
Research Article
An Encrypted File Deduplication Scheme with
Permission in Cloud Storage

Zuojie Deng ,1 Xiaolan Tan,1 and Shuhong Chen2

1School of Computer and Communication, Hunan Institute of Engineering, Xiangtan, Hunan 411104, China
2School of Computer Science and Educational Software, Guangzhou University, Guangzhou, Guangdong 510006, China

Correspondence should be addressed to Zuojie Deng; zjdeng@hotmail.com

Received 24 January 2018; Revised 13 August 2018; Accepted 5 September 2018; Published 7 November 2018

Academic Editor: Emilio Insfran Pelozo

Copyright © 2018 Zuojie Deng et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Encrypted file deduplication scheme (EFD) can improve its storage space utilization of cloud storage and protect the privacy of
files in cloud storage. However, if an enterprise stores its files to cloud storage that has deployed an encrypted file deduplication
scheme that does not support permission checking, this will destroy the permission of the enterprise files and bring some security
problems. This seriously affects the practical value of EFD and prevents it from deploying in concrete cloud storage. To resolve
this problem, we propose an encrypted file deduplication scheme with permission (EFDSP) and construct the EFDSP by using the
hidden vector encryption (HVE). We have analyzed the security of EFDSP.The results have shown that EFDSP is secure and it can
prevent the online deduplication oracle attack. We implement EFDSP and conduct the performance evaluation. The results show
that the performance of EFDSP is little inferior to that of SADS, which is the only existing encrypted file deduplication schemewith
permission, but the performance gap decreases with the increasing number of the authorized users and EFDSP has overcome the
security weakness of SADS.

1. Introduction

1.1. Motivation. Recently, with the rapid development of net-
work storage technology, cloud storage has become an im-
portant storage scheme. Owing to the rental cost lowness,
outsourcing files of an enterprise to cloud storage can re-
duce its enterprise management costs and improve its com-
petitiveness. To prevent files from information leakage, an en-
terprise user usually stores its files to cloud storage in an en-
crypted form. Encrypted file deduplication scheme can save
its storage space and network bandwidth of cloud storage and
improve its performance. However, in the enterprise appli-
cation environment, different department employees have
different permissions. Each employee can only access the files
according to its permission. If an encrypted file deduplication
scheme does not support permission checking, it will destroy
the file permissions and bring some security problems. Li
et al. proposed a secure authorized deduplication scheme
based on a hybrid cloud (SADS) [1]. They introduce a private
cloud in SADS to preserve the user permissions and generate

a permission tag for a user when it uploads a file. When the
cloud storage performs the deduplication checking for a user,
it needs to check the deduplication permission for the user,
and if the user does not have the deduplication permission,
the user needs to upload the file even though there exists the
same file in the cloud storage. Only when the user has the
deduplication permission and there exists the same file in
the cloud storage can the cloud storage perform file dedupli-
cation. The use of SADS can achieve the encrypted file dedu-
plication, but there exist three shortcomings in SADS:

(i) Firstly, each permission is represented by a private
key. If a user 𝑢 has multiple permissions, it needs to
store multiple private keys secretly which can cause a
great deal of trouble in the user key management.

(ii) Secondly, when 𝑢 uploads a file𝐹 or queries the dupli-
cation file of 𝐹, the scheme needs to use 𝑛 permission
keys to generate 𝑛 encrypted file tags for 𝐹 (If 𝑢 has
been assigned 𝑛 permissions). So the scheme causes
large network traffic.

Hindawi
Mathematical Problems in Engineering
Volume 2018, Article ID 6091807, 13 pages
https://doi.org/10.1155/2018/6091807

http://orcid.org/0000-0002-5584-8370
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2018/6091807

2 Mathematical Problems in Engineering

(iii) Thirdly, there exists a security weakness in SADS. As-
suming Mike is an enterprise manager who manages
department 𝐴 and department 𝐵. Mike has the
permissions of department 𝐴 and department 𝐵. At
the same time, Mike is responsible for the financial
department, so he also has the finance department
permission. If a cloud storage uses SADS to dedu-
plicate the files in the cloud storage, SADS uses the
private keys of department 𝐴, department 𝐵, and the
finance department to generate three encrypted file
tags. As a result, the staffs in department 𝐴 and de-
partment 𝐵 have the permission to deduplicate their
files with the payslip file. Suppose Mike has uploaded
Alice’s payslip file 𝐹 to the cloud storage, if both
Bob and Alice are employees of department 𝐵. Bob
wants to get the salary information of Alice. He can
use the following steps (called online deduplication
oracle attack) to attack SADS to obtain the salary in-
formation of Alice:

(a) Bob first forges Alice’s payslip file 𝐹. 𝐹 is a kind
of small entropy file and it has a fixed format.
Bob knows the file format or he even has the
kind of file, i.e., he has his own payslip. At the
same time, he also knows that Alice’s salary
should be between 4000 and 4100 and he just
does not know the concrete salary value of Alice.
So Bob can set the salary value to 4000, 4001,. . . 4100, respectively, and generate 100 files𝐹1, 𝐹2, . . . 𝐹100.

(b) Bob uploads 𝐹1, 𝐹2, . . . 𝐹100 to the cloud storage,
respectively. If the cloud storage deduplicates
the file when he uploads a file 𝐹�푖(1 ≤ 𝑖 ≤ 100) to
the cloud storage, Bob knows that the salary of
Alice is the data in the uploaded file 𝐹�푖.

Obviously, the success reason for the attack is the autho-
rization precision of SADSwhich is rough.WhenMike gener-
ates an encrypted file tag, it has assigned the file deduplication
permission to Bob and causes the file permission checking
bypass. At the same time, when the cloud storage checks the
file deduplication, it only checks whether the encrypted file
query tag of the upload file matches the encrypted file tags
stored in the cloud storage owner and does not check the
user’s permission. Therefore, we want to design a securely
encrypted file deduplication scheme with permission to
improve the file deduplication permission check of the user
and avoid the security issues of SADS.

1.2.Our Contributions. In this work, we study the problem on
how to enable cloud storage to deduplicate a user encrypted
file without destroying its file permission. We propose
permission vector and permission relation, use permission
vector to represent the user permissions, and use permission
relation to compare the permission level between two users.
We design an encrypted file deduplication scheme with per-
mission, which has overcome the security weakness of SADS.
In EFDSP, the file owner enables the cloud storage to per-
form deduplication when other users with the same or high

permission level upload the duplication files to the cloud
storage. Our contribution can be summarized as follows:

(i) Firstly, we discover a security weakness of SADS and
propose an attack method against this scheme for
small entropy files.

(ii) Secondly, we propose an encrypted file deduplication
scheme with permission, which enables cloud storage
to deduplicate the encrypted files without destroying
the file permission. In EFDSP, a user with low per-
mission level needs to upload the file even though
there exists a duplication file in the cloud storage.
EFDSP can prevent the online deduplication attack
and overcome the security weakness of SADS.

(iii) Thirdly, we define permission vector and permission
relation and use permission vector, permission rela-
tion, andhiddenvector encryption to construct EFDSP.

(iv) Fourthly, we implement our scheme and conduct a
performance evaluation, and the results demonstrate
that our scheme is reasonable.

The paper is organized as follows. In Section 2, we present
some preliminary knowledge. In Section 3, we describe and
give the definition about the problem and define the en-
crypted file deduplication with permission. The permission
vector and permission relation are defined in Section 4. In
Section 5, we construct the encrypted file deduplication
scheme with permission. In Section 6, we optimize EFDSP.
In Section 7, we give some security analyses of EFDSP. In
Section 8, we implement our scheme and conduct a perfor-
mance evaluation, the evaluation results are presented here.
In Section 9, we discuss related works. Finally, some conclu-
sions are given in Section 10.

2. Preliminary

2.1. Bilinear Pairing

Definition 1. 𝐺1, 𝐺2, and 𝐺�푇 are three multiplicative cyclic
groups with prime number order 𝑝, and 𝑔1 and 𝑔2 are the
generators of 𝐺1 and 𝐺2, respectively. A bilinear pairing is a
surjective function of the following properties:

(i) Bilinearity: for all ℎ1, 𝑏1 ∈ 𝐺1 and all ℎ2, 𝑏2 ∈ 𝐺2 we
have 𝑒(ℎ1𝑏1, ℎ2) = 𝑒(ℎ1, ℎ2)𝑒(𝑏1, ℎ2) and 𝑒(ℎ1, ℎ2𝑏2) =𝑒(ℎ1, ℎ2)𝑒(ℎ1, 𝑏2).

(ii) Nondegeneration: 𝑒(𝑔1, 𝑔2) ̸= 1, where 1 is the
identical element of 𝐺�푇.

(iii) Computability: for all ℎ1 ∈ 𝐺1, ℎ2 ∈ 𝐺2, there exists
an efficient algorithm that can compute 𝑒(ℎ1, ℎ2).

If 𝐺1 ̸= 𝐺2, we call 𝑒 : 𝐺1 × 𝐺2 󳨀→ 𝐺�푇 an asymmetric
bilinear pairing; otherwise, if𝐺1 = 𝐺2, we call 𝑒 : 𝐺1 ×𝐺2 󳨀→𝐺�푇 a symmetrical bilinear pairing. According to Definition 1,
we can get Proposition 2 easily.

