that the three results are almost coincident.
This agreement indicates that the proposed method can yield
an accurate prediction of the static responses of the cracked
beam.

Then suppose that the load F moves into the beam from
the left-hand support at time ¢ = 0 and its velocity v is 40 m
s~!. The vibrational displacements of the beam obtained by
different methods are compared, and their results are shown
in Figure 8. In this figure, T}, is the total time that the load
requires for one pass the beam. It is seen that the results from
different methods coincide with each other, so the vibrational
responses are accurately calculated.

These accurate results of the static and vibrational dis-
placements indicate that the stiffness of the cracked beam
estimated by this paper is precise enough to predict the
displacements and accurately describes the change in the
beam characteristics caused by the crack.

Figure 9 investigates the effects of the crack depth on the
beam stiffness. It is seen that all the displacements obtained
by the three methods increase with the depth and are almost
coincident when the depth ratio is less than 0.6. When the
ratio is larger than 0.6, the displacement obtained by the
IMAA is smaller than the result simulated by the SFEM.
However, the result obtained by the BFEM is identical to the
simulated result even if the ratio reaches 0.8. Therefore, it is
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concluded that the proposed method can accurately estimate
the stiffness of the cracked beam even when the crack is deep.

The effect of crack location on the displacement is
investigated in Figure 10. It seems that when the crack is not
in the middle of the beam, the displacement predicted by
the BFEM still corresponds with the result simulated by the
SFEM, which indicates that the crack location does not affect
the accuracy of the predicted displacement.

3.2. Cracked Beams with a T-Shaped Section. A cracked beam
with a T-shaped section considered here is a simply supported
beam, whose crack and beam parameters are the same as
those of the beam with a rectangular section mentioned in
Section 3.1, except the cross-section. The T-shaped section is
shown in Figure 11, and its height is identical to the height
of the rectangular section. The crack depth is set as 0.5m,

-0.5 -

Normalized displacement

1.5 1 1 1 1 J

—6— BFEM
—>— IMAA
—— SFEM

FIGURE 7: The normalized displacement of the beam under the static
load.

and the beam is also divided into 26 elements, including two
cracked elements.

To calculate the inertia moment along the length of the
cracked elements, two static moments of 1720kN m are
imposed on the ends of the beam and the stress distribution
of the cracked elements is analyzed. According to the analysis
in Section 2.2, the element length is equal to the height of the
T-shaped section, which is equal to 1 m. Then, 13 sections are
selected, and the stresses of these sections are analyzed.

The bottom stresses of the sections are estimated using
(2) and, based on the stress distribution models and force
equilibria, the top stress and neutral axis are calculated. These
stress results are shown in Figure 12. It is seen that the stresses
obtained by the proposed approach and the SFEM are similar
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FIGURE 9: Effect of the crack depth ratio on the displacement at the span midpoint (v = 40 m s™'): (a) when the ratios are small and (b) when

the ratios are large.

both at the bottom and top of the sections. This proves the
validity of the stress distribution models used in this study.

Based on the calculated stresses and neutral axis, the
inertia moments of the selected sections are estimated based
on (10) and used to fit the curve of the inertia moment along
the element length, as shown in Figure 13. The trend of the
fitted curve is similar to that for the beam with a rectangular
section.

The fitted inertia moments are used for the formation
of the stiffness matrix of the beam subjected to the load F

mentioned in Section 3.1. When the load statically acts on
the midspan, the static displacements are shown in Figure 14
and it is observed that the displacements obtained by the
BFEM are in good agreement with the results simulated
by the SFEM, but there are some differences between the
displacements obtained by the IMAA and the simulated
results.

When the load F moves into the beam at a velocity of 40 m
s7!, the vibrational displacements of the beam are shown
in Figure15. It is seen that the vibrational displacements
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obtained by the BFEM are closer to the results simulated by
the SFEM, compared with the displacements obtained by the
IMAA.

These phenomena of static and vibrational displacements
are attributed to the different assumptions used for these
methods. The IMAA derives the stiffness of the cracked
region using fracture mechanics and assumes that the beam
section was rectangular, whereas the BFEM assumes that the
stress distribution of the region and does not limit the shape
of the cross-section. As the beam section here is T-shaped, the
BFEM is more applicable and will be used for the following
study.

Figure 16 illustrates the effects of the crack depth on the
displacements of the beam with a T-shaped section. It is seen
that the displacements obtained by the BFEM agree with the
simulated results if the ratio of the crack depth to the section
height is not larger than 0.7 When the ratio reaches 0.8, the
stress concentration in the beam becomes extremely high, so
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FIGURE 15: Vibrational displacement at the span midpoint of the
beam with a T-shaped section under the moving load with a velocity
of40ms .

that the stress distributions along the section height could not
be simulated by the proposed models. Therefore, it is difficult
to accurately calculate the stiffness of the sections near the
crack and, consequently, the response of the beam using the
BFEM.

4. Conclusions

In this paper, a method for the stiffness estimation of cracked
beams is proposed based on nonlinear stress distributions
near the crack. First, regions whose stresses were affected by
the crack were analyzed and, according to the distance from
the studied sections to the crack, different nonlinear stress
distributions were modeled for the effect regions. The inertia
moments of the sections were evaluated by substituting the
stress distributions into the internal force equilibrium of the
sections. Then, the finite-element technique was adopted to
estimate the stiffness matrix of the cracked beam.

The estimated stiffness was used to predict the dis-
placements of cracked beams, and the results show that
both static and vibrational displacements were accurately
predicted, which indicated that the estimated stiffness was
precise enough. Besides, the method could be applicable not
only to the stiffness estimation of cracked beams with a
rectangular section, but also to that of the beams with a T-
shaped section if the crack depth ratio was not larger than
0.7, as the section shape of the beam was not limited in the
process of modeling the stress distributions.

In practical applications, the proposed method is attrac-
tive for use, as the beam stiffness is established by using the
nonlinear stress distributions, in place of fracture mechanics,
and the computation becomes simple. Although this method
analyzes the beam with a crack, it still works for beams
with multiple cracks. But if the cracks are closely located,
the stresses of the region in a crack are affected by other
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FIGURE 16: Effect of the crack depth ratio on the displacement at the span midpoint of the beam with T-shaped section (v = 40m s™): (a)
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cracks, and they do not follow the models of nonlinear
stress distributions in this paper. So this method may not be
applicable for beams with closely located cracks, whose stress
distributions and stiffness should be studied in futures works.

Data Availability

The data analyzed during the current study include the
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