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To fulfill the design objective of a structure and thermal protection system, accurate load environment prediction is very
important, so we present a high-fidelity aerothermoelastic load calculation method based on a partitioned computational fluid
dynamics/computational structural dynamics/computational thermal dynamics (CFD/CSD/CTD) coupling analysis. For the data
transformation between the CFD/CSD/CTD systems, finite element interpolation (FEI) is explored, and a shape-preserving grid
deformation strategy is achieved via radical basis functions (RBFs). Numerical results are presented for validation of the proposed
CFD/CSD/CTD coupling analysis. First, a simply supported panel in hypersonic flow is investigated for results comparison of the
proposed coupling method and previous work. Second, a hypersonic forebody is investigated to explore the aerothermoelastic
effects while considering the feedback between deformation and aerodynamic heating. The results show that the CFD/CSD/CTD
coupling method is accurate for analysis of aerothermoelasticity. In addition, considering the aerothermoelastic effect, the shear
force and bending movement increase with time before 900𝑠 and decrease after 900𝑠, and at 900𝑠 increased percentages of 5.7%
and 4.1% are observed, respectively. Therefore, it is necessary to adopt high-fidelity CFD/CSD/CTD coupling in the design of a
structure and thermal protection system for hypersonic vehicles.

1. Introduction

The air-breathing hypersonic vehicle (HSV) has drawn
attention from the aerospace communities of several coun-
tries because of its possibilities to be fully reusable and
to succeed the space shuttle to become the key compo-
nent of next-generation earth/orbit transportation systems.
However, the highly coupled nature of aerodynamics and
structural dynamics requires analysis of the complex inter-
actions between aerodynamic forces, aerodynamic heating,
heat transfer, and structural deformation during the design
and verification of an HSV. Generally, the forebody serves as
both a compressor and a lift component; i.e., the forebody
generates the proper inflow for the inlet and generates a
considerable fraction of the lift.Thus, deformation of the fore-
bodymay affect the lift and thrust characteristics significantly.
During the exposure to hypersonic flow, the forebody must
withstand intense aerodynamic heating and severe aerody-
namic forces.The aerodynamic heating degrades the material
properties and induces high temperatures in the structure.

The temperature gradients and structural constraints gen-
erate thermal stresses that alter the structural geometry
significantly. In addition, the aerodynamic forces can cause
the structural geometry to deform; such deformation redis-
tributes the aerodynamic forces and heating. These complex
interactions between aerodynamics, structural dynamics,
and heat transfer constitute the aerothermoelastic problem
shown in Figure 1. Therefore, the design of the structure and
thermal protection system (TPS) of an HSV is critical so that
the aerothermoelastic problems can be analyzed properly and
the load environment predicted accurately.

Considering the deformation induced by aerodynamic
forces and thermal effects whose feedback would alter aero-
dynamic heating, the CFD/CSD/CTD coupling offers the
highest fidelity to calculate the aerothermoelastic loads. In the
1980s, for the first time, Thornton [1] adopted this method,
which was implemented using the Taylor-Galerkin algorithm
and was used to obtain the transient temperature distribu-
tions and the corresponding thermal stress distributions of
a leading edge. In [2], the aerothermoelastic responses of
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Figure 1: Basic interactions of the aerothermoelastic problem.

a metallic thermal protection system (MTPS) panel were
calculated using the coupling and uncoupling method. The
structural deformation and aerodynamic heating induced by
deformation were negligible, whereas the change of surface
temperature was significant. The lateral temperature gradient
increases the thermal stress of the plate; however, the defor-
mation does not dramatically alter the thermal load along
the trajectory. In [3], two heat transfer mechanisms were
investigated for the heated panel in hypersonic flow; the aero-
dynamic heating via fluid viscosity was found to dominate
over the heating from unsteady local flow. Ref. [4] focused
on the wall shear stress effect in the aerothermoelastic study
of a skin panel, and the wall shear stress effect was found to be
negligible in a linear analysis, whereas in a nonlinear analysis,
the effect is significant, and the transient chaotic/dynamic
instability is diminished. In [5], the aerothermoelastic char-
acteristics of a low-aspect-ratio wing were studied using
CFD/CSD/CTD coupling, and significant reductions in the
flutter boundary of the heated wing were observed. The
wing was also found to be susceptible to thermal buckling
caused by thermal stresses. The research method adopted in
[3, 4], which is based on a simplified aerodynamic model
(piston theory) and a structural model (von Karman theory),
is challenging to apply to a more general configuration,
such as a forebody. Although [5] used the more advanced
CFD/CSD/CTD coupling method, the feedback effect of the
structural deformation to the aerodynamic heating was not
considered.

In the 21st century, Tran and Farhat [6] formulated the
first nonlinear multiphysics aerothermoelastic framework
based onCFD/CSD/CTDcoupling completely by adding heat
conduction equation and modifying the structural equation
of the CFD/CSD coupling based aeroelastic framework estab-
lished by Farhat and coworkers [7] and applied to an F-
16 fighter in [8, 9]. Then the framework was extended to
data-driven modeling and simulation of nonlinear degrading
continuum systems by Michopoulos and Farhat [10, 11].
The works of [10, 11] were very meaningful as the near
real-time material and structural health monitoring systems
based on embedded sensor networks and associated sensor-
based technologies could be implemented. However, the
present paper focuses on the aerothermoelastic problem
rather than the sensor related problem, so let us rewind to
the aerothermoelastic governing equations. The governing
equations of [6] are represented in mixed form. The fluid
equation is a partial differential equation, while the structural

equation and heat conduction equation are finite element dis-
cretized matrix equations. Although the structural equation
considering thermal effects is derived in [10, 11], the heat
conduction equation is just listed in [10–12] and one term
in the governing equation is duplicated with the boundary
condition which will be discussed later. In addition to these
three governing equations, one each for a physical field,
there is another pseudo-structural equation in the aerother-
moelastic framework of [6, 10, 11] which is used for fluid
grid deformation. Unlike the three irreplaceable governing
equations for physical fields, the pseudo-structural equation
can be replaced by other grid deformation methods. As the
newly developed Radial Basis Functions (RBFs) methods
maintain grid orthogonality well [13] which is very important
for aerodynamic heating calculation and has been applied to
aeroelastic problem successfully [14], the RBFs method with
some modification other than the pseudo-structural method
is used in this paper.

