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Themagnetohydrodynamic (MHD) peristaltic flow of the fractional Jeffrey fluid through porousmedium in a nonuniform channel
is presented. The fractional calculus is considered in Darcy’s law and the constitutive relationship which included the relaxation
and retardation behavior. Under the assumptions of long wavelength and low Reynolds number, the analysis solutions of velocity
distribution, pressure gradient, and pressure rise are investigated.The effects of fractional viscoelastic parameters of the generalized
Jeffrey fluid on the peristaltic flow and the influence ofmagnetic field, porousmedium, and geometric parameter of the nonuniform
channel are presented through graphical illustration. The results of the analogous flow for the generalized second grade fluid, the
fractional Maxwell fluid, are also deduced as special cases. The comparison among them is presented graphically.

1. Introduction

Peristaltic flow is generated by means of contraction and
expansion of channel walls, which has wide applications in
many physiological processes and industries. Peristalsis or
the mechanism of peristalsis is used to propel the biological
fluid from one organ to another, for instance, the transport
of blood in vessels and the movement of the chyme in the
digestive system. Due to the important role of peristaltic flow,
many investigations of peristalsis for Newtonian and non-
Newtonian fluids have been carried out theoretically and
experimentally since Latham [1]. In view of the fact that
most biofluids show the characteristics of non-Newtonian
fluid, more and more researchers focus on non-Newtonian
model of peristalsis. Srivastava [2] and Siddiqui [3] studied
peristaltic transport of a couple-stress fluid and second-
order fluid, respectively. Hayat [4] discussed the peristaltic
mechanism of a Maxwell fluid in an asymmetric channel. In
another aspect, the effect of the imposed magnetic field is
usually significant in peristaltic transform for its applications
for conductive biological fluid and biomechanics such as
blood and blood pump machines. The peristalsis through
porous medium is also investigated with great interest, as an
example, which could practically describe the flow through
diseased biological channel. Srinivas et al. [5, 6] investigated

peristalsis motion of a Jeffrey fluid under the effect of
magnetic field and of Newtonian fluid with porous medium.
Hayat et al. [7, 8] researched the MHD peristaltic flow of
Jeffrey fluid in a channel and in a rotating system with
porous medium, respectively. Some other researches about
the peristalsis under the effect of magnetic field with porous
medium can be found in [9–14].

As we all know, the fractional model is more flexible
to describe the viscoelastic property of the non-Newtonian
fluids in physics, biology, and medical engineering, because
a very good fit of experimental data is achieved when the
constitutive equation with fractional derivative is used [15].
The fractionalMaxwell fluid such as generalized second grade
fluid, fractional Oldroyd-B fluid, or generalized Burgers fluid
has been considered in modern mechanics [16–20]. In recent
year, peristaltic transport of fractional viscoelastic fluid in
different system plays an important role through the work
of Tripathi et al. [21–23]. Jamil et al. [24] discussed the
magnetohydrodynamics fractional Oldroyd-B fluid. Dhar-
mendra [25] and Hameed et al. [26] studied peristaltic flow
of a fractional second grade fluid. Peristaltic transport of a
fractional Burgers’ fluid with variable viscosity through an
inclined tube is investigated by Rachid [27].

Considering Jeffrey fluid has important applications in
biological fluid mechanics and most channels in biological
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organs and machines are general known to be nonuniform
[23, 28], we investigate the two-dimensional MHD peristal-
sis of fractional Jeffrey fluid through porous nonuniform
channel in this paper. The fractional calculus was taken
into modified Darcy’s law [17] and the constitutive equation
of Jeffrey fluid was introduced by Hayat et al. [7] and
Bird [29], in which the time derivative is instead of the
convective derivative in constitutive equation of Oldroyd-B
fluid. Under the imposed magnetic field, the peristaltic flow
through nonuniform channel with porous medium for an
incompressible viscoelastic fluid is considered. The paper is
organized as follows. Section 2 deduces the basic equations
of the fluid and presents the initial and boundary value
problem for the flow. In Section 3 the analysis solution of
the problem is obtained. Section 4 discusses the special cases
and the numerical results. Section 5 is the conclusion of the
paper.

