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Abstract. 
In this paper, we propose an improved power algorithm for finding maximal eigenvalues. Without any partition, we can get the maximal eigenvalue and show that the modified power algorithm is convergent for zero symmetric reducible nonnegative matrices. Numerical results are reported to demonstrate the effectiveness of the modified power algorithm. Finally, a modified algorithm is proposed to test the positive definiteness (positive semidefiniteness) of -matrices.



1. Introduction
The maximum eigenvalue problems of nonnegative matrices are important tools for matrix analysis and calculation and are widely used in many fields, such as principal component analysis, Markov chain [1], and stability of control systems [2–7]. Some researchers directly estimated the bounds of the maximum eigenvalues according to the nature of the nonnegative irreducible matrices [8–11]. Based on a geometric symmetrization of powers of matrix, Szyld [10] presented a sequence of lower bounds for the spectral radius. Dursun et al. [8] gave a sequence of upper bounds for maximal eigenvalue of a nonnegative matrix, which complemented results of [10]. Due to the complexity of the maximal eigenvalue problem, it is difficult to obtain exact solutions by means of estimation methods. Hence, some efficient algorithms for computing eigenpairs of nonnegative matrices have been proposed such as (improved) Arnoldi's algorithm [12, 13], (modified) diagonal transformation algorithm [14–17], and power algorithm [18–24]. Generally, (improved) Arnoldi’s method [12] is suitable for computing some selected eigenpairs of large asymmetrical matrices. The (modified) diagonal transformation algorithm is convergent for irreducible nonnegative matrices [15, 17]. Wood et al. [22, 23] proposed the convergent power method to calculate maximum eigenvalue of irreducible nonnegative matrices. For reducible matrices, the diagonal transformation algorithm and power algorithm may not be convergent [15, 22]. As we know, reducible matrices can be decomposed into some irreducible matrices. However, it is very costly to test the irreducibility and determine the partition for large-size matrices. Motivated by these observations, we want to establish a modified power algorithm and obtain the maximal eigenvalue of zero symmetric reducible nonnegative matrices without any partition.
This paper is organized as follows. In Section 2, we introduce important notation and recall fundamental results. In Section 3, we propose a modified power algorithm for computing the maximal eigenvalue of zero symmetric reducible nonnegative matrices. It is worth noting that the algorithm is convergent and does not require the partition for zero symmetric reducible nonnegative matrices. Numerical results are reported to demonstrate the effectiveness of the proposed algorithm. As an application, we can test the positive definiteness (positive semidefiniteness) of -matrices in Section 4.
2. Notation and Preliminaries
We start this section with some fundamental notion and properties of a nonnegative matrix, which are needed in the subsequent analysis.
Definition 1.  (i) A matrix  is called symmetric if (ii) A matrix  is called zero symmetric if 
Obviously, if a matrix  is symmetric, then  is zero symmetric. Conversely, the result may not hold.
Definition 2.  A matrix  is said to be reducible if there exists a permutation matrix  such thatwhere , and  is the zero matrix. If such a permutation matrix does not exist,  is called irreducible.
Definition 3.  Let  be a nonnegative matrix of dimension  and  with . A submatrix  of the matrix  with index set  is an -dimensional submatrix of  consisting of  elements defined as follows: where  is the number of elements of .
Definition 4.  We call  the set of all eigenvalues of . Assume . Then the spectral radius of  is denoted by 
If  is a nonnegative matrix, then  is the maximal eigenvalue.
Let  and . For any nonnegative column vector , we define  by Now, we give the power algorithm [22, 23] of irreducible nonnegative matrices as follows.
Algorithm 5.  ⁡
Step 1. Choose , , , and a unit matrix 
Step 2. Compute Step 3. If , stop. Output the maximal eigenvalue . Otherwise, set  and compute and go to Step 2.
For irreducible nonnegative matrices, we have the following convergent theorems.
Lemma 6 (Theorem 9 of [22]).  If  is an irreducible nonnegative matrix, then the matrix  is primitive, where  and  is a unit matrix.
Lemma 7 (Theorem 8 of [22]).   generated by Algorithm 5 converge to , if and only if the irreducible nonnegative matrix  is primitive.
3. Modified Power Algorithm for the Maximal Eigenvalue of Zero Symmetric Nonnegative Matrices
In this section, we give the modified power algorithm for computing the maximal eigenvalue of zero symmetric reducible nonnegative matrices without any partition. Furthermore, we demonstrate that this algorithm is convergent by Theorem 10. We state the algorithm as follows.
Algorithm 8.  ⁡
Step 1. Choose , and , , and 
Step 2. Compute Step 3. If , stop. Output the maximal eigenvalue . Otherwise, set  and compute and go to Step 2.
We show that the sequence  generated by Algorithm 8 is convergent and the limit is the maximal eigenvalue for any zero symmetric nonnegative matrices. In what follows, we give the following lemma.
Lemma 9.  Let  be a zero symmetric reducible nonnegative matrix. Then, we have the following results:
(I) There exists a partition  of  such that each induced matrix , , either is irreducible or is a zero matrix
(II) For , there exists an  permutation  such that (III) 
For a zero symmetric reducible nonnegative matrix , by Lemma 9, it holds that As we know, it is very costly to determine the partition for large-size reducible matrices. Fortunately, Algorithm 8 is not necessary to decompose the matrix and can compute the maximal eigenvalue of each block matrix.
Theorem 10.  Suppose that  is a zero symmetric reducible nonnegative matrix and the sequence  is generated by Algorithm 8. Then, .
Proof.  For the sequence , it holds that  is monotonously decreasing and bounded to the below. According to Algorithm 8, it is easy to get . Now, we show that  is a decreasing sequence. For any , by Algorithm 8, we haveSo, Since  is nonnegative, we get For , one has which means that  is a decreasing sequence. So, the sequence  is convergent. Hence, there exists  such that  when  Next, we show that . Without loss of generality, we assume that the matrix  is stated as follows: where each block  is square and either is primitive or is a  unit matrix. It follows from Lemma 9 that We divide the proof into two parts.
Case 1.  has a unique maximal eigenvalue. Without loss of generality, we assume Let  be the maximum value of matrix  generated by Algorithm 8. Let  be the maximum value and eigenvector of  and let  be the maximum eigenvalue of  Set Obviously,  Taking into account that each block  is primitive, from Lemma 7, we have Since  is primitive and , from Algorithm 8, we obtain For , when , we have and, furthermore,On the other hand, since  and , it holds that For , it follows from (24) that and, equivalently, It follows from  that From Lemma 7, we obtain Case 2.  has two maximal eigenvalues, that is, According to the above analysis, , when , we know For , we deduce  or  It follows from Lemma 7 that and, equivalently, When  has more than two maximal eigenvalues, we repeat the above process and can obtain the same convergent conclusions.
Remark 11.  We are able to obtain an eigenvector corresponding to  as follows. Since the sequence  is bounded, it has an accumulation point. Suppose that  is an accumulation point of . Define  bywhere  By Lemma 9,  is an eigenvector corresponding to  when .
In the following, we report numerical results for Algorithm 8. In order to show this algorithm is efficient, we compare it with improved Arnoldi's algorithm in [13] and the modified diagonal algorithm in [17]. For Algorithm 8, we stop the iteration as long as , . (Detailed information is in Tables 1 and 2.)
Table 1: Comparisons of Algorithm 8 and improved Arnoldi's algorithm in [13].
	