Since the aerothermoelastic framework has only been
used to several supersonic cases in [6, 10, 11], some new
difficulties and phenomenamay emerge when the framework
is applied to hypersonic vehicles, especially for the air-
breathing vehicles that can maintain hypersonic flight for
more than one hour. Note that the three governing equations
for physical fields are all time-dependent, suggesting that
reasonable results of coupling solution can only be obtained
by time marching with a physical time step smaller than the
smallest characteristic time of the three physical fields. The
characteristic time of fluid equation equates the characteristic
length divided by the fluid speed and is in the order of
1e-3. Then the aerothermoelastic solution of a hypersonic
vehicle with flight time more that one hour would need 1e6
iterations at least and that imposes high computational cost.
To overcome the computational difficulty, this paper borrows
the ideas of [1] by adopting the quasi-static assumption for the
fluid and structure equation of which the characteristic time
is small. Then the strict limitation is removed and time step
could be much larger than the order of 1e-3, such as 30𝑠 in
[1]. To investigate hypersonic vehicle with a long flight time
for possible extreme load in the aerodynamic heating process,
the heat conduction equation must be left in time-dependent
form.

The present study is based on the high-fidelity
CFD/CSD/CTD coupling method, considering the feedback
of the structural deformation. The CSD solver implements
a second-order nonlinear finite element method, by which
the shear locking can be avoided. In the CTD solver,
the lumped heat capacity matrix is used to resolve the
nonphysical oscillation problem. To preserve the accuracy
of the displacements solved by the CSD solver, a finite
element interpolation (FEI) is employed as the data transfer
method. Moreover, for retaining the orthogonality of the
CFD grid in the coupling computation, the shape-preserving
grid deformation strategy based on RBFs is adopted. Next,
the correctness of the CFD/CSD/CTD coupling method
is verified in the case of a simply supported panel within
hypersonic flow. Finally, the aerothermoelastic calculation is
conducted for a forebody of an HSV using the high-fidelity
coupling method; the structural deformation, temperature
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field, stress distribution, and loads are obtained. Thus, the
influence of the introduction of aerodynamic heat coupling is
determined by comparing the results of the CFD/CSD/CTD
coupling method with the results of the CFD/CSD coupling
method without the consideration of aerodynamic heating.

2. Solution Method

2.1. Aerothermoelastic Coupling Framework. The first step
to solve the aerothermoelastic problem is to model it.
Michopoulos and Farhat [12] provided the following govern-
ing equations:

𝜕 (𝐽w)𝜕𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜉 + 𝐽∇x ⋅ [F (w) − 𝜕x

𝜕𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜉 w]

= 𝐽∇x ⋅ R (w) + 𝐽S (w) ,
(1)

𝜌𝑆 𝜕
2u𝑆𝜕𝑡2 − ∇𝑥𝜎𝑆 (𝜀𝑆, 𝑇𝑆) = b, (2)

𝜌𝑆𝐶𝑝𝑆 𝜕𝑇𝑆𝜕𝑡 + ∇x ⋅ (−𝜆𝑆∇x𝑇𝑆) − 𝜎𝑆 𝜕𝜀𝑆𝜕𝑡 − 𝑄𝑖 − 𝑄Γ = 0. (3)

Eq. (1) represents an alternative form of the Navier-Stokes
(NS) equations describing the fluid dynamics, derived in an
arbitrary Lagrangian-Eulerian (ALE) reference frame, and
(2) and (3) are the structural dynamics and heat conduction
equations in the structural domain, respectively.

In (1), w is the conservative fluid state vector, F and
R represent the convective and viscous terms, S(w) is a
source term, x(𝜉, 𝑡) is the position vector of fluid points,
and 𝐽 = |𝜕x/𝜕𝜉| refers to the Jacobian determinant of
the deformation gradient. In (2) and (3), 𝜌𝑆 represents the
material density; 𝜎𝑆 and 𝜀𝑆 refer to the structural stress and
strain tensors, respectively; u𝑆 is the displacement vector of
structural points; b is the body force vector; 𝐶𝑝𝑆 and 𝜆𝑆 are
the specific heat and thermal conductivity of the material,
respectively; 𝑇𝑆 is the temperature field in structure; and𝑄𝑖 and 𝑄Γ are the internal heat flux and the heat flux at
the fluid-structure interface Γ [12], respectively. The internal
heat flux 𝑄𝑖 expressed in [12] stands for the effects such as
phase transformation, electromagnetic heating, and electrical
resistance heating. None of the effects are considered in this
paper, so 𝑄𝑖 is neglected.