2. Basic Equations

The constitutive relationship of an incompressible fluid of
Jeffrey model is of the form [7, 29]

T = −𝑝I + S, (1)

S + 𝜆1𝜕𝑡S = 𝜇 [A + 𝜆2𝜕𝑡A] , (2)

where −𝑝I denotes the indeterminate spherical stress due
to the constraint of incompressibility, S is the extra-stress
tensor, A = L + LT is the first Rivlin–Ericksen tensor,
L = ∇V is the velocity gradient, V is the velocity vector,𝜇 is the viscosity of the fluid, and 𝜆1 and 𝜆2 are constant
relaxation and retardation times, respectively. According to
the constitutive relationship of the classical Jeffrey fluid, the
constitutive relationship of the fractional Jeffrey fluid is given
by (1), and

S + 𝜆1𝐷𝛼𝑡 S = 𝜇 [A + 𝜆2𝐷𝛽𝑡 A] , (3)

where𝐷𝛼𝑡 and𝐷𝛽𝑡 are fractional calculus of order 𝛼 and 𝛽with
respect to 𝑡, respectively, and may be defined as [30]

𝐷𝑝𝑡 𝑓 (𝑡) = 1Γ (1 − 𝑝) 𝑑𝑑𝑡 ∫𝑡
0
(𝑡 − 𝜏)−𝑝 𝑓 (𝜏) 𝑑𝜏,

0 ≤ 𝑝 ≤ 1.
(4)

And the new material constants 𝜆1 and 𝜆2 have the dimen-
sions of 𝑡𝛼 and 𝑡𝛽, respectively. Some of the papers use 𝜆𝛼1 and𝜆𝛽2 instead of 𝜆1 and 𝜆2. However, for the sake of simplicity
we keep the same notations as in the ordinary case. This
model includes the ordinary Jeffrey fluid as a special case for𝛼 = 𝛽 = 1, in which 𝜆1 and 𝜆2 are relaxation and retardation
time. This model also can be simplified to be the generalized
second grade fluid when 𝛼 = 0, 𝜆1 → 0, to be fractional
Maxwell fluid when 𝛽 = 0, 𝜆2 → 0.

We consider the peristalsis of the electrically conducting
fractional Jeffrey fluid flow through the two-dimensional
nonuniform tube. In a suitable Cartesian coordinate system,
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Figure 1: Geometry of the problem.

we suppose that the fluid goes through a porous channel
with the 𝑥-axis along the center line and 𝑦-axis normal to it
(Figure 1). The geometry of the tube walls along which waves
propagating is given by [23, 28]

𝑦 = ±ℎ = ± [𝑎 (𝑥) + 𝑏 sin 2𝜋𝜆 (𝑥 − 𝑐𝑡)] , (5)

where 𝑎(𝑥) = 𝑎0+𝑚𝑥, (𝑚 ≪ 1) is the half width of the channel
at any axial coordinate point 𝑥, 𝑎0 is half width of the inlet of
the channel, 𝑚 is constant whose magnitude depends on the
length of the channel and the dimensions of the inlet and exit,
and 𝑏, 𝜆, 𝑐, and 𝑡 are the amplitude, wavelength, wave velocity,
and time variation.

The uniform magnetic field of strength 𝐵0 is applied in
the transverse direction to flow, while induced magnetic field
subject to low magnetic Reynolds number is neglected. So,
the governing equations of the flow ofMHD viscoelastic fluid
in a porous medium are

divV = 0, (6)

𝜌𝑑V𝑑𝑡 = −∇𝑝 + div S − 𝜎𝐵20V + r, (7)

where 𝑑/𝑑𝑡 is the material time derivative, 𝜌 is the density,𝑝 is the pressure, and 𝜎 is electrical conductivity. r is Darcy
resistance and can be inferred from (3) for a generalized
Jeffrey fluid in the porous medium satisfying the following
equation [17]:

(1 + 𝜆1𝐷𝛼𝑡 ) r = −𝜇𝜙𝐾 (1 + 𝜆2𝐷𝛽𝑡 )V, (8)

where𝐾(> 0) is permeability and 𝜙(0 < 𝜙 < 1) is porosity of
the porous medium.
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Substitute (3), (8), and V = (𝑢, V) into (7), we obtain

(1 + 𝜆1𝐷𝛼𝑡 ) (𝜕𝑢𝜕𝑡 + 𝑢𝜕𝑢𝜕𝑥 + V
𝜕𝑢𝜕𝑦)

= −1𝜌 (1 + 𝜆1𝐷𝛼𝑡 ) 𝜕𝑝𝜕𝑥 + 𝛾 (1 + 𝜆2𝐷𝛽𝑡 )∇𝑢

− 𝜎𝐵20𝜌 (1 + 𝜆1𝐷𝛼𝑡 ) 𝑢 − 𝛾𝜙𝐾 (1 + 𝜆2𝐷𝛽𝑡 ) 𝑢,
(9)