Proposition 2. Let ℎ1 ∈ 𝐺1, ℎ2 ∈ 𝐺2 and 𝑎, 𝑏 ∈ 𝑍�푝. Then𝑒(ℎ�푎1 , ℎ�푏2) = 𝑒(ℎ1, ℎ2)�푎�푏.

Mathematical Problems in Engineering 3

2.2. Hidden Vector Encryption. Hidden vector encryption
(HVE) was first proposed by Doneh and Waters [2]. Subse-
quently, Katz [3] and Park [4] proposed some HVE schemes,
respectively.HVE is a kind of predicate encryption, which has
two attribute vectors associated with the ciphertext and the
tag. Only when the two vectors are equal does the ciphertext
match the tag. There are two character sets Σ and Σ∗ in HVE,
where Σ∗ = Σ ∪ {∗} and ∗ is a wildcard. If a vector of a com-
ponent is ∗, it means that it does not participate in any of the
attributes. HVE is mainly composed of four algorithms: key
generation, data encryption, tag generation, and data query.

(i) In the key generation phase, the trusted authority
(TA) assigns a public/private key pair (𝑃𝐾, 𝑆𝐾) to a
receiver.

(ii) In the data encryption phase, the user selects a vector𝑥 = (𝑥1, 𝑥2, . . . , 𝑥�푙) ∈ Σ�푙 to describe its data 𝑚 and
also uses the receiver’s public key 𝑃𝐾 to encrypt the
data 𝑚 to obtain the ciphertext 𝐶𝑇.

(iii) In the tag generation phase, the receiver first selects a
vector 𝑤 = (𝑤1, 𝑤2, . . . , 𝑤�푙) ∈ (Σ∗)�푙 to represent the
query requirement and then uses its private key 𝑆𝐾
to generate a query tag 𝑇�푊. Finally, the receiver sends𝑇�푊 to the server.

(iv) In the data query phase, if 𝑥 matches 𝑤, it outputs 𝑚,
which is the plaintext of 𝐶𝑇. The matching condition
is defined as follows: let 𝑠(𝑤) be the subscript set
that 𝑤�푖 is not ∗, where 𝑤�푖 is a vector component of(𝑤1, 𝑤2, . . . , 𝑤�푙). For two vectors 𝑥 and𝑤, let 𝑃�푤(𝑥) be
the equality predicate that satisfies (1).

𝑃�푤 (𝑥) = {{{
1 if ∀𝑖 ∈ 𝑠 (𝑤) 𝑤�푖 = 𝑥�푖,
0 otherwise. (1)

3. Problem and Definition

3.1. The System Model. In order to facilitate the enterprise
management, we need to introduce a permission server (PS)
to manage the user permission. At the same time, we need
to introduce a key generation server (KGS) to generate an
encryption key for the upload file. After introducing PS and
KGS, the systemmodel of cloud storage is shown in Figure 1. It
consists of four different kinds of entities: some users, a cloud
storage, a permission server, and a key generation server. The
permission server and the key generation server are deployed
in the enterprise domain, which are absolutely secure. The
cloud storage (CS) checks whether there exists a duplication
file in the cloud storage and checks whether the user has the
permission to deduplicate the file. If both conditions met, the
user does not need to upload the file, and the cloud storage
server provides it with a file pointer; otherwise, the user needs
to upload this file.

When the system is initialized, the system administrator
gives the user access permission according to its permis-
sion level. The system administrator can use the role-based
method [5] to assign the permission to the user; that is,
it assigns the permission to the user based on the role of

the user. Suppose an IT company has only three types of
employees: manager, project leader, and engineer; if a user 𝐴
is assigned the permission of the manager, then 𝐴 can access
any file that its access role is the manager. Each file in the
cloud storage has a file permission tag to describe its permis-
sion, only when other users with the same permission upload
a duplication file can the cloud storage perform the dedu-
plication.

Cloud storage provides its users with the data storage
service. To reduce its storage costs, CS only stores one unique
file by using cross-user file deduplication to eliminate the
redundant files in its server. PS and KGS are deployed in the
enterprise secure domain, which are absolutely secure. PS is
responsible for the user permission management and the file
permission query, and it assists CS to perform the file per-
mission checking and the file deduplication. KGS is respon-
sible for generating an encryption key for the user. When
a user needs to store a file to CS, it needs to interact with KGS
and gets an encryption key from KGS for the file.

3.2. Problem Formalization. In this work, we study the prob-
lemonhow to enable the cloud storage to deduplicate the user
encrypted file without destroying the file permissions. That is
to say, we study the problem on how to enable the file owner
to allow the cloud storage to perform deduplication when
other users with the same or high permission level upload
a duplication file to the cloud storage. We can formalize the
problem as follows.

When a user, say 𝑢, wants to upload a file 𝐹 to CS, it first
interacts with KGS to get the encryption key𝐾�퐹 for 𝐹, then it
interacts with PS. PS uses𝐻(𝐹), the permission level of 𝑢 𝑃𝑉�푢
and its private key 𝐾�푃�푆 to generate 𝑄𝐹𝑇�퐹 for 𝑢, where 𝑄𝐹𝑇�퐹
is a permission query tag of 𝐹. After receiving 𝑄𝐹𝑇�퐹, 𝑢 sends𝑄𝐹𝑇�퐹 to CS to query whether there exists the encrypted file𝐶�퐹 in the cloud storage. If there exists𝐶�퐹 in the cloud storage,𝑢 does not need to upload 𝐹, and it only needs to store 𝐾�퐹;
otherwise, 𝑢 first encrypts𝐹 using𝐾�퐹 to get𝐶�퐹, then uses𝑃𝑉�푢
and 𝑃𝐾�푃�푆, where 𝑃𝐾�푃�푆 is the public key of PS, to generate the
encrypted file tag 𝐹𝑇�퐹 for 𝐹. Finally, 𝑢 sends 𝐹𝑇�퐹 and 𝐶�퐹 to
the cloud storage.

3.3. The EFDSP Scheme. In order to solve the problem that
we have formalized in Section 3.2, we design an encrypted
file duplication scheme with permission.

Definition 3 (EFDSP). An encrypted file duplication scheme
with permission is a tuple of algorithms as follows:

(i) Setup(𝑘) 󳨀→ 𝑝𝑎𝑟𝑎𝑚𝑠: it takes the security parameter𝑘 as input and outputs the public parameter 𝑝𝑎𝑟𝑎𝑚𝑠.
(ii) KeyGeneration(𝑝𝑎𝑟𝑎𝑚𝑠) 󳨀→(𝑃𝐾�푆, 𝑆𝐾�푆, 𝑆𝐾�푃�푆, 𝑃𝐾�푃�푆, 𝑆𝑖𝑔�푃�푆, 𝑉𝑒𝑟�푃�푆): it takes 𝑝𝑎𝑟𝑎𝑚𝑠

as input and outputs (𝑃𝐾�푆, 𝑆𝐾�푆), which is an identity-
based key pair of CS, (𝑆𝐾�푃�푆, 𝑃𝐾�푃�푆), which is a private
key/public key pair of PS, and (𝑆𝑖𝑔�푃�푆, 𝑉𝑒𝑟�푃�푆), which
is a signature/verification key pair of PS.

(iii) FileKeyGeneration(𝐻(𝐹)) 󳨀→ 𝐾�퐹: this algorithm is
run byKGS, and it takes𝐻(𝐹), which is the hash value

4 Mathematical Problems in Engineering

Cloud storage

Permission server

Key generation server

User

Figure 1: The system model.

of the user file𝐹, as input and outputs a file encryption
key 𝐾�퐹 for 𝐹.

(iv) FileTagGeneration(𝐹, 𝑃𝑉, 𝑃𝐾�푃�푆) 󳨀→ 𝐹𝑇�퐹: this algo-
rithm is runby𝑢, and it takes𝐹,𝑃V, and𝑃𝐾�푃�푆 as input
and generates an encrypted file tag 𝐹𝑇�퐹 as output. 𝑃𝑉
is the permission level of the user. 𝑃𝐾�푃�푆 is the public
key of PS.

(v) FileQueryTagGeneration(𝐻(𝐹), 𝑃𝑉, 𝑆𝐾�푃�푆, 𝑆𝑖𝑔�푃�푆) 󳨀→(𝑄𝐹𝑇�퐹, (𝑄𝐹𝑇�퐹)�푆�푖�푔𝑃𝑆): this algorithm is run by PS, and
it takes 𝐻(𝐹), 𝑃𝑉, 𝑆𝐾�푃�푆, and 𝑆𝑖𝑔�푃�푆 as input and
outputs𝑄𝐹𝑇�퐹 and (𝑄𝐹𝑇�퐹)�푆�푖�푔𝑃𝑆 .𝐻(𝐹) is the hash value
of 𝐹, 𝑃𝑉 is the permission level of 𝑢, 𝑆𝐾�푃�퐾 is the
private key of PS, and 𝑆𝑖𝑔�푃�푆 is the signature private
key of PS.