Note that the third term in (3), which is an internal
heat source term proportional to the stress and strain rate,
expressed as 𝜎𝑆(𝜕𝜀𝑆/𝜕𝑡), reflects the internal heating effects
induced by thermoelastic coupling within the structure.
Regarding the fluid-structure coupling, the following bound-
ary conditions should be satisfied [12]:

𝜎𝑆 ⋅ n = −𝑝n + 𝜎𝐹 ⋅ n, (4)

𝜕x
𝜕𝑡 = 𝜕u𝑆𝜕𝑡 = k𝐹, (5)

x (𝑡) − x (𝑡)|𝑡=0 = u𝐹, (6)

𝑇𝑆 = 𝑇𝐹, (7)

𝜆𝑆∇𝑇𝑆 ⋅ n + 𝜀̂𝜎̂ (𝑇𝑆4 − 𝑇𝑒4) = 𝜆𝐹∇𝑇𝐹 ⋅ n = 𝑄Γ,𝐹. (8)

Note that the first term 𝜆𝑆∇𝑇𝑆 ⋅ n of (8) is just 𝑄Γ of (3),
suggesting that the first term in boundary condition (8) is
duplicated with 𝑄Γ in governing equation (3). So 𝑄Γ of (3)
is removed to correct the error.

In this study, considering the large differences in the
characteristic time of each physical field of the aerothermoe-
lastic problem (the characteristic time of heat conduction
is much longer than the characteristic time of aerodynamic
and structural dynamic response), a quasi-static solution
is used; i.e., the time-dependent term is retained in the
heat conduction equation to consider the transient effect,
and for the aerodynamic and structural dynamics equations,
only the steady characteristics are considered. Therefore, the
grid velocity in (1) is ignored, but the deformation must
be updated in the coupling iterations. For the same reason,
the time-dependent thermoelastic coupling term expressed
as 𝜎𝑆(𝜕𝜀𝑆/𝜕𝑡) is also ignored. Moreover, gravity is the only
body force considered in this paper. The detailed solutions of
the aerodynamic, structural, and heat transfer equations are
described in Sections 2.2, 2.3, and 2.4, respectively.

The iterative solution of the aerothermoelastic coupling
problem is shown in Figure 2 [6]. When the iterative solution
is obtained, the quasi-static aerodynamic equation is first
solved, and the obtained heat flux on surface is passed to
the heat conduction solver through the two-dimensional
interpolation algorithm. The obtained surface pressure is
also passed to the structural response solver by the same
algorithm. Next, the unsteady heat conduction equation is
solved under the new heat flux boundary condition, and
then the solved temperature field is passed to the structural
response solver through the three-dimensional interpolation
algorithm. The obtained temperature distribution on the
surface is passed to the aerodynamic solver through the two-
dimensional interpolation algorithm. Finally, the structural
equilibrium equation is solved in a quasi-static manner under
the new surface pressure and temperature field, and then the
obtained deformation is passed to the aerodynamic solver
through the dynamic mesh method to complete the iteration
of a coupling step. In the process, both two-dimensional
and three-dimensional interpolation are achieved by FEI
uniformly. The dynamic mesh method is implemented using
a shape-preserving grid deformation strategy based on RBFs
to maintain the orthogonality and surface accuracy of the
original CFD grid.The FEI and the RBF-based dynamic mesh
method used in this study are described in Sections 2.5 and
2.6.

2.2. Solution of the Aerodynamic Equation. The NS equation
is solved to obtain the aerodynamic forces and heating using
the finite volume method (FVM). The NS equation used is
given by (9), in which the time-dependent term is retained
for pseudo-time advancing:

𝜕
𝜕𝑡∭Ω

w𝑑𝑉 +∬
𝜕Ω

(F − R) ∙ n𝑑𝑆 = 0. (9)

In (9), w is the conservation variable vector, F is the
convective term, R is the viscous term, and Ω and 𝜕Ω are
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Figure 2: Aerothermoelastic coupling iterations [6].

the control body and its boundary, respectively. When (9) is
solved, the convective term is calculated using the ausmpw+
scheme because of its accuracy of aerodynamic forces and
heating in the hypersonic regime, and the minmod limiter
is chosen because of its robustness. The viscous term is
calculated using the central difference scheme. The LUSGS
scheme is used as the pseudo-time advancing method, and
the convergence is accelerated by the adoption of a local time
step.The boundary conditions in the far field are determined
according to the direction of local flow velocity; i.e., the
variables of ghost cells at the boundary are assigned to the
inflow values when air flows inward, and the assignment is
performed by extrapolation of the inner cells when air flows
outward. On the wall boundary, the non-slip condition is
applied to the velocity, the normal gradient of the pressure
in the surface is enforced to be zero, the Dirichlet condition
is used for the temperature, and the wall temperature is given
by the interpolation algorithm described below.

2.3. Solution of the Structural Equation. The structural equi-
librium equation is solved by the finite element method. The
static equilibrium equation without the time-dependent term
used in this study is

∇𝑥𝜎𝑆 (𝜀𝑆, 𝑇𝑆) = g, (10)

where g stands for gravity.
Because the effect of thermal effects must be considered

in solving the aerothermoelastic coupling problem, incor-
poration of the nonlinearity caused by the thermal effect is
necessary. The thermal nonlinear effects can be divided into
two types: (1) changes in the material properties caused by
temperature changes and (2) changes in the stiffness caused
by thermal stress. The combination of the two can be written
as follows:

K = K𝐸 + K𝜎. (11)

K𝐸 is derived from the first-order strain without changing
the linear property of the geometric equation. K𝜎 is intro-
duced by the second-order strain, similar to the geometric

nonlinearity. Considering that the structural deformation
may be larger under the combination of aerodynamic forces
and aerodynamic heating, the updated Lagrangian (U.L.)
frame with geometric nonlinearity is used to solve the equi-
librium equation in which the thermal effect is introduced.
The final incremental equilibrium equation at time 𝑡 + 1 from
the moment 𝑡 is obtained as follows:

(𝑡𝑡K𝐿 + 𝑡𝑡K𝑁𝐿)Δu = 𝑡+Δ𝑡𝑡P − 𝑡𝑡I, (12)

where 𝑡𝑡K𝐿 is the linear stiffnessmatrix calculated by themate-
rial properties with temperature changes and is equivalent to
K𝐸 in (11); 𝑡𝑡K𝑁𝐿 is a nonlinear stiffness matrix introduced by
the second-order strain, where the thermal effects are taken
into account by subtracting the thermal strain from the whole
strain; Δu is the displacement increment vector; 𝑡+Δ𝑡𝑡P is the
load vector integrated from the external force; 𝑡𝑡I is the load
vector integrated from the internal force.The (𝑡𝑡K𝐿+ 𝑡𝑡K𝑁𝐿) on
the left side is the tangent stiffnessmatrix at time 𝑡, and 𝑡+Δ𝑡𝑡P−
𝑡
𝑡I on the right side is the load vector of the unbalanced forces.
The pressure and stress distributions required to calculate
𝑡+Δ𝑡
𝑡P are given by the interpolation algorithm described

below. In this paper, the Almansi strain is used in assembling
the nonlinear stiffness matrix 𝑡𝑡K𝑁𝐿 and (12) is solved by using
the LU decomposition for sparse matrix.

To avoid shear locking, the second-order hexahedral
element with 20 nodes is adopted in this study for structural
modeling. The shape function of this kind of hexahedral
element is expressed as follows:
𝑁𝑖
= (1 + 𝜉𝑖𝜉) (1 + 𝜂𝑖𝜂) (1 + 𝜁𝑖𝜁) (𝜉𝑖𝜉 + 𝜂𝑖𝜂 + 𝜁𝑖𝜁 − 2) 𝜉𝑖2𝜂𝑖2𝜁𝑖28

+ (1 − 𝜉2) (1 + 𝜂𝑖𝜂) (1 + 𝜁𝑖𝜁) (1 − 𝜉𝑖2) 𝜂𝑖2𝜁𝑖24
+ (1 + 𝜉𝑖𝜉) (1 − 𝜂2) (1 + 𝜁𝑖𝜁) (1 − 𝜂𝑖2) 𝜉𝑖2𝜁𝑖24
+ (1 + 𝜉𝑖𝜉) (1 + 𝜂𝑖𝜂) (1 − 𝜁2) (1 − 𝜁𝑖2) 𝜉𝑖2𝜂𝑖24 ,

𝑖 = (1, 2, . . . , 20)

(13)
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2.4. Solution of the Heat Conduction Equation. The heat
conduction problem is solved by the finite element method;
that is, the temperature distribution of the internal and the
surface structure is obtained by solving the Fourier equation.
The Fourier equation without the internal heat source used in
this study is represented by

𝜌𝑆𝐶𝑝𝑆 𝜕𝑇𝑆𝜕𝑡 + ∇𝑥 ⋅ (−𝜆𝑆∇𝑥𝑇𝑆) = 0. (14)

Thefirst step to solve this equation is spatial discretization
via the finite element method; the obtained semidiscrete
equation is expressed as follows:

C𝑇Ṫ + K𝑇T = P𝑇, (15)

where C𝑇 and K𝑇 are the heat capacity matrix and the heat
conduction matrix, respectively, and P𝑇 is the thermal load
vector.The heat flux distributions required to calculate P𝑇 are
given by the interpolation algorithm described below.

Between times 𝑡𝑛 and 𝑡𝑛+1, a numerical difference is
introduced for the time-dependent term of (15); for the
other terms, linear interpolation is introduced. The resulting
expression is written as

C𝑇 (T𝑛+1 − T𝑛Δ𝑡 ) = 𝜃P𝑇,𝑛+1 + (1 − 𝜃)P𝑇,𝑛
− K𝑇 [𝜃T𝑛+1 + (1 − 𝜃)T𝑛] ,

(16)

and it is ultimately represented as

(C𝑇 + 𝜃Δ𝑡K𝑇)T𝑛+1 = 𝜃P𝑇,𝑛+1 + (1 − 𝜃)P𝑇,𝑛
+ [C𝑇 − (1 − 𝜃) Δ𝑡K𝑇]T𝑛. (17)

To ensure the stability in time, 𝜃 is assigned to 1. Eq. (17) is
then solved by the preconditioned conjugate gradientmethod
based on the element-by-element (EBE) technique to obtain
the temperature distribution at the next moment. To avoid
nonphysical oscillation, the lumped heat capacity matrix is
adopted.

The 8-node, 3-dimensional solid hexahedron is used in
this study for heat conduction calculation and its shape
function is represented by

𝑁𝑖 = (1 + 𝜉𝑖𝜉) (1 + 𝜂𝑖𝜂) (1 + 𝜁𝑖𝜁)8 , 𝑖 = (1, 2, . . . , 8) . (18)

2.5. Data Transfer by FEI. The FEI used in this study for all
of the data transfer incorporates the technique of numerical
inverse isoparametric mapping from [15–17] and is imple-
mented using forward FEI after local coordinates obtained by
an iterative algorithm. To avoid duplicate computation, the
local coordinates are calculated and stored in a preprocessing
stage, and only forward FEI is run in the time marching
simulation.

