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A coupled Lattice Boltzmann-Volume Penalization (LBM-VP) with local mesh refinement is presented to simulate flows past
obstacles in this article. Based on the finite-difference LBM, the local mesh refinement is incorporated into the LBM to improve
computing efficiency. The volume penalization method is introduced into the LBM by an external forcing term. In the LBM-VP
method, the processes of interpolating velocities on the boundaries points and distributing the force density to the Eulerian points
near the boundaries are unnecessary. Performing the LBM-VP on a certain point, only the variables of this point are needed, which
means the whole procedure can be conducted parallelly. As a consequence, the whole computing efficiency can be improved. To
verify the presented method, flows past a single circular cylinder, a pair of cylinders in tandem arrangement, and a NACA-0012 are
investigated. A good agreement between the present results and the data in the previous literatures is achieved, which demonstrates
the accuracy and effectiveness of the present method to solve the flows past obstacle problems.

1. Introduction

Flows past obstacles are related to many applications, espe-
cially in marine and offshore engineering, aerospace engi-
neering, current or wind turbines, and so on. Numerical
studies and simulations of flows past obstacles are of great
use in these areas. As an alternative to the traditional Navier-
Stokes (N-S) equation solver, the Lattice Boltzmann method
(LBM) has been used widely in the simulations of flows past
obstacles [1].The reason why LBM is used so popularly is that
it has many noticeable advantages like simplicity in coding,
parallel computation, and explicit calculation. Just like in the
traditional N-S equation solvers, two main methods are used
in LBM when dealing with complex boundary: body-fitted
grid methods and immersed boundary methods (IBM).

For the body-fitted grid methods, generating a body-
fitted grid is an extremely expensive process when complex
boundaries are involved. Still, it is also difficult to create a
high quality body-fitted gridwith simple boundaries. Besides,
in the process of creating body-fitted grids, the structured
and unstructured grids are frequently used. However on the

structured and unstructured grids, the order of accuracy is
lower than that on theCartesian grids [2]. Comparedwith the
body-fitted grid methods, the immersed boundary methods,
which are proposed by Peskin [3], can be implemented easily.
In IBM, there is no need to create body-fitted grids. The flow
field is represented on a fixed Cartesian mesh on which the
N-S equations are solved. And the boundary is represented
by a Lagrangian grid. The variables on these two grids
are related by a discrete delta function interpolation. The
brightest spot of IBM is that it uses a restoring force to reflect
the boundary effect on the flow. So the N-S equations can
be solved without considering the boundaries, which means
that the N-S equations can be solved on the whole Cartesian
mesh. Feng and Michaelides [4] incorporated the IBM into
the LBM firstly to solve fluid particles interaction problems.
As mentioned above, the boundary effect on the flows is
reflected by restoring force. However, the nonslip boundary
conditions are not always guaranteed. As a result, in the
simulations of flows past boundaries some streamlines may
penetrate the solid body boundary.Wu and Shu [5] proposed
a new version of IBM, in which the velocity correction near
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the boundary is considered as unknown and is computed
implicitly to guarantee the nonslip boundary conditions. In
the IBM, a Vandermonde matrix should be recomputed at
every time step, whichmeansmore computing time is needed
[2].

Recently, Benamour et al. [6] incorporated another type
of IBM, Volume Penalization (VP), which is firstly proposed
by Arquis and Caltagirone [7], into LBM. In the VP, the solid
boundary is considered as a porous medium with very small
permeability. By using a mask function, the solid boundaries
are modeled on the Euler grids. So the Lagrangian grids of
the VP are just part of the Euler grids which are marked
by a mask function. This method has been successfully
used by several researchers to simulate and study flows past
obstacles [8–10]. By the forcing term proposed by Guo et al.
[11], the force induced by boundaries in the VP method is
incorporated into LBM. Compared with the LBM-IBM, there
is no need to use a delta function to interpolate the velocity at
boundaries in the LBM-VP. Also, the process of distributing
the force density into the Eulerian points near the boundaries
is unnecessary. Performing the VP procedure on a certain
Lagrangian point just needs the variables of this certain Euler
point, which means that the VP can be performed parallelly.
Considering the parallelizability of the LBM, the whole LBM-
VP calculating procedure can be conducted parallelly.