(1 + 𝜆1𝐷𝛼𝑡 ) (𝜕V𝜕𝑡 + 𝑢 𝜕V𝜕𝑥 + V
𝜕V𝜕𝑦)

= −1𝜌 (1 + 𝜆1𝐷𝛼𝑡 ) 𝜕𝑝𝜕𝑦 + 𝛾 (1 + 𝜆2𝐷𝛽𝑡 ) ∇V
− 𝛾𝜙𝐾 (1 + 𝜆2𝐷𝛽𝑡 ) V,

(10)

in which 𝛾 = 𝜇/𝜌 is the kinematic viscosity and 𝑢, V are the
velocity components along 𝑥 and 𝑦 directions, respective-
ly.

We introduce dimensionless variables as follows:

𝑥 = 𝑥𝜆 ,
𝑦 = 𝑦𝑎0 ,
�̂� = 𝑡𝑐𝜆 ,
�̂� = 𝑢𝑐 ,
V̂ = V𝑐𝛿 ,

�̂�1 = 𝑐𝜆1𝜆 ,
�̂�2 = 𝑐𝜆2𝜆 ,
𝑝 = 𝑝𝑎20𝜇𝑐𝜆,
�̂� = 𝐾𝜙𝑎20 ,
ℎ̂ = ℎ𝑎0 = 1 + 𝑚𝛿 𝑥 + 𝜑 sin 2𝜋 (𝑥 − �̂�) ,
𝜑 = 𝑏𝑎0 ,
𝛿 = 𝑎0𝜆 ,

Re = 𝜌𝑐𝑎0𝛿𝜇 ,
𝑀 = √𝜎𝜇𝐵0𝑎0,

(11)

where 𝛿, 𝜑,Re,𝑀 are wave number, amplitude ratio,
Reynolds number, and Hartmann number, respectively.
Then under the approximations of the long wavelength
and low Reynolds number, we obtain the dimensionless
equations (for simplicity, the dimensionless mark “∧” will be
neglected from here on):

(1 + 𝜆1𝐷𝛼𝑡 ) 𝜕𝑝𝜕𝑥 = (1 + 𝜆2𝐷𝛽𝑡 ) 𝜕2𝑢𝜕𝑦2 − 1𝐾 (1 + 𝜆2𝐷𝛽𝑡 ) 𝑢
− 𝑀2 (1 + 𝜆1𝐷𝛼𝑡 ) 𝑢,

(12)

𝜕𝑝𝜕𝑦 = 0. (13)

The boundary and initial conditions are

𝜕𝑢𝜕𝑦 = 0, 𝑎𝑠 𝑦 = 0;
𝑢 = 0, 𝑎𝑠 𝑦 = ℎ;

(14)

𝜕𝑝𝜕𝑥 = 0, 𝑎𝑠 𝑡 = 0. (15)

3. Solution of the Problem

Solving (12) with condition (14), we get the velocity

𝑢 = 𝑠𝑘2 𝜕𝑝𝜕𝑥 [ cosh (𝑘𝑦)
cosh (𝑘ℎ) − 1] , (16)

in which 𝑘2 = 1/𝐾 + 𝑀2𝑠, 𝑠 = (1 + 𝜆1𝐷𝛼𝑡 )/(1 + 𝜆2𝐷𝛽𝑡 ).
The volumetric flow rate in the fixed frame is given by

𝑄 = ∫ℎ
0
𝑢𝑑𝑦 = 𝑠𝑘3 𝜕𝑝𝜕𝑥 [tanh (𝑘ℎ) − 𝑘ℎ] . (17)

The relationships of the wave frame (𝑋, 𝑌), (𝑈,𝑉) moving
with velocity 𝑐 and the fixed frame (𝑥, 𝑦), (𝑢, V) are given by

𝑋 = 𝑥 − 𝑡,
𝑌 = 𝑦,
𝑈 = 𝑢 − 1,
𝑉 = V.

(18)

Then the volumetric flow rate in the wave frame is

𝑞 = ∫ℎ
0
𝑈𝑑𝑌 = ∫ℎ

0
(𝑢 − 1) 𝑑𝑦 = 𝑄 − ℎ. (19)
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Figure 3: Profiles of the pressure gradient for various values of 𝑀
with fixed𝑚 = 0.5, 𝛿 = 0.3, 𝜑 = 0.5, 𝛼 = 0.4, 𝛽 = 0.6, 𝜆1 = 1, 𝜆2 = 1,𝑡 = 0.6, 𝐾 = 1, 𝑄 = 0.1.