(vi) FileQueryTagQueryAndFileDeduplication(𝐼𝐷�푢,𝐻(𝐹),𝑄𝐹𝑇�퐹, (𝑄𝐹𝑇�퐹)𝑆𝑖𝑔�푃�퐾) 󳨀→ (𝐿𝑜𝑎𝑑𝐹𝑙𝑎𝑔, 𝐹𝑃�퐹): this algo-
rithm is run by CS, and it takes 𝐻(𝐹), 𝑄𝐹𝑇�퐹, and(𝑄𝐹𝑇�퐹)𝑆𝑖𝑔�푃�퐾 as input and outputs 𝐿𝑜𝑎𝑑𝐹𝑙𝑎𝑔 and𝐹𝑃�퐹. CS uses 𝑄𝐹𝑇�퐹 to match some encrypted file 𝐶�퐹.
If it matches, let 𝐿𝑜𝑎𝑑𝐹𝑎𝑔 = 1 and let 𝐹𝑃�퐹 be the file
pointer of𝐶�퐹, and add 𝐼𝐷�푢 to the 𝐼𝐷�푢 to the file entry
of 𝐶�퐹; otherwise, let 𝐿𝑜𝑎𝑑𝐹𝑎𝑔 = 0 and assign NULL
to 𝐹𝑃�퐹.

(vii) FileUpload(𝐻(𝐹), 𝐶�퐹, 𝐹𝑇�퐹) 󳨀→ (𝐹𝑃�퐹): this algorithm
is run by CS, and it takes 𝐻(𝐹), 𝐶�퐹, and 𝐹𝑇�퐹 as input
and outputs 𝐹𝑃�퐹. 𝐻(𝐹) is the hash value of 𝐹, 𝐶�퐹 is
the encrypted file of 𝐹, and 𝐹𝑇�퐹 is the encrypted file
tag of 𝐹.

(viii) Enc(𝐹�푘, 𝐹) 󳨀→ 𝐶�퐹: this algorithm is run by 𝑢, and it
uses 𝐹�퐾 to encrypt 𝐹 to generate 𝐶�퐹.

(ix) Dec(𝐶�퐹, 𝐹�퐾) 󳨀→ 𝐹: this algorithm is run by 𝑢, and it
uses 𝐹�퐾 to decrypt 𝐶�퐹 to generate 𝐹.

(x) FileRetrieval(𝐹𝑃�퐹) 󳨀→ 𝐶�퐹: this algorithm is run by
CS, and it uses 𝐹𝑃�퐹 to search the encrypted files in CS
and returns its corresponding encrypted file 𝐶�퐹.

The interaction process of EFDSP is described in Figure 2.

3.4. The Threat Model. Since PS is responsible for the user
permission management and the file permission query and
KGS is responsible for generating an encryption key for the
user, we must assume that PS and KGS are absolutely secure
and reliable. As CS performs the tasks assigned to it honestly
and it is interested in the content of the user’s files and tries to
get some secret information from these files, we can regard
it as an honest and curious adversary [6]. Some users try
to access the files beyond their permissions. At the same
time, we assume that all files stored in the cloud storage are
confidential; if there is information disclosure, it will result
in a very large loss to the user. According to this assumption,
there are two kinds of adversaries in the system.(1) External adversary: it tries to obtain secret informa-
tion from the cloud storage or tries to access the file beyond
its permission.(2) Internal adversary: it can access the cloud storage
easily and try to get some secret information from the en-
crypted file tags or the query tags.

Mathematical Problems in Engineering 5

Figure 2: The interaction process of EFDSP.

3.5. The Security Requirements. According to the threat
model described in Section 3.4, there exist four security re-
quirements as follows:(1) The confidentiality of the encrypted file tag: an un-
authorized user, including the cloud storage server, cannot get
the plaintext information from the encrypted file tags stored
in the cloud storage server.(2) The unforgeability of the encrypted file query tag: an
unauthorized user should be prevented from getting or gene-
rating the encrypted file query tags because it has no appro-
priate permission. It is not allowed to collude with the cloud
storage server to destroy the unforgeability of the query tags.(3) The indistinguishability of the encrypted file query
tag: a user cannot get any information from the query tags
without querying the permission server, including the file
content and the permissions.(4)Theconfidentiality of the file: a user who does not own
the files cannot obtain the plaintext from the files stored in the
cloud storage server; that is, an adversary cannot retrieve and
restore files that do not belong to it.

4. The Permission Vector and
the Permission Relation

In order to effectively represent the user permission, we
define permission vector in this section.

Definition 4 (permission vector). Let 𝑇 = (𝑇1, 𝑇2, . . . , 𝑇�푁) be
a collection of the system permission, 1 to𝑁 are the sequence
numbers of the permissions in the system. Permission vector𝑇𝑉 is a bit binary vector of 𝑛 bits, which are numbered 1 to𝑛 from left to right. 𝑇𝑉(𝑖) represents the permission 𝑇�푖. If the
value of 𝑇𝑉(𝑖) is 0, it means that the permission 𝑇�푖 is valid,
otherwise it means that the permission 𝑇�푖 is invalid.

Figure 3 is an example of role hierarchies given in [5].
It has four roles: programmer, test engineer, project member,
and project supervisor. We can easily represent the per-
mission of each role by using the permission vector. Let
ITP={programmer, project engineer, projectmember, project
supervisor} be the basic permission set of the system. Because
there are only four basic permissions, we can use a 4-bit
permission vector to represent the permission of each role;

6 Mathematical Problems in Engineering

Project supervisor

Programmer

Project member

Test engineer

Figure 3: An example of role hierarchies.

the sequence number of the four basic permissions in the
permission vector is 1, 2, 3, and 4, respectively. At the same
time, the permission of these roles allows being inherited
in [5]. From Figure 3, we can find that the project super-
visor owns the project supervisor permission and inherits
both permissions of the test engineer and the programmer.
According to Definition 4, it is easy to get that the permission
vector of the supervisor is 0010, the permission vector of the
programmer is 0111, and the permission vector of the project
member is 0001.
Definition 5 (permission relation). Let 𝑇𝑉�푈1 be the permis-
sion vector of user 𝑈1, 𝑇𝑉�푈2 be the permission vector of user𝑈2; we can define permission relation as follows:(1) If for each 𝑖 𝑇𝑉�푈2(𝑖) = 0 and 𝑇𝑉�푈1(𝑖) = 0, and there
exist 0 or more 𝑗 where 𝑇𝑉�푈2(𝑗) = 1 and 𝑇𝑉�푈1(𝑗) = 0, then
we say the permission level of𝑈1 is higher than that of𝑈2. We
use 𝑇𝑉�푈1 ≥ 𝑇𝑉�푈2 to denote it.(2) If for each 𝑖 𝑇𝑉�푈2(𝑖) = 0 and 𝑇𝑉�푈1(𝑖) = 0, and there
are 0 or more 𝑗 where 𝑇𝑉�푈2(𝑗) = 0 and 𝑇𝑉�푈1(𝑗) = 1, then we
say the permission level of𝑈1 is lower than that of𝑈2. We use𝑇𝑉�푈1 ≤ 𝑇𝑉�푈2 to denote it.(3) If there exists 𝑖 where 𝑇𝑉�푈1(𝑖) = 0 and 𝑇𝑉�푈1(𝑖) = 1,
and there exists 𝑗 where 𝑇𝑉�푈1(𝑗) = 1 and 𝑇𝑉�푈2(𝑗) = 0, then
we say the permission level of 𝑈1 is not equal to that of 𝑈2.
We use 𝑇𝑉�푈1 ̸= 𝑇𝑉�푈2 to denote it.(4) If for each 𝑖 𝑇𝑉�푈1(𝑖) = 𝑇𝑉�푈2(𝑖), then we say the per-
mission level of 𝑈1 equals that of 𝑈2. We use 𝑇𝑉�푈1 = 𝑇𝑉�푈2 to
denote it.

According to Figure 3, we can get the permission vectors
of the project supervisor, the programmer, and project
member which are 0010, 0111, and 0001, respectively. If
both Alice and Bob are programmers, the permission vectors
of Alice and Bob are 0111. According to Definition 5, we
can get 𝑇𝑉�푝�푟�표�푗�푒�푐�푡�푠�푢�푝�푒�푟V�푖�푠�표�푟 > 𝑇𝑉�푝�푟�표�푔�푟�푎�푚�푚�푒�푟, 𝑇𝑉�푝�푟�표�푔�푟�푎�푚�푚�푒�푟 <𝑇𝑉�푝�푟�푗�푒�푐�푡�푚�푒�푚�푏�푒�푟, 𝑇𝑉�푝�푟�표�푗�푒�푐�푡�푠�푢�푝�푒�푟V�푖�푠�표�푟 ̸= 𝑇𝑉�푝�푟�표�푗�푒�푐�푡�푚�푒�푚�푏�푒�푟, and𝑇𝑉�퐴�푙�푖�푐�푒 = 𝑇𝑉�퐵�표�푏.

With the definitions of permission vector and permission
relation, we can define the permission equality predicate.

Definition 6 (permission equality predicate). Let 𝑇𝑉�푈1 be the
permission vector of user 𝑈1 and 𝑇𝑉�푈2 be the permission
vector of user 𝑈2. If 𝑃�푇�푉𝑈1 (𝑇𝑉�푈2) satisfies (2), then we call

𝑃�푇�푉𝑈1 (𝑇𝑉�푈2) the permission equality predicate of the users𝑈1

and 𝑈2.