For the standard LBM, the whole calculation process
consists of two subprocesses: the collision and the streaming.
In the streaming subprocess, particles move from one mesh
point to its neighbor points within a time step. So the
calculationmesh is limited to uniformmesh, which limits the
application of the LBM greatly. To eliminate this disadvan-
tage, many researchers have proposed several improvements
to implement the LBM on the nonuniform mesh [12–16] and
adaptive mesh [17–19]. In this article, the finite-difference
LBM, proposed by Lee and Lin [20], is adopted to perform
the LBM-VP on the nonuniform grids aiming to improve
the computing efficiency. One of the highlights of this finite-
difference LBM is that, with the help of using a special finite-
difference Lattice Boltzmann scheme, all of the blocks at
different refinement levels can be advanced in time with the
same time step. So it is very easy to conduct the LBM on the
nonuniform mesh, especially when the VP or other IBM are
incorporated into LBM.

In this article, to validate the proposed LBM-VPwith local
mesh refinement and its computing efficiency, flows past a
circular cylinder, flows past a pair of circular cylinders in
tandem arrangement, and flows past the NACA-0012 airfoil
with 10∘ angle of attack (AOA) and 15∘ AOA are studied.
And the results are compared with available data in previous
literatures. The computing time of the LBM-VP performed
on nonuniformmesh is also compared with that of the LBM-
VP performed on uniform mesh to show the computing
efficiency. The rest of this paper is arranged as follows. In
Section 2, the volume penalizationmethod, the Lattice Boltz-
mann method, and the local mesh refinement are described.
Also the whole computing procedure is given in this section.
The numerical experiments and the comparison of results are
given in Section 3. In Section 4, some concluding remarks and
recommendations for the future work are presented.
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Figure 1: The computational domain of obstacle and fluid.

2. Mathematical and Numerical Formulation

In this section, the fluid-solid interaction (FSI) technique
based on the volume penalization method is briefly intro-
duced firstly. Then the incorporation of volume penalization
method into the Lattice Boltzmann method and the LMR
technique used in the Lattice Boltzmann are introduced in
detail. Finally, a whole computing procedure is given.

2.1. Brief Review of the Volume PenalizationMethod and LBM.
Let us consider the fluid-structure interaction (FSI) between
incompressible viscous fluid and rigid obstacles in the fluid.
The motion of the fluid is governed by the incompressible
Navier-Stokes equations:

𝜕u𝜕𝑡 + u ⋅ ∇u = −1𝜌∇𝑝 + 𝜇∇2u + F𝑏, (1)

∇ ⋅ u = 0, (2)

where u is the velocity of the fluid, 𝜇 is the dynamic viscosity,𝜌 is the density, 𝑝 is the pressure, and F𝑏 is the body force.The
no-slip boundary conditions on the boundary of the obstacle
domainΩ𝑂 in the fluids can be described as

u|𝜕Ω𝑂 = U𝑂, (3)

where 𝜕Ω𝑂 is the boundary of the obstacles and U𝑂 is the
velocity of the obstacles. For problems involving only fixed
obstacles are considered in the presentmethod, the velocity of
the obstacles U𝑂 is equal to zero. The computational domain
is shown in Figure 1. Ω𝐹 is the fluid domain. The union of
these two domainsΩ = Ω𝐹 ∪ Ω𝑂 is the entire domain.

TheDirichlet problem (1)–(3) can be solved by the volume
penalization method [8, 21]. In the volume penalization
method, the solid obstacles are modeled as porous media. By
adding a penalization term on the velocity, the momentum
equation (1) is modified as

𝜕u𝜕𝑡 + u ⋅ ∇u = −1𝜌∇𝑝 + 𝜇∇2u + F𝑏

− 𝜒 (x, 𝑡) 𝜌𝜂 (u − U𝑂) ,
(4)

where

𝜒 (x, 𝑡) = {{{
1, 𝑥 ∈ Ω𝑂,
0, other, (5)
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is the mask function used to describe the obstacles’ geometry
and 𝜂 ≪ 1 is the penalization parameter. It can be seen
that there is no Dirichlet boundary conditions in (4). The
solution of the penalized N-S equation (4) tends towards the
exact solution of N-S equation imposing no-slip boundary
conditions with 𝜂 → 0 [8, 21, 22]. The hydrodynamic forces
acting on the fixed obstacle can be obtained through

F𝑂 = lim
𝜂→0

∫
Ω

𝜒
𝜂 (u − U𝑂) 𝑑Ω

= lim
𝜂→0

∫
Ω𝑂

𝜒𝜌
𝜂 (u − U𝑂) 𝑑Ω.