In a 3D quadrilateral element which consists of curved
surface, the isoparametric mapping is defined as mapping

from local coordinate vector 𝜉 = (𝜉, 𝜂)𝑇 to global coordinates
x = (𝑥, 𝑦, 𝑧)𝑇; that is,

x = 𝑛𝑐𝑒𝑙𝑙∑
𝑖=1

𝑁𝑖 (𝜉) x𝑖, (19)

where suffix 𝑖 is the node index of the element.Thus, a general
variable 𝑤 in this element can be expressed as

𝑤 = 𝑛𝑐𝑒𝑙𝑙∑
𝑖=1

𝑁𝑖 (𝜉) 𝑤𝑖. (20)

Although (19) is not complex, the inverse mapping is not
straightforward. Thus, an iterative algorithm is adopted to
obtain (𝜉, 𝜂) from (𝑥, 𝑦, 𝑧). Note that (19) is formed by three
equations with only two independent variables to solve. The
equations are solved using the Newton iteration method with
the least square method.

After the local coordinates vector 𝜉 is calculated, the FEI
of 𝑤 is done by (20).

2.6. Shape-Preserving Grid Deformation Strategy Based on
RBFs. Because the CFD method is used to calculate the
aerodynamic heating, the orthogonality and accuracy of
the deformed grid should be ensured. To maintain grid
orthogonality, the RBFs [14, 18] method is used, where the
radial basis function is Wendland’s C2 [13] function. For the
precise transfer of the surface deformation from structure to
fluid, the point selection process is not implemented. Instead,
all of the points on the fluid-structure interface are used
in the RBF method. After RBF deformation is performed,
a shape-preserving grid deformation strategy is applied to
aerodynamic surface tomaintain the consistency of interfaces
on both sides.

Take the transfer of deformation in 𝑋-direction as an
example; that is,

Δx𝑠 = Φ (X𝑠,X𝑠)W𝑥, (21)

Δx𝑑 = Φ (X𝑑,X𝑠)W𝑥, (22)

where Δx𝑑 and Δx𝑠 are the x deformation of the fluid
and the structural grid, respectively, W𝑥 refers to the RBF
interpolation coefficient vectors, and X𝑠 and X𝑑 indicate the
original surface coordinates of the structural mesh and the
fluid grid, respectively.Φ is a matrix formed by functions and
is given by

Φ (X𝑑,X𝑠)

=
[[[[[[[[[[
[

𝜙(𝑑11𝑑0 ) 𝜙(𝑑21𝑑0 ) ⋅ ⋅ ⋅ 𝜙 (𝑑𝑛1𝑑0 )
𝜙(𝑑12𝑑0 ) 𝜙(𝑑22𝑑0 ) ⋅ ⋅ ⋅ 𝜙 (𝑑𝑛2𝑑0 )⋅ ⋅ ⋅
𝜙 (𝑑1𝑚𝑑0 ) 𝜙(𝑑2𝑚𝑑0 ) ⋅ ⋅ ⋅ 𝜙 (𝑑𝑛𝑚𝑑0 )

]]]]]]]]]]
]𝑚×𝑛

, (23)

where 𝑑𝑖𝑗 indicates the distance between the 𝑖-th structural
point and 𝑗-th fluid point.
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Table 1: The computational parameters for the blunt biconic.

𝑀∞ 𝑝∞/𝑃𝑎 𝑇∞/𝐾 𝛼/ ∘
6 2200 61.4 5

Table 2: The comparison of the aerodynamic coefficients of the
blunt biconic.

𝐶𝑁 𝐶𝐴 𝐶𝑚
CFD 0.156 0.100 -0.0049
Exp 0.153 0.102 -0.005
Error 1.96% 1.96% 2.04%

Table 3: The computational parameters for the blunt biconic.

𝑀∞ 𝐻∞/𝑘𝑚 𝑇𝑤/𝐾
5 20 288.15

Finally, the RBF interpolation can be summarized as
follows: first, a linear algebraic system is obtained by solving
(21), and then the solvedW𝑥 is substituted into (22) to obtain
the deformation of the interpolated fluid grid in the 𝑋-
direction. The deformations in the 𝑌- and 𝑍-directions are
similar, whereas the interpolation coefficients are different.

Afterwards, all the nodes of aerodynamic surface mesh
are projected to the deformed structural surface by the
FEI method described in Section 2.5. Next, the updated
deformation obtained by FEI is distributed into the complete
fluid grid using the TFI [19] method.

3. Results and Discussions

3.1. Aerodynamic Coefficients and Pressure Verification. The
blunt biconic model in [20] is used to verify the accuracy
of the CFD solver in aerodynamic coefficients and pressure
calculation. The aerodynamic grid of the blunt biconic model
is shown in Figure 3. The parameters used for the current
verification study are listed in Table 1.

The results of the normal-force coefficient (𝐶𝑁), axial-
force coefficient (𝐶𝐴), and pitching-moment coefficient (𝐶𝑚)
obtained by the present CFD solver and the ones from the
experiment of [20] are listed and compared in Table 2. The
maximum error is 2.04% for the pitching-moment coefficient
which means the accuracy of the CFD solver in aerodynamic
coefficients is good.

The pressure distribution (Ps) in the longitudinal sym-
metric plane obtained by theCFD solver and the one from the
experiment of [20] are compared in Figure 4. Figure 4 shows
the CFD solutions match well with the experimental results.

3.2. Aerodynamic Heating Verification. The compressible
laminar boundary layer of the plate (1.8𝑚) is used to verify
the accuracy of the CFD solver in aerodynamic heating
calculation. The aerodynamic grid of the plate is shown in
Figure 5. The parameters used for the current verification
study are listed in Table 3.

The aerodynamic heating distribution by the CFD solvers
is comparedwith the theoretical result of [21] and the solution

Table 4: The material parameters for the heated panel.