𝑃�푇�푉𝑈1 (𝑇𝑉�푈2) = {{{
1 if 𝑇𝑉�푈1 = 𝑇𝑉�푈2 ,0 otherwise. (2)

5. A Construction for EFDSP

We have defined EFDSP in Section 3.3. In this section, we use
the efficient hidden vector encryption proposed by Park [4]
and the permission vector defined in Section 4 to construct
it. Let 𝐻 : {0, 1}∗ 󳨀→ 𝐺2 and 𝐻1 : {0, 1}∗ 󳨀→ 𝐺1 be two
secure cryptography hash functions, which are modeled as
random oracles. Let 𝑘 be the security parameter, then our
constructions for EFDSP are as follows:

(i) Setup(𝑘) 󳨀→ 𝑝𝑎𝑟𝑎𝑚𝑠: it takes 𝑘 as input and outputs𝑝𝑎𝑟𝑎𝑚𝑠, where 𝑝𝑎𝑟𝑎𝑚𝑠 = (𝑝, 𝑔, 𝐺1, 𝐺2, 𝑒). 𝑔 is a
generator of the group 𝐺1 and 𝑒 is the map of 𝐺1 ×𝐺1 󳨀→ 𝐺2.

(ii) KeyGeneration(𝑝𝑎𝑟𝑎𝑚𝑠) 󳨀→ (𝑃𝐾�푆, 𝑆𝐾�푆, 𝑆𝐾�푃�푆, 𝑃𝐾�푃�푆,𝑆𝑖𝑔�푃�푆, 𝑉𝑒𝑟�푃�푆): it takes 𝑝𝑎𝑟𝑎𝑚𝑠 as input and out-
puts (𝑃𝐾�푆, 𝑆𝐾�푆), 𝑆𝐾�푃�푆, 𝑃𝐾�푃�푆, and (𝑆𝑖𝑔�푃�푆, 𝑉𝑒𝑟�푃�푆). (𝑃𝐾�푆,𝑆𝐾�푆) is an identity-based key pair of the cloud storage
CS, and (𝑆𝐾�푃�푆, 𝑃𝐾�푃�푆) is a private key/public key pair
of PS. It randomly selects a master key 𝑟 ∈ 𝑍�푝

and computes its corresponding public key 𝑔�푟. It
computes 𝑃𝐾�푆 = (𝐻1(𝐼𝐷�푠) and 𝑆𝐾�푆 = 𝐻1(𝐼𝐷�푠)�푟). It
randomly selects 𝑔1, 𝑔2, (ℎ1, 𝑢1, 𝜓1), . . . , (ℎ�푛, 𝑢�푛, 𝜓�푛) ∈𝐺1 and 𝑦1, 𝑦2, V1, . . . , V�푛, 𝑡1, 𝑡2, . . . , 𝑡�푛 ∈ 𝑍�푝 and
computes 𝑌1 = 𝑔�푦1 , 𝑌2 = 𝑔�푦2 , 𝑉�푘 = 𝑔V𝑘 , 𝑇�푘 =𝑔�푡𝑘 ∈ 𝐺1, 𝑘 ∈ {1, 2, . . . , 𝑛}. It also computes Γ = 𝑒(𝑔1,𝑌1)𝑒(𝑔2, 𝑌2) ∈ 𝐺2. Let 𝑆𝐾�푃�푆 = (𝑔1, 𝑔2, 𝑦1, 𝑦2, V1, . . . ,
V�푛, 𝑡1, 𝑡2, . . . , 𝑡�푛), 𝑃𝐾�푃�푆 = (𝑔, 𝑌1, 𝑌2, (ℎ1, 𝑢1, 𝜓1, 𝑉1, 𝑇1),(ℎ2,𝑢2, 𝜓2,𝑉2,𝑇2), . . . , (ℎ�푛,𝑢�푛, 𝜓�푛,𝑉�푛, 𝑇�푛)). (𝑆𝑖𝑔�푃�푆, 𝑉𝑒𝑟�푃�푆)
is a signature/verification key pair of PS, and in our
construction, we use DSA [7].

(iii) FileKeyGeneration(𝐻(𝐹)) 󳨀→ 𝐾�퐹: it takes 𝐻(𝐹) as
input and performs the key generation algorithm
based BLS signature [8] to generate 𝐾�퐹.

(iv) FileTagGeneration(𝐹, 𝑃𝑉, 𝑃𝐾�푃�푆) 󳨀→ 𝐹𝑇�퐹: it first uses
the secure cryptography hash function 𝐻 to compute
the cryptography hash value of 𝐹, then it uses 𝑃𝑉 to
generate the permission vector 𝑥�푢 = (𝑥1, 𝑥2, . . . , 𝑥�푛)
according toDefinition 4, and finally uses𝑃𝐾�푃�푆 which
is the public key of PS to generate the encrypted file
tag 𝐹𝑇�퐹. The concrete steps are as follows.

(a) It gets 𝐻(𝐹) by using the secure cryptography
hash function 𝐻 on 𝐹.

(b) It uses its permission level 𝑃𝑉 to generate the
permission vector 𝑥�푢 = (𝑥1, 𝑥2, . . . , 𝑥�푛) accord-
ing to Definition 4. Let 𝑡𝑥 be the encrypted file
permission index subscript set, then 𝑡𝑥 = {𝑖 |1 ≤ 𝑖 ≤ 𝑛}.

(c) It randomly selects two numbers 𝑟1 and 𝑟2 from𝑍�푝 and uses 𝑥�푢 = (𝑥1, 𝑥2, . . . , 𝑥�푛) and 𝐻(𝐹)

Mathematical Problems in Engineering 7

to generate the encrypted file tag 𝐹𝑇�퐹 for 𝐹
according to (3).

𝐶1 = 𝑌�푟1
1 ,

𝐶2 = 𝑌�푟1
2 ,

𝐶3,1 = (ℎ1𝑢�푥11)�푟1 𝑉�푟2
1 , . . . 𝐶3,�푛 = (ℎ�푛𝑢�푥𝑛�푛)�푟1 𝑉�푟2

�푛 ,
𝐶4,1 = 𝜓�푟1

1 𝑇�푟2
1 , . . . , 𝐶4,�푛 = 𝜓�푟1

�푛 𝑇�푟2
�푛 ,

𝐶5 = 𝑔�푟2 ,
𝐶6 = Γ�푟1𝐻(𝐹) ,

𝐹𝑇�퐹 = (𝐶1, 𝐶2, 𝐶3,1 . . . , 𝐶3,�푛, 𝐶4,1 . . . , 𝐶4,�푛, 𝐶5, 𝐶6)

(3)

(v) FileQueryTagGeneration(𝐻(𝐹), 𝑃𝑉, 𝑆𝐾�푃�푆, 𝑆𝑖𝑔�푃�푆) 󳨀→(𝑄𝐹𝑇�퐹, (𝑄𝐹𝑇�퐹)�푆�푖�푔𝑃𝑆): PS first gets 𝑃𝑉 the permission
level of 𝑢 from its permission database and then
according to Definition 4 generates a permission
query vector for 𝑢, and finally it uses its own private
key 𝑆𝐾�푃�푆 to generate an encrypted file query tag𝑄𝐹𝑇�퐹
for 𝑢. The concrete steps are as follows.

(a) PS gets 𝑃𝑉 the permission level of 𝑢 from its
permission database and then generates the per-
mission query vector 𝑞V = (𝑞1, 𝑞2, . . . , 𝑞�푛)
according to Definition 4. Let 𝑡𝑞 be the permis-
sion query index set, then 𝑡𝑞 = {𝑖 | 𝑖 ≤ 𝑖 ≤ 𝑛}.

(b) PS randomly selects 𝛼, 𝛽 ∈ 𝑍�푝 and for each𝑖 ∈ 𝑡𝑞 it generates 𝜆�푖, 𝜑�푖, 𝛾�푖, 𝜏�푖 ∈ 𝑍�푝 according
to (4), and 𝑦1, 𝑦2 are the parts of 𝑆𝐾�푃�푆 which is
the private key of PS.

𝜆�푖𝑦1 + 𝜑�푖𝑦2 = 𝛼
𝛾�푖𝑦1 + 𝜏�푖𝑦2 = 𝛽 (4)

(c) PS computes 𝑄𝐹𝑇�퐹 according to (5).
𝑇1 = 𝑔1Π�푖∈�푡�푞 (ℎ�푖𝑢�푞𝑖�푖)�휆𝑖 𝜓�훾𝑖

�푖 ,
𝑇2 = 𝑔2Π�푖∈�푡�푞 (ℎ�푖𝑢�푞𝑖�푖)�휑𝑖 𝜓�휏𝑖

�푖 ,
𝑇3 = 𝑔�훼,
𝑇4 = 𝑔�훽,
𝑇5 = 𝑔−Σ𝑖∈𝑡𝑞(V𝑖�훼+�푡𝑖�훽),

𝑄𝐹𝑇�퐹 = ((𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5) , 𝑡𝑞,𝐻 (𝐹))

(5)

(d) PS uses its signature private key 𝑆𝑖𝑔�푃�푆 to sign𝑄𝐹𝑇�퐹 to generate (𝑄𝐹𝑇�퐹)�푠�푖�푔𝑃𝐾 .
(vi) FileQueryTagQueryAndFileDeduplication(𝐼𝐷�푢, 𝐻(𝐹),𝑄𝐹𝑇�퐹, (𝑄𝐹𝑇�퐹)𝑠𝑖𝑔𝑃𝐾) 󳨀→ (𝐿𝑜𝑎𝑑𝐹𝑙𝑎𝑔, 𝐹𝑃�퐹): CS first

checks the format of 𝑄𝐹𝑇�퐹 and (𝑄𝐹𝑇�퐹)�푠�푖�푔𝑃𝐾 , and if
there exists an error in its format, it stops. Otherwise
it looks for the corresponding encrypted file tag

according to 𝐻(𝐹), and if it does not find it, then it
stops. Otherwise it computes 𝐹𝑀 according to