And the average of the volumetric flow rate along one time
period gives

𝑄 = ∫1
0
𝑄𝑑𝑡 = ∫1

0
(𝑞 + ℎ) 𝑑𝑡

= ∫1
0
[𝑞 + 1 + 𝑚𝛿 𝑥 + 𝜑 sin 2𝜋 (𝑥 − 𝑡)] 𝑑𝑡

= 𝑞 + 1 + 𝑚𝛿 𝑥.
(20)

From (17)-(20), we can have

𝜕𝑝𝜕𝑋 = 𝑘3𝑠 𝑄 + 𝜑 sin 2𝜋𝑋
tanh (𝑘ℎ) − 𝑘ℎ, (21)
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Figure 5: Profiles of the pressure gradient for various values of 𝑚
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where ℎ = 1 + (𝑚/𝛿)(𝑋 + 𝑡) + 𝜑 sin 2𝜋𝑋, then

𝑈 = 𝑘𝑄 + 𝜑 sin 2𝜋𝑋
tanh (𝑘ℎ) − 𝑘ℎ [cosh (𝑘𝑌)

cosh (𝑘ℎ) − 1] − 1. (22)

Because in wave frame the velocity 𝑈 = 𝜕𝜓/𝜕𝑌, in which 𝜓 is
the stream function, we can give

𝜓 = 𝑄 + 𝜑 sin 2𝜋𝑋
tanh (𝑘ℎ) − 𝑘ℎ [ sinh (𝑘𝑌)

cosh (𝑘ℎ) − 𝑘𝑌] − 𝑌. (23)
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And the dimensionless pressure rise and friction can be
obtained as follows:

Δ𝑝 = ∫1
0

𝜕𝑝𝜕𝑋𝑑𝑋, (24)

𝐹 = ∫1
0
−ℎ2 𝜕𝑝𝜕𝑋𝑑𝑋. (25)
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Figure 9: Profiles of the pressure gradient for various values of 𝛽
with fixed 𝑚 = 0.5, 𝛿 = 0.3, 𝜑 = 0.5,𝑀 = 1, 𝜆1 = 1, 𝜆2 = 1,𝐾 =1,𝑄 = 0.1.

4. Discussion and Numerical Results

In a special case, if we consider the MHD peristaltic flow in
nonporous medium, the velocity (16) reduces to

𝑢 = 1𝑀2 𝜕𝑝𝜕𝑥 [cosh (𝑀𝑠1/2𝑦)
cosh (𝑀𝑠1/2ℎ) − 1] . (26)

If strength of the applied magnetic field 𝐵0 = 0, 𝑖.𝑒. 𝑀 =0, corresponding to the peristalsis for fractional Jeffrey fluid
with porous medium, result (16) is simplified to

𝑢 = 𝑠𝑘2 𝜕𝑝𝜕𝑥 [ cosh (𝑘𝑦)
cosh (𝑘ℎ) − 1] , (27)

where 𝑘2 = 1/𝐾.
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When 𝛼 = 0, 𝜆1 → 0, 𝑠 = (1 + 𝜆2𝐷𝛽𝑡 )−1 and the
above results reduce to the solutions of theMHDperistalsis in
porousmedium for the generalized second grade fluid (GSF).

While 𝛽 = 0, 𝜆2 → 0, 𝑠 = 1 + 𝜆1𝐷𝛼𝑡 and the solutions
corresponding to the peristaltic flow of fractional Maxwell
fluid (FMF) are obtained.

In addition, the influences of the parameters of magnetic
field, medium, tube, and viscoelastic fluid on the flowmotion
are discussed through graphical illustrations. From Figures
2–11, the pressure gradient of the fixed frame as the function
of the axial coordinate point𝑥is profiled. Figure 2 reveals
pressure gradient decreases with the average of volumetric
flow rate. The influences of Hartmann number 𝑀, wave
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number 𝛿, and amplitude ratio 𝜑 on the pressure gradient
are shown in Figures 3, 6, and 7, respectively. The pressure
gradient is shown to be the increase function with regard to
strength of the magnetic field, wave number, and amplitude
when pressure gradient is positive, while it is shown to the
decrease function when pressure gradient is negative. From
Figures 4 and 5, we notice that the pressure gradient decreases
with increased porous parameter 𝐾 and channel parameter𝑚, when pressure gradient is positive and inverse when
pressure gradient is negative. Through Figures 8, 9, 10, and 11,
it is clear that the fractional parameters 𝛼, 𝛽 and the material
parameters 𝜆1, 𝜆2 have effect on the pressure gradient. When
pressure gradient is positive, the pressure gradient is direct
proportion to fractional parameters 𝛼 and retardation time
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Figure 15: Profiles of the velocity u for various values of 𝛿with fixed𝜕𝑝/𝜕𝑥 = −0.35,𝑚 = 0.5, 𝜑 = 0.5, 𝛼 = 0.4, 𝛽 = 0.6,𝑀 = 1, 𝜆1 =1, 𝜆2 = 1, 𝑥 = 0.1,𝐾 = 1.