𝜆 𝜌 𝐶𝑝/𝑊/(𝑚 ⋅ 𝐾) /𝑘𝑔/𝑚3 /𝐽/(𝑘𝑔 ⋅ 𝐾)
0.5 3 2

Table 5: The material parameters for the simply supported panel.

𝐸 ] 𝛼 𝜌
/𝑀𝑃𝑎 /𝐾−1 /𝑘𝑔/𝑚3
1 0.3 1e-6 2700

of Eckert’s reference method of [22] in Figure 6. The figure
shows the CFD solver has a better accuracy in aerodynamic
heating calculation than Eckert’s referencemethod compared
to the theoretical method.

3.3. Heat Conduction Verification. The heated panel model
(1𝑚 × 1𝑚 × 0.1𝑚) is used to verify the accuracy of the
CTD solver in transient temperature calculation. The panel
is initially at a uniform temperature of 30𝐾. The upper and
right surfaces are isothermboundary at 100𝐾, while the lower
and left surfaces are adiabatic. The grid for heat conduction
calculation is shown in Figure 7. The material parameters
used for the current verification study are listed in Table 4.

The temperature distributions at 1𝑠 by analytic method
and the present CTD solver are compared in Figure 8. Note
that the CTD solver uses a time step of Δ𝑡 = 0.01𝑠 and
the time matching is carried out for 100 steps. The results of
Figure 8 shows that the temperature distribution by the CTD
solver agrees well with the analytic solution.

3.4. Structural Displacement Verification. The simply sup-
ported panel model (1𝑚 × 1𝑚 × 0.1𝑚) used to verify the
accuracy of the CSD solver in displacement calculation
is shown in Figure 9. The panel is initially at a uniform
temperature of 300𝐾. The material parameters used for the
current verification study are listed in Table 5. The model is
uniformly discrete by 120 (60×1×2) second-order hexahedral
elements with 20 nodes.

The mid-plate displacements obtained by the CSD solver
based on nonlinear FEM and von Karman theory in [23]
are compared in Figure 10. The displacement in Figure 10(a)
is calculated under the pressure 𝑞𝑎 = 1𝑃𝑎, while the
displacement in Figure 10(b) is calculated under the pressure𝑞𝑎 = 1𝑃𝑎 and the heated temperature 𝑇 = 1300𝐾. No matter
under which condition, the FEM results agree well with the
von Karman theory.

3.5. Aerothermoelastic Panel Verification. To verify the
CFD/CSD/CTD coupling method, themultilayer flat panel of
[23] is used as the testing model.There are three layers in the
panel, namely, the radiation shield, the thermal insulation,
and the main structure. The material and thickness of each
layer are listed in Table 6, and the thermophysical properties
for a temperature of 300𝐾 are listed in Table 7.The emissivity
of the radiation shield is assumed to be constant at 0.7. In this
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Figure 3:The aerodynamic grid of the blunt biconic.
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Figure 4: The comparison of the pressure distribution in the
longitudinal symmetric plane.

model, only the stiffness of the main structure is considered,
and the stiffnesses of the other two layers are neglected. The
panel is supported by immovable, simple supports.

The panel is located on a 5∘ inclined surface of a wedge-
shaped forebody. The length of the panel is 1𝑚. The test

Table 6: Composition of the panel.

Layer Thickness/𝑚𝑚 Material
Radiation shield 7.4 PM-2000
Thermal insulation 10 IMI
Main structure 5 Ti-6Al-2Sn-4Zr-2Mo

condition is at altitude 30𝑘𝑚 and Mach number 8.The initial
temperature is assumed to be 300𝐾.

The results of the temperature distribution of the upper
surface and the displacement at 1200𝑠 after 60,000 steps of
aerothermoelastic coupling iteration are compared with the
results of [23] in Figures 11 and 12, respectively. From the
comparison, it is evident that the aerothermoelastic coupling
method of this study is sufficiently accurate to investigate
effects of the introduction of aerodynamic heat coupling.

3.6. Aerothermoelastic Forebody Study. After the above ver-
ification, the aerothermoelastic load calculation method
based on CFD/CSD/CTD coupling is applied to the two-
dimensional forebody as shown in Figure 13. This model is
in the 𝑋𝑌 plane, and the total length in the 𝑋-direction is1𝑚. The upper surface is parallel to the 𝑋-direction, and the
angle between lower surface and the 𝑋-direction is 10∘. For
the sake of thermal protection, the leading edge between the
upper surface and the lower surface is rounded by a circlewith
a 10𝑚𝑚 radius. The fluid grid of the forebody is shown in
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Figure 5:The aerodynamic grid of the plate.

Table 7: Properties of the panel at 300 K.

Layer Density Heat capacity Thermal conductivity
/𝑘𝑔/𝑚3 /𝐽/(𝑘𝑔 ⋅ 𝐾) /𝑊/(𝑚 ⋅ 𝐾)

Radiation shield 359 465 0.250
Thermal insulation 73.0 729 0.0258
Main structure 4540 463 6.89
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Figure 6: The comparison of aerodynamic heating distribution by
different methods.

Figure 7: The thermal grid of the heated panel.

Table 8: Cases for aerothermoelastic analysis.

Case Calculation method
A-1 CFD/CSD/CTD coupling
A-2 CFD/CSD coupling
A-3 CFD

Figure 14 and there are 33320 cells in this grid. Note that cells
are clustered near the surface of the forebody.