(6)

The N-S equation can be recovered by the Lattice Boltz-
mann equation through the multiscale Chapman-Enskog
analysis.The discrete Boltzmann equation (DBE)with single-
relaxation time (SRT) without a forcing term [23] can be
written as

𝜕𝑓𝛼𝜕𝑡 + e𝛼 ⋅ ∇𝑓𝛼 = −𝑓𝑎 − 𝑓
eq
𝛼𝜆 , (7)

in which 𝑓𝛼 is the particle distribution function; 𝑡 is the
time; e𝛼 is the particle velocity in the 𝛼th direction; 𝑓eq

𝛼 is
the equilibrium distribution function, and 𝜆 is the relaxation
parameter. For the nine-velocity lattice in two dimensions
(D2Q9), the discrete velocity vectors can be defined as

e𝛼

=
{{{{{{{{{{{

(0, 0) , 𝛼 = 0,
(cos 𝜃𝛼, sin 𝜃𝑎) , 𝜃𝑎 = (𝛼 − 1) 𝜋2 , 𝛼 = 1–4,
√2 (cos 𝜃𝛼, sin 𝜃𝑎) , 𝜃𝑎 = (2𝛼 − 9) 𝜋4 , 𝛼 = 5–8,

(8)

and the equilibriumdistribution function can be expressed as

𝑓eq
𝛼 = 𝜌𝑤𝛼 [1 + e𝛼 ⋅ u𝑐2𝑠 + (e𝑎 ⋅ u)2 − 𝑐2𝑠 |u|22𝑐4𝑠 ] , (9)

in which 𝑐𝑠 = 1/√3 is the sonic speed and the weight factors
are 𝑤0 = 4/9, 𝑤1–4 = 1/9, and 𝑤5–8 = 1/36. The macroscopic
density, 𝜌, and velocity, u, are defined as follows:

𝜌 = ∑
𝛼

𝑓𝛼, (10)

𝜌u = ∑
𝛼

e𝛼𝑓𝑎. (11)

Equation (7) can be split into two substeps [20]: collision:

𝑔𝛼 = 𝑓𝛼 − 𝑓𝛼 − 𝑓eq
𝛼𝜏 + 0.5 , (12)

and streaming:

𝑔𝛼 (x, 𝑡 + Δ𝑡) = 𝑔𝛼 (x − Δx𝛼, 𝑡) , (13)

where 𝜏 is the single-relaxation parameter and 𝜏 is related to
the kinematic viscosity 𝜐 through the equation 𝜏 = 𝜐/(𝑐2𝑠 Δ𝑡).

2.2. The Incorporation of VP into LBM. The added penaliza-
tion term on the velocity in the modified N-S equation can
been regarded as an external force density,

FVP = −𝜒𝜌𝜂 (u − U𝑂) , (14)

acting on the fluid phase. Similarly, the DBE should be also
modified by adding an external forcing term. In our article,
the formofDBEwith an external force termproposed byGuo
et al. [11] is adopted. And the external force term is introduced
into the collision substep.The collision substep is modified as

𝑔𝛼 = 𝑓𝛼 − 𝑓𝛼 − 𝑓eq
𝛼𝜏 + 0.5 + 𝐹𝛼 ⋅ Δ𝑡, (15)

𝐹𝛼 = (1 − 12𝜆)𝑤𝛼 (e𝛼 − u𝑐2𝑠 + e𝛼 ⋅ u𝑐4𝑠 ⋅ e𝛼) ⋅ FVP, (16)

𝜌u = ∑
𝛼

e𝛼𝑓𝛼 + 12FVP ⋅ Δ𝑡. (17)

From (17), the fluid velocity is made up by two parts
[5]. The first part is contributed by the density distribution
function represented by the intermediate velocity u∗. And
the second part is contributed by the force density FVP
represented by 𝛿u. The u∗ can be written as

𝜌u∗ = ∑
𝛼

e𝛼𝑓𝛼, (18)

and the 𝛿u as

𝜌𝛿u = 1
2
FVPΔt. (19)

So (17) can be written as

u = u∗ + 𝛿u. (20)

Substituting (20) into (14), the force density can be
expressed as

FVP = −𝜒𝜌𝜂 (u∗ + 𝛿u − U𝑂) . (21)

Then substituting (19) into (21), the second part of fluid
velocity can be obtained as

𝛿u = 𝜒 (U𝑂 − u∗)
2𝜂/Δ𝑡 + 𝜒 , (22)

and the force density can be expressed as

FVP = 2𝜌𝜒 (U𝑂 − u∗)
2𝜂 + 𝜒Δ𝑡 . (23)