𝐹𝑀 = 𝐷1𝐷2𝑒 (𝑇5, 𝐶5)𝑒 (𝑇1, 𝐶1) 𝑒 (𝑇2, 𝐶2)𝐶6 (6)

where𝐷1 = 𝑒(𝑇3, Π�푖∈�푡�푞𝐶3,�푖), 𝐷2 = 𝑒(𝑇4, Π�푖∈�푡�푞𝐶4,�푖).
If 𝐹𝑀 = 𝐻(𝐹), then it represents that 𝐹 has been sent
toCS and𝑢 has the deduplicationpermission for𝐹. CS
can perform deduplication for 𝐹 and let 𝐿𝑜𝑎𝑑𝐹𝑙𝑎𝑔 =0 and return the file pointer of 𝐹 𝐹𝑃�퐹 and add ID of𝑢 to the corresponding file entry of 𝐹, otherwise let𝐿𝑜𝑎𝑑𝐹𝑙𝑎𝑔 = 1 and return 𝐿𝑜𝑎𝑑𝐹𝑙𝑎𝑔.

(vii) FileUpload(𝐻(𝐹), 𝐶�퐹, 𝐹𝑇�퐹) 󳨀→ (𝐹𝑃�퐹): when CS
receives 𝐻(𝐹), 𝐶�퐹, and 𝐹𝑇�퐹, it assigns a file pointer𝐹𝑃�퐹 for 𝐶�퐹 and creates a file entry to store 𝐻(𝐹), 𝐶�퐹,
and 𝐹𝑇�퐹.

(viii) Enc(𝐹�푘, 𝐹) 󳨀→ 𝐶�퐹: it encrypts 𝐹 by using AES [9];
that is, 𝐶�퐹 = 𝐸�퐹𝑘

(𝐹).
(ix) Dec(𝐶�퐹, 𝐹�퐾) 󳨀→ 𝐹: it decrypts 𝐶�퐹 by using AES; that

is, 𝐹 = 𝐷�퐹𝑘
(𝐶�퐹).

(x) FileRetrieval(𝐹𝑃�퐹) 󳨀→ 𝐶�퐹: after receiving 𝐹𝑃�퐹, it
returns the corresponding encrypted file 𝐶�퐹 of 𝐹𝑃�퐹.

6. Optimization for EFDSP

Since EFDSP can only deduplicate files between users that
have the same permissions, it has two shortcomings. Firstly,
users with the high permission level can operate the files of
users with the low permission level in the actual enterprise
setting. However, EFDSP does not allow the cloud storage
to perform deduplication between files of a user with high
permission level and files of a user with low permission level,
which violates the actual permission management in the
enterprise setting, and it is not conducive to improving the
deduplication efficiency. Secondly, during the generation of
the encrypted file query tag in EFDSP, all the permission
bits are involved in the computation which increases the
computation cost.

In this section, we use the example in Figure 3 to illustrate
how to optimize the permission query index subscript set to
overcome the above shortcomings in EFDSP.The permission
vector of the project supervisor 𝑇𝑉�푝�푟�표�푗�푒�푐�푡�푠�푢�푝�푒�푟V�푖�푠�표�푟 is 0010,
and the permission vector of the programmer 𝑇𝑉�푝�푟�표�푔�푟�푎�푚�푚�푒�푟
is 0111. According to Definition 5, 𝑇𝑉�푝�푟�표�푗�푒�푐�푡�푠�푢�푝�푒�푟V�푖�푠�표�푟 ≥𝑇𝑉�푝�푟�표�푔�푟�푎�푚�푚�푒�푟. That is, the permission level of the project
supervisor is higher than that of the programmer. Since 0
indicates the user has the permission and 1 indicates that
the user does not have the permission, if EFDSP compares
the permission level of 𝑢1 with that of 𝑢2, it only needs to
consider these permissions that are not owned by 𝑢1 whether
are owned by 𝑢2. If 𝑢2 does not own these permissions that
are not owned by 𝑢1, then it means that the permission level
of 𝑢1 is higher than or equal to that of 𝑢2. Otherwise if 𝑢2
owns one permission that is not owned by 𝑢1, then it means
that the permission level of 𝑢1 does not match that of 𝑢2.
(Either the permission level of 𝑢1 is lower than that of 𝑢2 or

8 Mathematical Problems in Engineering

the permission level of 𝑢1 is unequal to that of 𝑢2). So when
EFDSP compares the permission level of 𝑢1 with that of 𝑢2, it
only needs to consider the bits in the permission vector of 𝑢1
which are 1. For example, if EFDSPwants to compare the per-
mission level of project supervisor with that of programmer,
as 𝑇𝑉�푝�푟�표�푗�푒�푐�푡�푠�푢�푝�푒�푟V�푖�푠�표�푟 = 0010, 𝑇𝑉�푝�푟�표�푔�푟�푎�푚�푚�푒�푟 = 0111, and all bits
of 𝑇𝑉�푝�푟�표�푔�푗�푒�푐�푡�푠�푢�푝�푒�푟V�푖�푠�표�푟 are 0 except that bit 3 is 1, so EFDSP only
needs to compare 𝑇𝑉�푝�푟�표�푗�푒�푐�푡�푠�푢�푝�푒�푟V�푖�푠�표�푟[3] with 𝑇𝑉�푝�푟�표�푔�푟�푎�푚�푚�푒�푟[3].
Because 𝑇𝑉�푝�푟�표�푗�푒�푐�푡�푠�푢�푝�푒�푟V�푖�푠�표�푟[3] = 𝑇𝑉�푝�푟�표�푔�푟�푎�푚�푚�푒�푟[3], it can derive
that 𝑇𝑉�푝�푟�표�푗�푒�푐�푡�푠�푢�푝�푒�푟V�푖�푠�표�푟 ≥ 𝑇𝑉�푝�푟�표�푔�푟�푎�푚�푚�푒�푟 and can determine
that the files of the project supervisors can be deduplicated
with the files of the programmer that are stored in the cloud
storage. If EFDSP wants to compare the permission level
of the project supervisor with that of project member, as𝑇𝑉�푝�푟�표�푗�푒�푐�푡�푠�푢�푝�푒�푟V�푖�푠�표�푟 = 0010, 𝑇𝑉�푝�푟�표�푗�푒�푐�푡�푚�푒�푚�푏�푒�푟 = 0001, and all bits
of 𝑇𝑉�푝�푟�표�푗�푒�푐�푡�푠�푢�푝�푒�푟V�푖�푠�표�푟 are 0, except that bit 3 is 1, so it only needs
to compare 𝑇𝑉�푝�푟�표�푗�푒�푐�푡�푠�푢�푝�푒�푟V�푖�푠�표�푟[3] with 𝑇𝑉�푝�푟�표�푔�푎�푚�푚�푒�푟[3]. Because𝑇𝑉�푝�푟�표�푗�푒�푐�푡�푠�푢�푝�푒�푟V�푖�푠�표�푟[3] ̸= 𝑇𝑉�푝�푟�표�푔�푎�푚�푚�푒�푟[3], the permission level of
the project supervisor does notmatch that of projectmember,
and EFDSP can determine the files of project supervisor
which cannot deduplicate with the files of project member
that are stored in the cloud storage.

That is to say, EFDSP only considers the bits of the
permission vector of the query user that are 1. These vector
bits form a set which is defined in (7). We call it permission
query index subscript set and use 𝑒𝑡𝑞 to represent it. If we
replace 𝑡𝑞 in the FileQueryTagGeneration algorithm with𝑒𝑡𝑞, then EFDSP can enable the cloud storage to perform
deduplication between files of a user with high permission
level and files of a user with low permission level, which can
improve its efficiency. In addition, in order to prevent all bits
of a permission vector from being 0, the bit number of the
permission vector is required to be 2 more than the per-
mission number, and EFDSP reserves the last two bits of the
permission vector and codes them to be 1.

𝑒𝑡𝑞 = {𝑖 | 𝑞�푖 = 1} (7)

7. Security Analyses for EFDSP

In this section, we analyze EFDSP according to the security
requirements discussed in Section 3.5. We analyze the cor-
rectness of EFDSP, the security of the encrypted file query
tag which included unforgeability and indistinguishability,
the confidentiality of the encrypted file tag, and the confiden-
tiality of the encrypted file. Finally, we compare EFDSP with
SADS [1].

7.1. The Correctness Analysis. To verify the correctness of
EFDSP, wemust verify the query process of the encrypted file
query tag in EFDSP. In (6)

𝐷1 = 𝑒(𝑔�훼,∏
�푖∈�푡�푞

(ℎ�푖𝑢�푥𝑖�푖)�푟𝑖 𝑔V𝑖�푟2) ,

𝐷2 = 𝑒(𝑔�훽,∏
�푖∈�푡�푞

𝜓�푟1
�푖 𝑔�푡𝑖�푟2) ,

𝐷1𝐷2 = 𝑒(𝑔�훼,∏
�푖∈�푡�푞

(ℎ�푖𝑢�푥𝑖�푖)�푟𝑖)𝑒(𝑔�훽,∏
�푖∈�푡�푞

𝜓�푟1
�푖)

⋅ 𝑒(𝑔�푟2 ,∏
�푖∈�푡�푞

𝑔(V𝑖�훼+�푡𝑖�훽)) ,
𝑒 (𝑇5, 𝐶5) = 𝑒 (𝑔−Σ𝑖∈𝑡𝑞(V𝑖�훼+�푡𝑖�훽), 𝑔�푟2)
and 𝐶6 = Γ�푟1𝐻(𝐹) .