The finite element model for heat conduction using 8-
node, 3-dimensional solid hexahedron elements is shown in
Figure 15.The total solid element number is 6900 and the total
number of nodes is 13662. As shown in Figure 16, there are
1662 cells and 12612 nodes in the structural model formed
by 20-node, 3-dimensional solid hexahedron elements. The
constraints are imposed at the rear of the structural grid. The
material used is a type of high-temperature titanium alloy
designated Ta19. The emissivity of the forebody is assumed
to be constant at 0.8.

There are two types of loads studied in this work, namely,
the shear force and bending moment. The positive direction
of the shear force is defined as the positive 𝑌-direction. The
bending moment is integrated in the negative 𝑍-direction
(leading edge upward), and the integral point is at the rear
of the forebody with the same 𝑌-coordinate as the center of
circle at leading edge. As the model used is two-dimensional,
the loads are integrated by setting the length of the third
direction to be 5𝑚𝑚.

3.6.1. Cases Description. Table 8 lists three cases (A-1, A-2, A-
3) considered in this study. The flight condition of the three
cases isMach number 5, altitude 20𝑘𝑚, and angle of attack 0∘.
Case A-1 uses CFD/CSD/CTD coupling to calculate aerother-
moelastic results at this condition. These results are discussed
and compared to the results calculated at the same baseline
condition by casesA-2 andA-3which use CFD/CSDcoupling
and CFD, respectively, in Section 3.6.2. As the quasi-static
assumption is adopted inCFD/CSD/CTD coupling, relatively
large time steps are used in case A-1. The time step at 0s is set
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Figure 8: The comparison of the temperature distributions at 1𝑠.
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as 0.01𝑠. Then the time step is amplified by the ratio 1.14 at
every time step until it reaches 25.95𝑠. After that the time step
stands as a constant until the final time 4000𝑠 is reached.
3.6.2. Aerothermoelastic Analysis. In this subsection, the
results of case A-1 by CFD/CSD/CTD coupling method are
discussed successively in the order of temperature, stress,
deformation, and loads (shear force and bending moment).
In the discussion of stress, deformation, and loads, the effect
of aerodynamic heating analysis is carried out by comparing
the results of CFD/CSD/CTD coupling with the ones of case
A-2 by CFD/CSD coupling without aerodynamic heating.
Finally, the aerothermoelastic loads of case A-1 are listed
and compared with the aeroelastic loads of case A-2 and the
aerodynamic loads of case A-3.

Figure 17 illustrates the transient temperature distribu-
tions given by the aerothermoelastic coupling method at

Figure 13: Geometry of the forebody.

Figure 14: Aerodynamic grid of the forebody.

various time instants. There are two main directions for the
heat conduction, i.e., the tangential direction from the heated
leading edge to the cool rear and the normal direction from
the surface inward.Moreover, the area with large temperature
gradients moves backward over time. When the final time
(4000𝑠) is reached, the temperature distributions become
steady, and the thermal saturation status with a stagnation
temperature of 1117𝐾 at leading edge is obtained. Although
temperature gradients remain at 4000𝑠 because of radiation,
the magnitude is much smaller than that at other time
instants.

Figure 18 illustrates the stress distributions obtained
using the CFD/CSD/CTD coupling method at various time
instants. Figure 19 shows the mechanical stress distributions
obtained using the CFD/CSD coupling method without con-
sideration of the thermal effects.The results in Figure 18 show
that initially the stress maximum is obtained under the ther-
mal shock. Subsequently, the stress concentration area moves
backward over time, in agreement with the area with large
temperature gradients. In addition, the magnitude of stress
decreases, and the concentrated stress in the solid head nearly
vanishes when thermal saturation is reached at 4000𝑠. This
effect can be explained by the temperature gradients produc-
ing a thermal stress that represents the majority of the stress
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Figure 15: Heat conduction grid of the forebody.

Figure 16: Structural grid of the forebody.
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Figure 17: Temperature distribution from CFD/CSD/CTD coupling: (a) 𝑡 = 3.6𝑠, (b) 𝑡 = 50𝑠, (c) 𝑡 = 440𝑠, (d) 𝑡 = 4000𝑠.
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Figure 18: Stress distribution from CFD/CSD/CTD coupling: (a) 𝑡 = 3.6𝑠, (b) 𝑡 = 50𝑠, (c) 𝑡 = 440𝑠, (d) 𝑡 = 4000𝑠.

in the solid head. Figure 18 also shows that the stresses on the
upper and lower panel of the forebody nearly do not change
over time because the stress is produced primarily by the
mechanical stress caused by the aerodynamic forces.The sim-
ilar stress distributions of the upper and lower panel shown
in Figure 18(d) and Figure 19 also support this explanation.

The displacements of the stagnation point in the 𝑋- and𝑌-direction are illustrated in Figures 20 and 21, respectively.
Figure 20 shows that the magnitude of the 𝑋 displacement
increases monotonically as time goes on. Before 1000𝑠, the𝑋
displacement increases rapidly as the structural temperature
increases, whereas the displacement increases onlyminimally
after 2000𝑠. This behavior arises because the displacement
is contributed predominantly by thermal dilation. Figure 21
shows that the displacement of the stagnation point in the𝑌-direction first increases and then decreases with time
increasing, with an extreme point around 900𝑠. This phe-
nomenon can also be explained by the thermal dilation.

The shear force and the bending moment of the forebody
are shown in Figures 22 and 23, respectively. Note that the
tendency of the shear force and the bending moment with
time is consistent with that of the displacement in the 𝑌-
direction because the bend of structure illustrated by the𝑌 displacement magnifies the local inclination initially and
then increases the pressure difference between the upper
and lower surfaces. The maximum of the shear force and
the bending moment appears around 900𝑠 rather than at4000𝑠, when the thermal saturation is reached, reflecting
the importance of considering thermal effects via transient
aerothermal coupling.