	 	 	Algorithm 8	Improved Arnoldi Algorithm
	

	n			
	

	600	2.5024e+02	0.032054	0.129545
	

	1200	9.9961e+02	0.092272	0.225116
	

	1800	1.4999e+03	0.186048	0.400719
	

	2400	2.0000e+03	0.295846	0.678812
	

	3000	2.5001e+03	0.459340	0.990805
	

	6000	3.9026e+03	1.248525	2.255433
	

	9000	5.0004e+03	3.812981	5.945294
	

	12000	7.4995e+03	7.414798	11.958425
	



Table 2: Comparisons of Algorithm 8 and the modified diagonal algorithm in [17].
	

	 	 	Algorithm 8	Modified diagonal algorithm
	

	n			
	

	500	5.0033e+02	0.030557	1.207591
	

	1000	1.0007e+03	0.089176	7.937777
	

	1500	1.4994e+03	0.154085	21.985712
	

	2000	2.0000e+03	0.263202	47.984927
	

	2500	2.4994e+03	0.415304	91.207171
	

	3000	3.0004e+03	0.594669	150.432479
	



All testing  matrices  are generated as follows: Give an integer  and generate randomly three positive matrices . Let , , and . Then, define , where , other elements being zero. Clearly,  is zero symmetric reducible. Algorithm 8 is implemented in MATLAB (R2011a) and all the numerical computations are conducted using an Intel 3.60 GHz computer with 8 GB of RAM. In Table 1, the CPU time is the average of  instances for each . From Table 1, we can see that both algorithms can find maximal eigenvalues of the testing matrices but Algorithm 8 uses much less CPU time than improved Arnoldi's algorithm in [13], especially for large-size matrices.
Considering that the matrix is nonnegative and irreducible for the modified diagonal algorithm in [17], all testing matrices  are positive matrices generated randomly in Table 2. Compared with the modified diagonal algorithm in [17], the Algorithm 8 has better execution efficiency in CPU time.
4. Applications
In this section, we give an application of Algorithm 8 for testing the positive definiteness (positive semidefiniteness) for large-size -matrices. We recall some definitions and notations about -matrices and -matrices.
Definition 12.  A matrix  is called a -matrix if it can be written as , where  is a unit matrix and  is a nonnegative matrix. Furthermore, if , then  is said to be an -matrix; if , then  is said to be a strong -matrix.
Let  and  Define a quadratic polynomial form  as follows: 
Definition 13.  (i)  is called positive definite if  for all .
(ii)  is called positive semidefinite if  for all 
As we know, for a symmetric matrix ,  is positive definite if and only if all of its eigenvalues are positive, and  is positive semidefinite if and only if all of its eigenvalues are nonnegative. For an asymmetric -matrix , we can do the following transformation to verify whether  is a positive definite (semidefinite) matrix.
For a -matrix , consider the following optimization problem: Clearly, we observe that  is positive definite if and only if , and  is positive semidefinite if and only if . Set Then,  can be written as , where  is a nonnegative matrix.
Given indices , where , let  be the set of all permutations of the indices . For any , let 
and define 
Hence,  is a symmetrized matrix of . For any , set Clearly, we have that . Therefore, 
From the above analysis, we can propose the following algorithm for testing the positive definiteness (positive semidefiniteness) of -matrices.
Algorithm 14.  ⁡
Step 1. Given a -matrix , compute If , then  is not positive semidefinite and stop. Otherwise, go to the next step.
Step 2. Let  and compute its symmetrized matrix . By Algorithm 8, compute the spectral radius .
Step 3. Let . If ,  is positive definite. If ,  is positive semidefinite. Otherwise, it is indefinite.
5. Conclusions
In this paper, a modified power algorithm was proposed for finding the maximal eigenvalue of zero symmetric nonnegative matrices. The modified power algorithm has the following important properties: (1) the convergence property is guaranteed for any zero symmetric nonnegative matrices and (2) it gets the maximal eigenvalue without any partition. Finally, we proposed Algorithm 14 to test the positive definiteness (positive semidefiniteness) of -matrices.
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