(8)

We can get

𝐷1𝐷2𝑒 (𝑇5, 𝐶5) 𝐶6

= 𝑒(𝑔�훼,∏
�푖∈�푡�푞

(ℎ�푖𝑢�푥𝑖�푖)�푟𝑖)𝑒(𝑔�훽,∏
�푖∈�푡�푞

𝜓�푟1
�푖)Γ�푟1𝐻(𝐹)

𝑒 (𝑇1, 𝐶1) = 𝑒(𝑔1 ∏
�푖∈�푡�푞

(ℎ�푖𝑢�푞𝑖�푖)�휆𝑖 , 𝑔�푦1�푟1)

𝑒 (𝑇2, 𝐶2) = 𝑒(𝑔2 ∏
�푖∈�푡�푞

(ℎ�푖𝑢�푞𝑖�푖)�휑𝑖 , 𝑔�푦2�푟1)
𝑒 (𝑇1, 𝐶1) 𝑒 (𝑇2, 𝐶2)

= Γ�푟1∏
�푖∈�푡�푞

𝑒 ((ℎ�푖𝑢�푞𝑖�푖)�푟1 , 𝑔�휆𝑖�푦1+�휓𝑖�푦2)∏
�푖∈�푡�푞

𝑒 (𝜓�푟𝑖
�푖 , 𝑔�훾𝑖�푦1+�휏𝑖�푦2)

= Γ�푟1𝑒(∏
�푖∈�푡�푞

(ℎ�푖𝑢�푞𝑖�푖)�푟1 , 𝑔�훼)𝑒(∏
�푖∈�푡�푞

𝑒 (𝜓�푟𝑖
�푖 , 𝑔�훽)

(9)

Let 𝑆 = {𝑖 | 𝑖 ∈ 𝑡𝑞 and 𝑥�푖 ̸= 𝑞�푖}, and we can get 𝐷1𝐷2𝑒(𝑇5,𝐶5)𝐶6/𝑒(𝑇1, 𝐶1)𝑒(𝑇2, 𝐶2) = 𝐻(𝐹)𝑒(𝑔�훼,∏�푖∈�푆𝑢(�푥𝑖−�푞𝑖)�푟𝑖�푖) =𝐻(𝐹)𝑒(𝑔, 𝑔)�푎�푟∑𝑖∈𝑆(log𝑔�푢𝑖)(�푥𝑖−�푞𝑖).
Therefore, if 𝑥 = 𝑞, then the above formula outputs𝐻(𝐹);

otherwise, it does not output 𝐻(𝐹).
7.2. The Security Analysis

(1)TheUnforgeability of the Encrypted FileQuery TagAnalysis.
In EFDSP the user passes the authentication of PS and
sends 𝐻(𝐹) to PS. After receiving 𝐻(𝐹), PS first searches the
permission database to find the permissions of the user and
generates a permission query vector 𝑞 = (𝑞1, 𝑞2, . . . , 𝑞�푛) in
accordance with Definition 4 for the user, and then PS uses
its own private key to generate the query tag, since the private
key of PS is kept secret and we ensure the unforgeability of the
encrypted file query tag.

(2) The Indistinguishability of the Encrypted File Query
Tag Analysis. The encrypted file query tag 𝑄𝐹𝑇(𝐻(𝐹)) =((𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5), 𝑡𝑞,𝐻(𝐹)) is made up of four parts, where𝑇1 = 𝑔1∏�푖∈�푡�푞(ℎ�푖𝑢�푞𝑖�푖)�휆𝑖𝜓�훾𝑖

�푖 , 𝑇2 = 𝑔2∏�푖∈�푡�푞(ℎ�푖𝑢�푞𝑖�푖)�휑𝑖𝜓�휏𝑖
�푖 , 𝑇3 = 𝑔�훼,𝑇4 = 𝑔�훽, 𝑇5 = 𝑔−∑𝑖∈𝑡𝑞(V𝑖�훼+�푡𝑖�훽), 𝑡𝑞 = {𝑖 | 𝑞�푖 = 1}. Since PS

Mathematical Problems in Engineering 9

randomly selects 𝛼, 𝛽 ∈ 𝑍�푝 when it generates the query tag,
we can regard 𝑇3 and 𝑇4 as two random numbers. According
to (4) we can get 𝜆�푖𝑦1 + 𝜑�푖𝑦2 = 𝛼 and 𝛾�푖𝑦1 + 𝜏�푖𝑦2 = 𝛽, where𝑦1 and 𝑦2 are parts of the private key of PS, so that we can
regard 𝜆�푖, 𝜑�푖, 𝛾�푖, and 𝜏�푖 as random numbers, and then we can
regard 𝑇1, 𝑇2, and 𝑇5 as three random numbers. Because𝐻 is
a secure cryptography hash function, we can also regard𝐻(𝐹)
as a random number. 𝑡𝑞 = {𝑖 | 𝑞�푖 = 1} is publicly released, it is
unconducive to help the probabilistic polynomial time (p.p.t)
adversary to distinguish the encrypted file query tag with a
random number; at the same time, there exist thousands of
files with the same permission in the cloud storage, which
make 𝑡𝑞 not useful to distinguish between the encrypted file
query tag and a random number. Thus, we can ensure the
indistinguishability of the encrypted file query tag.

(3) The Confidentiality of Encrypted File Tag Analysis. In
EFDSP, when a user needs to generate an encrypted file
tag 𝐹𝑇�퐹 for the encrypted file 𝐶�퐹, it first uses its own
permission level to generate the permission vector 𝑥 =(𝑥1, 𝑥2, . . . , 𝑥�푛) according to Definition 4 and finally uses𝑃𝐾�푃�푆 to generate an encrypted file tag 𝐹𝑇�퐹, where 𝑃𝐾�푃�푆 is
the public key of PS. When it computes 𝐹𝑇�퐹, it randomly
selects two numbers 𝑟1 and 𝑟2 from 𝑍�푝. 𝐹𝑇�퐹 = (𝐶1, 𝐶2, 𝐶3,1,. . . , 𝐶3,�푛, 𝐶4,1, . . . , 𝐶4,�푛, 𝐶5, 𝐶6), and𝐶1 = 𝑌�푟1

1 ,𝐶2 = 𝑌�푟1
2 ,𝐶3,1 =(ℎ1𝑢�푥11)�푟1𝑉�푟2

1 , . . . , 𝐶3,�푛 = (ℎ�푛𝑢�푥𝑛�푛)�푟1𝑉�푟2
�푛 , 𝐶4,1 = 𝜓�푟1

1 𝑇�푟2
1 , . . . 𝐶4,�푛 =𝜓�푟1

�푛 𝑇�푟2
�푛 , 𝐶5 = 𝑔�푟2 , 𝐶6 = Γ�푟1𝐻(𝐹). Since 𝑟1 and 𝑟2 are two ran-

dom numbers, it is difficult for an p.p.t adversary to distin-
guish 𝐹𝑇�퐹 from a random number, thus it can ensure the
confidentiality of 𝐹𝑇�퐹.
(4) The Confidentiality of the File Analysis. In EFDSP, for any
file 𝐹, 𝐶�퐹 = 𝐸�퐾𝐹

(𝐹). 𝐾�퐹 is generated by the user performing
a key generation protocol base onBLS signature [8] withKGS.
Since the protocol is secure, that is, for any p.p.t adversary,
if it does not own 𝐹, it cannot know 𝐾�퐹. At the same
time, we use AES as the encryption algorithm 𝐸, which is a
secure algorithm; therefore, 𝐶�퐹 is secure.That is, for any p.p.t
adversary who does not own 𝐹, it cannot get 𝐹 from 𝐶�퐹.

7.3. The Online Deduplication Oracle Attack Analysis. In
EFDSP, when a user 𝑢�푖 uploads a file 𝐹 to CS, 𝑢�푖 uses its own
permission vector and the public key of PS to generate an
encrypted file tag. After that, only when a user that its per-
mission level is equal to or higher than that of 𝑢�푖 upload the
same file, can CS perform the file deduplication. Assuming
an adversary 𝐴 that its permission level is lower than that of𝑢�푖 uses the file deduplication of CS to launch the file online
deduplication oracle attack, it first needs to forge some files
against 𝐹 and then ask the PS to generate some encrypted file
query tags for these files. PS uses its own private key, the per-
missions vector of 𝐴, and these forged files to generate some
encrypted file query tags and gives these tags to 𝐴. 𝐴 sends
these query tags to CS and then observes whether CS per-
forms file deduplication for the upload files to get informa-
tion about 𝐹. Due to the fact that the permission level of 𝐴 is
lower than that of 𝑢�푖, CS will not perform file deduplication
for these upload files. It will ask 𝐴 to upload these files. In
the end, 𝐴 cannot get any information about 𝐹 from CS.