𝜆2 and is inverse proportion to fractional parameter 𝛽 and
relaxation time 𝜆1.

The velocity distribution is plotted as a function of 𝑦 in
Figures 12–20 with fixed axial coordinate and time. Figures
12 and 15 depict velocity distribution for various values of
Hartmann number M and wave number 𝛿, respectively. The
velocity distribution is shown to be the decrease function
with regard to the imposed magnetic field and wave number.
Inversely, in Figures 13, 14, and 16, we notice that the pressure
gradient is increased with increase of porous parameter 𝐾,
channel parameter 𝑚, and amplitude ratio 𝜑. Figures 17–20
show the influences of the fractional parameters and the
material parameters on the velocity function. It is found
that velocity distribution decreases with increasing fractional
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Figure 16: Profiles of the velocity u for various values of 𝜑with fixed𝜕𝑝/𝜕𝑥 = −0.35,𝑚 = 0.5, 𝛿 = 0.3, 𝛼 = 0.4, 𝛽 = 0.6,𝑀 = 1, 𝜆1 =1, 𝜆2 = 1, 𝑥 = 0.1, 𝐾 = 1.
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Figure 17: Profiles of the velocity u for various values of 𝛼with fixed𝜕𝑝/𝜕𝑥 = −0.35, 𝑚 = 0.5, 𝛿 = 0.3, 𝜑 = 0.5,𝑀 = 1, 𝜆1 = 1, 𝜆2 = 1, 𝑥 =0.1,𝐾 = 1.

parameter 𝛼 and retardation time 𝜆2 and increases with
increasing fractional parameter 𝛽 and relaxation time 𝜆1,
respectively.

Finally, Figures 21 and 22 are drawn, respectively, to
study the difference of the pressure gradient and velocity
distribution for generalized second grade fluid (GSF, with𝛼 = 0, 𝜆1 → 0), fractional Maxwell fluid (FMF, with𝛽 = 0, 𝜆2 → 0), and fractional Jeffrey fluid (FJF). It is
discovered that the pressure gradient and velocity of frac-
tional Jeffrey fluid are just between the ones of other two fluid
models.
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5. Conclusion

In this investigation, we established a mathematic model of
the MHD peristaltic flow of fractional Jeffrey fluid through
porous a nonuniform tube. Using the assumptions of long
wavelength and low Reynolds number, we obtained the
analysis expression of velocity component along 𝑥 direc-
tions, the relationship between pressure gradient and the
volumetric flow rate, pressure rise, friction force, and stream
function. And these results can be simplified to peristaltic
flow of the generalized second grade and fractional Maxwell
models when relevant parameters assume special values. The
viscoelastic effects of the fractional Jeffrey fluid in porous
nonuniform tube and the influence of magnetic field and
porosity parameter on the flow motion are depicted through
graphical illustrations. Based on the above theoretical and
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Figure 20: Profiles of the velocity u for various values of 𝜆2 with
fixed 𝜕𝑝/𝜕𝑥 = −0.35,𝑚 = 0.5, 𝛿 = 0.3, 𝜑 = 0.5, 𝛼 = 0.4, 𝛽 =0.6,𝑀 = 1, 𝑥 = 0.1, 𝐾 = 1.
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Figure 21: Profiles of the pressure gradient 𝜕𝑝/𝜕𝑋 for GSF, FMF and
FJF, with fixed 𝑚 = 0.5, 𝛿 = 0.3, 𝜑 = 0.5,𝑀 = 1, 𝑡 = 0.6,𝐾 = 1,𝑄 =0.1.

numerical research, the main conclusions are that pressure
gradient with respect to axial coordinate is suppressed by the
average of volume flow rate, porous parameter, nonuniform
channel parameter, fractional parameter 𝛽, and relaxation
time and inversely is accentuated by imposed magnetic field,
wave number, amplitude ratio, fractional parameter 𝛼, and
retardation time, while it is inverse for velocity distribution
in axial coordinate direction. The viscoelasticity of fractional
Jeffrey fluid is between the fractional Maxwell and general-
ized second fluid.
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