Figure 24 shows a comparison between the deformation
obtained using CFD/CSD/CTD coupling when thermal sat-
uration is reached (case A-1, shown in red) and the one
obtained using CFD/CSD coupling (case A-2, shown in
blue) without considering the thermal effects. The original
configuration used by case A-3 is drawn in black to make the
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Figure 19: Stress distribution from CFD/CSD coupling.
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Figure 20: Displacement of stagnation in the 𝑋-direction from
CFD/CSD/CTD coupling.

comparison clearer. The deformation without thermal effects
(blue) is small, and its configuration nearly coincides with
the original one, whereas the deformation from aerother-
moelastic coupling is significant. This result implies that, in
an aerothermoelastic analysis, it is important to consider the
thermal effects using CFD/CSD/CTD coupling.

Table 9 compares the loads obtained by CFD/CSD/CTD
coupling when the displacement in the 𝑌-direction reaches
its maximum with the ones obtained by CFD/CSD coupling
without the consideration of the thermal effects. To make
the comparison clearer, the loads calculated by CFD only
on the original configuration without any deformation are
also listed in the table. Relative to the CFD results, the shear
force and bending moment obtained using CFD/CSD/CTD
coupling increase by 5.7% and 4.1%, respectively, whereas
the loads obtained using CFD/CSD coupling vary by only
1.5% and 0.7%, respectively. The results emphasize the
importance of the proper introduction of the thermal
effects by CFD/CSD/CTD coupling in the load computa-
tion.
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Figure 21: Displacement of stagnation in the 𝑌-direction from
CFD/CSD/CTD coupling.
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Figure 22: Shear force from CFD/CSD/CTD coupling.

3.6.3. Computational Costs. The computational costs of the
submodules of CFD/CSD/CTD coupling in one time step are
listed in Table 10. All calculations are performed on a local
PC with one Intel(R) Core(TM)2 Duo processor, 2.13GHz
and 2048 MB memory by serial computing. Table 10 shows
that submodules CFD andCSD are themost time-consuming
parts of the CFD/CSD/CTD coupling method. To accelerate
the CFD/CSD/CTD coupling method, more efforts could be
used to reduce the CPU time of the CFD and CSD submod-
ules, such as replacing the LUSGS and LU decomposition
method by more advanced generalized minimal residual
method (GMRES) or implementing parallel computing.

4. Conclusions

In this paper, the history of aerothermoelastic solution based
on multiphysics coupling is reviewed and the framework
developed by Farhat and coworkers is discussed andmodified
to perform an aerothermoelastic analysis method based
on CFD/CSD/CTD coupling for load calculation. The heat
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Table 9: Comparison of loads.

Case Calculation method Shear force/𝑁 Bending moment/𝑁 ⋅ 𝑚
A-1 CFD/CSD/CTD coupling 109.45 49.53
A-2 CFD/CSD coupling 105.12 47.24
A-3 CFD 103.54 47.59

Table 10: Comparison of computational costs between submodules
of CFD/CSD/CTD coupling.

Calculation submodule CPU time/𝑠 CPU ratio
CFD 141.24 53.26%
CSD 119.79 45.17%
CTD 3.71 1.40%
Data transfer 0.17 0.06%
Grid deformation 0.3 0.11%
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Figure 23: Bending moment from CFD/CSD/CTD coupling.

conduction equation is corrected by removing the duplicated
term. The pseudo-structural method for grid deformation
is replaced by a shape-preserving grid deformation strategy
based on RBFs to maintain the orthogonality and surface
accuracy of the original CFD grid for aerodynamic heating
calculation. The fluid and structure equation are solved in a
quasi-static manner to accelerate the coupling calculation by
using large time step.

Then aerothermoelastic analysis method based on
CFD/CSD/CTD coupling is performed and verified to
investigate the aerothermoelastic effects on the loads of an
HSV, such as the shear force and bending moment for the
forebody. Using the couplingmethod, the temperature, stress,
displacement, shear force, and bending moment of the fore-
body in hypersonic flow for a period over 4000𝑠 are obtained.
Based on the numerical results, some conclusions are sum-
marized as follows:

(i) The accuracy of theCFD/CSD/CTDcouplingmethod
is verified comprehensively: the key solvers such as
CFD, CSD, and CTD are verified individually as well
as the coupling method. All these verification works
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Figure 24: Deformation comparison by different methods around
leading edge.

laid a solid foundation for the aerothermoelastic
study of the forebody by theCFD/CSD/CTDcoupling
method.

(ii) The largest increases of the shear force and bending
moment via CFD/CSD/CTD coupling are 5.7% and
4.1%, respectively. In comparison, the increases via
CFD/CSD coupling are only 1.5% and 0.7%, respec-
tively. This phenomenon emphasizes the importance
of adoption of the CFD/CSD/CTD coupling for load
computation.

(iii) The stress reaches its maximum concentrating at
the leading edge area in the beginning. As the time
increases, the magnitude of the stress decreases,
and the concentrated stress in the solid head due
to temperature gradients nearly vanishes, while the
mechanical stress is sustained on the upper and lower
panels due to the aerodynamic forces.

(iv) Under the combined action of aerodynamic forces
and aerodynamic heating, bending deformation
occurs. By comparing the deformation with the one
gained by CFD/CSD coupling without consideration
of the thermal effects, it is found that the displacement
is contributed predominantly by thermal dilation, and
the importance of the thermal effects is emphasized.
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