So EFDSP can prevent adversary 𝐴 from launching online
deduplication oracle attack.

7.4. Comparison with SADS. Since SADS is the only existing
encrypted file deduplication scheme with permission, we will
compare EFDSP with SADS from the following aspects.

(i) In SADS [1], each permission is represented by a
private key, and if a user has 𝑛 permissions, it needs to
keep 𝑛 private keys secretly. However, in EFDSP, the
user permissions are managed by a permission server,
and the user only needs to store its own permission
vector and the public key of the permission server.

(ii) In SADS, when a user uploads a file 𝐹 or queries a
duplication file, if the user is assigned 𝑛 permissions,
the system needs to use 𝑛 private keys to generate𝑛 encrypted file tags for the file. So the space com-
plexity of the network traffic of this scheme is 𝑂(𝑛).
In EFDSP, the encrypted file tag of 𝐹 is 𝐹𝑇�퐹 =(𝐶1, 𝐶2, 𝐶3,1 . . . , 𝐶3,�푛, 𝐶4,1 . . . , 𝐶4,�푛, 𝐶5, 𝐶6), so when a
user uploads a file 𝐹, the space complexity of its
network traffic is 𝑂(𝑛). However, the query tag of 𝐹
is𝑄𝐹𝑇(𝐻(𝐹)) = ((𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5), 𝑡𝑞,𝐻(𝐹)), which
has nothing to do with the number of permissions𝑛. So when a user queries the duplication file of 𝐹,
EFDSP requires the constant network traffic.

(iii) SADS has a security weakness, while EFDSP has
overcome the security weakness. We use the example
of the attack against SADS in Section 1 to show how
EFDSP can prevent such attack. In EFDSP, it uses a 5-
bit vector to represent a permission.Thefirst bit of the
vector represents the permission of departmentA, the
second bit represents the permission of department
B, the third bit represents the permission of financial
management, and the fourth bit and the fifth bit are
reserved and it codes them to be 1. Mike has permis-
sions for department A and department B, and
because Mike is also responsible for financial man-
agement and it has the permission of the finance
department, so his permission vector is 00011. Bob is
the employee of department B, his permission vector
is 10111. If Mike uploads the payslip file of Alice to
the cloud storage, Mike uses the permissions vector00011 and the public key of the permission server
to generate the encrypted file tag and upload the
encrypted file tag and the encrypted file to the cloud
storage server. Both Bob and Alice are employees of
department B, Bob wants to know the salary of Alice.
Since the payslip file has a fixed format and it is a
kind of small entropy file, Bob knows the file format
or may even have such a file format in his hand, i.e.,
Bob has his own payslip.He also knows that the salary
of Alice should be between 4000 and 4100, he just
does not know the exact salary data of Alice. Bob
can set the salary item to 4000, 4001, . . . 4100, and
forge 100 payslip files, then Bob uploads the 100 files
to the cloud storage respectively to perform the file
deduplication in the cloud storage to launch online
deduplication oracle attack. However, due to the use

10 Mathematical Problems in Engineering

of EFDSP, when he needs to upload these files, it
wants to get some query tags for these uploaded files
and upload the query tag to the cloud storage server.
According to EFDSP, since the permission level of
Bob is lower than that of Mike, even if Bob uses the
same file of Mike to generate the query tag, the cloud
storage server does not perform file deduplication
due to the permission level mismatch, Bob needs to
upload all the 100 files to the cloud storage, so Bob
does not know which file in his uploaded 100 files is
the specific file; that is, Bob does not know the wage
information of Alice.

8. Experiments

The experiment system is composed of four PCs, which
simulate the client, the permission server, the key generation
server, and the cloud storage server. All PCs are intercon-
nected through a 100Mbps Ethernet network.TheCPU in the
PCs is Intel� Pentium� Dual E2160 1.68GHZ and the RAM is
4GB.The disk of these PCs is Western Digital Caviar Se hard
drive that has a 320GB capacity, 7200 rpm with 8 MB cache.
All experiments are performed in Fedora 8.0 with kernel
2.6.23.1.The cipher operation is implemented by invoking the
OpenSSL cryptography library (0.98g) and the pairing-based
cryptography (PBC) library.The key length of AES is 128 bits
and the security parameter of the bilinear pairing is 80 bits.

We use txt, doc, and mp3, three kinds of files, as the test
data set in the experiment, which is shown in Table 1. We test
the computation costs of the encrypted file tag generation,
query tag generation, file encryption, duplication file check,
and file transmission in EFDSP. We conduct experiments
on file size, file number, file duplication rate, and the user
number with the same permission four aspects to analyze the
performance in EFDSP, and all the experimental results are
the average values of 10 experiments.

(1)ThePerformance Effect of File Size onEFDSP.As the file size
will affect the encrypted file tag generation and file encryption
in the deduplication scheme, we first test the performance
effect of file size on EFDSP. We upload 10 files which have
different sizes and then record the time spent. We upload 7
files of different sizes in the file set 1 and file set 2 and record
the time spent in each step. As the seven files are different,
CS does not perform deduplication; the results are shown in
Figure 4. From the figure, we can see that file size has a great
effect on the key generation, the encrypted file tag generation,
and the encryption process, which are linear.

(2) The Performance Effect of the File Number on the EFDSP.
We select 10 different files from the file set 3 to perform 10
groups of experiments; before each group of the experiment,
we need to initialize the system to avoid encrypted file
deduplication. In experiment group 1, we upload one file,
and in the second group, we upload two files; thus, in the
next experiment group, add one file per time, and in the
experiment group 10, we upload all files.When eachfile group
is uploaded, we record the time spent on each step. Figure 5
shows the effect of the file number on each step. Experiment

0 5 10 15 20 25 30

File size (MB)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Ti
m

e (
S)

Encrypted file tag generation
Query tag generation
File encryption
Deduplication check
File transmission

Figure 4: The performance effect of file size on EFDSP.

0

2

4

6

8

10

12

14

16

18

20

22

24

26

Ti
m

e (
S)

2 3 4 5 6 7 8 91 10

Number of files

Encrypted file tag generation
Query tag generation

File transmission

Deduplication check
File encryption

Figure 5: The performance effect of the file number on the EFDSP.

results show that the time spent in each step is in linear
relationship with the file number.

(3)The Performance Effect of File Repetition Rate on EFDSP. In
order to evaluate the performance effect of the file repetition
rate, we divide the file set 3 into two different data test sets,
each test set contains 10 files of 10MB. In each experiment, we
uploaded all the files in the first data test set first. In the second
file upload, we upload another 10 files, which are selected
from the first data test set according to the given repetition
rate, and the remaining files are selected from the second
data test set, then we record the time spent on each step of
the second upload. The experimental results are shown in

Mathematical Problems in Engineering 11

Table 1: The test data set.

File set File type explanation of the file set

File set 1 Txt Extracts some files from Encron emails data set and package them into 15MB, 20MB, 25MB,
and 30MB four files.

File set 2 Doc Choose three files which sizes are 1MB, 5MB, and 10MB from the lab documentations.

File set 3 MP3 Choose 40 songs from 6 albums and generate 20 different 10MB files with MP3
Splitter&Joiner Pro.

Encrypted file tag generation
Query tag generation

File transmission

10 20 30 40 50 60 70 80 90 100

File repetition rate (%)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

Ti
m

e (
S)

Deduplication check
File encryption

Figure 6: The performance effect of file repetition rate on EFDSP.

Figure 6. From the figure, we can see that the time spent by
EFDSP decreases as the file repetition rate increases. When
the file repetition rate reaches 100%, it is not necessary to
encrypt and upload files. The time required to complete 10
files of 10𝑀𝐵 is that of 32.98%when the repetition rate is 10%.

(4) The Performance Comparison between EFDSP and SADS.
SADS is the only existing encrypted file deduplication with
permission; to compare the performance between EFDSP
and SADS, we perform the following experiment. We select
10 files of 10MB from the file set 3 as the data test set, and
we set up 6 users in the experiment. We regard the first user
as the upload file owner, which uploads the 10 files to the
cloud storage server first, and the 10 files of the other five
users are the same with the first user’s file exactly. And then
we configure the permission of these users on the permission
server, respectively, so that one user, two users, three users,
four users, and five users have the same permission with the
first user, respectively, and we perform these experiments
respectively. The experimental results are shown in Figure 7.
The experiment results show that EFDSP is less efficient than
SADS, but this gap decreases with the increasing number of
authorized users; moreover, EFDSP has repaired the security
weakness in SADS.

1 2 3 4 5

EFDSP
SADS

0

20

40

60

80

100

120

140

160

180

200

Ti
m

e (
S)

The user number of the same permission

Figure 7:The performance comparison between EFDSP and SADS.

9. Related Works

Quinlan et al. proposed file deduplication to improve the
storage space utilization in their document network storage
system [10]. Using file deduplication to the cloud storage
directly will bring some security issues to the files in the
cloud storage. To demonstrate these security issues, Harnik
et al. proposed three different kinds of attack methods [11].
To prevent these deduplication attacks, Halevi et al. proposed
proof of ownership (POW) [12]. Some researchers have
extended POW by improving its efficiency [13, 14]. However,
these POWs cannot prevent attacks against small entropy
files. Therefore, it is unrealistic to prevent all the deduplica-
tion attacks in the cloud storage by using the above POW.

As the same file encrypting with different keys will gener-
ate different encrypted files, the cloud storage server cannot
deduplicate the encrypted file. So file encryption and file
deduplication are incompatible to some extent. To solve this
issue, Douceur et al. proposed convergence encryption [15].
The key of the convergence encryption is computed by using
the hash function to the file that is encrypted. Different users
that use the convergence encryption to encrypt the same file
will generate the same encrypted file. Storer et al. proposed a
block-level encrypted file deduplication scheme.The encryp-
tion key of the file block is determined by the contents of the
file blocks [16], but their scheme is difficult to prevent the

12 Mathematical Problems in Engineering

brute-force attack. Bellare et al. proposed message lock en-
cryption based on the convergence encryption [17] and
designed a deduplication key generation protocol based on
RSA signature [18], but the efficiency of their key generation
protocol is low due to using RSA signature. Armknecht et al.
designed a server-assisted key generation protocol using BLS
signature that could overcome the shortcomings of the Bel-
lare protocol [8].

Xu et al. designed a secure client encrypted file dedupli-
cation scheme for cloud storage [19]. Subsequently, Kaaniche,
Stanek, and Puzio et al. proposed their encrypted file dedu-
plication scheme for cloud storage [20–22]. To tackle the
problem of encrypted file deduplication without relying on
a trusted key generation server, Liu et al. [23] and Dang et
al. [24] proposed their secure encrypted file deduplication
scheme that does not require additional servers respectively.
But their schemes do not support file permission. Li et al.
proposed an encrypted file deduplication scheme that sup-
ports fuzzy search [25]. In all above-mentioned encrypted file
deduplication schemes, the user participates in the encrypted
file deduplication passively. Li et al. proposed an encrypted
file deduplication schemebased on hybrid cloud serverwhich
supports deduplication authorization [1], but the user per-
mission key management in their scheme is trouble; it wants
relatively large storage space and network traffic, and at the
same time its authorization precision is rough and there exists
a security weakness.

10. Conclusions

An enterprise can reduce its business cost by storing its files
to cloud storage. All files have permission in the enter-
prise application environment. If the cloud storage uses an
encrypted file deduplication scheme without permission, it
will destroy the enterprise file permission and give rise to
some security issues. To solve the problem, Li et al. proposed
a secure encrypted file deduplication with permission based
on hybrid cloud, but its scheme has a security weakness.
In this paper, we design an encrypted file deduplication
model and construct an encrypted file deduplication scheme
with permission (EFDSP) by using the permission vector
and HVE and we optimize the performance of EFDSP. We
analyze the security and the performance of EFDSP, and the
results show that EFDSP satisfies the security requirements
defined in Section 3.5. We implement EFDSP and conduct
the performance evaluation. The experimental results show
that the performance of EFDSP is slightly worse than that of
SADS. However, with the increasing number of the autho-
rized user, the performance gap decreases. At the same time,
EFDSP has overcome the security weakness in SADS. Liu et
al. [23] and Dang et al. [24] proposed their secure encrypted
file deduplication scheme without relying on a trusted key
generation server respectively, but their schemes do not
support file permission in deduplication. We will introduce
their technologies to our EFDSP in future work.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest re-
lated to this paper.

Acknowledgments

The research was partially funded by the Doctoral Program
of Hunan Institute of Engineering (Grant No. 17RC028),
the Hunan Province Natural Science Foundation (Grant No.
2016JJ3051), and the National Natural Science Foundation of
China (Grant No. 61502163).

References

[1] J. Li, Y. K. Li, X. Chen, P. P. C. Lee, and W. Lou, “A Hybrid
Cloud Approach for Secure Authorized Deduplication,” IEEE
Transactions on Parallel and Distributed Systems, vol. 26, no. 5,
pp. 1206–1216, 2015.

[2] D. Boneh and B. Waters, “Conjunctive, subset, and range
queries on encrypted data,” in Proceedings of the 4th Theory
of cryptography Conference (TCC’07), vol. 4392, pp. 535–554,
Springer, Berlin, Germany, 2007.

[3] J. Katz, A. Sahai, and B.Waters, “Predicate encryption support-
ing disjunctions, polynomial equations, and inner products,”
Journal of Cryptology, vol. 26, no. 2, pp. 191–224, 2013.

[4] J. H. Park, “Efficient hidden vector encryption for conjunctive
queries on encrypted data,” IEEE Transactions on Knowledge
and Data Engineering, vol. 23, no. 10, pp. 1483–1497, 2011.

[5] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman,
“Role-based access control models,”The Computer Journal, vol.
29, no. 2, pp. 38–47, 1996.

[6] O. Goldreich, Foundations of cryptography: Basic applications,
Cambridge University Press, Cambridge, 2004.

[7] P. Gallagher and C. Kerry, “Fips pub 186-4: Digital signature
standard (DSS),” inNational Institute of Standards and Technol-
ogy (NIST), 2013.

[8] F. Armknecht, J. Bohli, G. O. Karame, andF. Youssef, “Transpar-
ent Data Deduplication in the Cloud,” in Proceedings of the the
22ndACMSIGSACConference, pp. 886–900,Denver, Colorado,
USA, October 2015.

[9] V. Rijmen and J. Daemen, “Advanced encryption standard,” in
Proceedings of Federal Information Processing Standards Pub-
lications, pp. 19–22, National Institute of Standards and Tech-
nology, 2001.

[10] S. Quinlan and S. Dorward, “Venti: A new approach to archival
storage,” in Proceedings of the 2th Conference on File and Storage
Technologies (FASTΓ02), pp. 89–101, 2002.

[11] D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Side channels in
cloud services: Deduplication in cloud storage,” IEEE Security
& Privacy, vol. 8, no. 6, pp. 40–47, 2010.

[12] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Proofs
of ownership in remote storage systems,” in Proceedings of
the 18th ACM Conference on Computer and Communications
Security, CCS’11, pp. 491–500, USA, October 2011.

[13] R. Di Pietro and A. Sorniotti, “Boosting efficiency and security
in proof of ownership for deduplication,” in Proceedings of the
7th ACM Symposium on Information, Computer and Commu-
nications Security, ASIACCS 2012, pp. 81-82, Republic of Korea,
May 2012.

Mathematical Problems in Engineering 13

[14] J. Blasco, R. Di Pietro, A. Orfila, and A. Sorniotti, “A tunable
proof of ownership scheme for deduplication using bloom fil-
ters,” in Proceedings of the IEEE Conference on Communications
and Network Security (CNS ’14), pp. 481–489, San Francisco,
Calif, USA, October 2014.

[15] J. R.Douceur, A. Adya,W. J. Bolosky,D. Simon, andM.Theimer,
“Reclaiming space fromduplicate files in a serverless distributed
file system,” in Proceedings of the 22nd International Conference
on Distributed Systems, pp. 617–624, IEEE, Austria, July 2002.

[16] M. W. Storer, K. Greenan, D. D. Long, and E. L. Miller, “Secure
data deduplication,” in Proceedings of the the 4th ACM interna-
tional workshop, p. 1, Alexandria, Virginia, USA, October 2008.

[17] M. Bellare and S. Keelveedhi, “Message-locked encryption and
secure deduplication,” in Advances in Cryptology (EURO-
CRYPT13), pp. 296–312, Springer, Heidelberg, 2013.

[18] M. Bellare, S. Keelveedhi, and T. Ristenpart, “Dupless: Server-
aided encryption for deduplicated storage,” in Proceedings of the
22nd USENIX conference on security, USENIX Association, pp.
179–194, 2013.

[19] J. Xu, E.-C. Chang, and J. Zhou, “Weak leakage-resilient client-
side deduplication of encrypted data in cloud storage,” in
Proceedings of the 8th ACM SIGSAC Symposium on Information,
Computer and Communications Security, ASIA CCS 2013, pp.
195–206, China, May 2013.

[20] N. Kaaniche andM. Laurent, “A secure client side deduplication
scheme in cloud storage environments,” in Proceedings of the
2014 6th International Conference on New Technologies, Mobility
and Security, NTMS 2014, UAE, April 2014.

[21] J. Stanek, A. Sorniotti, E. Androulaki, and L. Kencl, “A Secure
Data Deduplication Scheme for Cloud Storage,” in Financial
Cryptography and Data Security, vol. 8437 of Lecture Notes
in Computer Science, pp. 99–118, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2014.

[22] P. Puzio, R. Molva, M. Onen, and S. Loureiro, “ClouDedup:
Secure deduplication with encrypted data for cloud storage,” in
Proceedings of the 5th IEEE International Conference on Cloud
Computing Technology and Science, CloudCom 2013, pp. 363–
370, UK, December 2013.

[23] J. Liu, N. Asokan, and B. Pinkas, “Secure deduplication of en-
crypted data without additional independent servers,” in Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, CCS 2015, pp. 874–885,USA,October
2015.

[24] H. Dang and E.-C. Chang, “Privacy-Preserving Data Dedupli-
cation on Trusted Processors,” in Proceedings of the 10th IEEE
International Conference onCloudComputing, CLOUD2017, pp.
66–73, USA, June 2017.

[25] J. Li, X. Chen, F. Xhafa, and L. Barolli, “Secure deduplication
storage systems supporting keyword search,” Journal of Com-
puter and System Sciences, vol. 81, no. 8, pp. 1532–1541, 2015.

Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