2.3. The Local Mesh Refinement Technique in LBM. As pro-
posed in [20], the streaming substep (13) is solved by using
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Figure 2: Grid structure with difference refinement levels.

a Lax-Wendroff scheme with second-order accuracy in both
time and space. The streaming substep can be rewritten as

𝑔𝛼 (x, 𝑡 + Δ𝑡) = 𝜎 (1 + 𝜎)2 𝑔𝛼 (x − Δx𝑎, 𝑡)
+ (1 − 𝜎2) 𝑔𝛼 (x, 𝑡)
− 𝜎 (1 − 𝜎)2 𝑔𝛼 (x + Δx𝛼, 𝑡) ,

(24)

where 𝜎 = |e𝛼|Δ𝑡/|Δx𝛼| is the Courant-Friedrichs-Lewy
(CFL) number;Δ𝑡 is the time step andΔx𝛼 is the grid spacing
in the direction of e𝛼. It is can be seen in (24) that when
the CFL number is equal to 1 (𝜎 = 1) the streaming process
becomes equivalent to the perfect shift 𝑔𝛼(x, 𝑡 + Δ𝑡) = 𝑔𝛼(x −Δx𝛼, 𝑡), that is, (13). When the CFL number is less than 1
(𝜎 < 1), the streaming substep is solved with second-order
accuracy in both time and space. It should also be pointed
out that when the time step Δ𝑡 is defined, the CFL number
changes only due to the grid spacing.

Without loss of generality, a local fine-grid domain which
is surrounded by a coarse-grid is considered, as shown in
Figure 2. For the collision substep’s localization feature, there
is no need to transfer information between two different
refinement levels grids. However, in the streaming substep,
the transfer of information is required. To conduct this
information transfer, some hanging nodes are needed. These
hanging nodes can be classified into three types: in-line
hanging node (ILHN), out-line hanging node (OLHN), and
corner hanging node (CHN). The in-line hanging nodes will
be calculated firstly. By using an interpolation scheme, the

density distribution function values of in-line hanging node
3 can be calculated as

𝑓𝛼 (x = x3, 𝑡) = 38𝑓𝛼 (x = x𝑎, 𝑡) + 68𝑓𝛼 (x = x𝐵, 𝑡)
− 18𝑓𝛼 (x = x𝐴, 𝑡) .

(25)

Similarly, all other in-line hanging nodes can be obtained.
Then the out-line hanging node 4 can be calculated as

𝑓𝛼 (x = x4, 𝑡) = 38𝑓𝛼 (x = x5, 𝑡) + 68𝑓𝛼 (x = x3, 𝑡)
− 18𝑓𝛼 (x = x1, 𝑡) .

(26)

After all other out-line hanging nodes are calculated, sim-
ilarly, the out-line hanging node 2 is gotten. The corner
hanging node 2 can be calculated:

𝑓𝛼 (x = x2, 𝑡) = 12 {38𝑓𝛼 (x = x1, 𝑡) + 68𝑓𝛼 (x = x3, 𝑡)
− 18𝑓𝛼 (x = x4, 𝑡)} + 12 {38𝑓𝛼 (x = x7, 𝑡)
+ 68𝑓𝛼 (x = x8, 𝑡) − 18𝑓𝛼 (x = x10, 𝑡)} .

(27)

When density distribution function values at all hanging
nodes are obtained, the streaming substep can be conducted.

In summary, the general steps of the algorithm are as
follows.

(1) Design the computational grid, and arrange initial
values on the computational grid.

(2) Use (15) to obtain the density distribution function
after the collision substep of the 𝑡 = 𝑡𝑛 step on the
points of different refinement levels (initially setting𝐹𝛼 = 0).

(3) Use (25), (26), and (27) to obtain the density distribu-
tion function on the hanging nodes.

(4) Use (24) to obtain the density distribution function
on the nodes of computational grid.

(5) Use (10) and (18) to obtain the macroscopic density
and intermediate velocity.

(6) Use (22) and (23) to obtain the velocity corrections
and the force density.

(7) Correct the fluid velocity using (20) and compute the
equilibrium distribution function using (9).

(8) Repeat step (2) to step (7) until the convergence is
reached.

3. Numerical Results and Discussions

To verify the present Lattice Boltzmann-Volume Penalization
with local mesh refinement, test cases involving incom-
pressible viscous flows past single fixed circular cylinder are
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chosen as numerical experiments. Then flows past a pair
of circular cylinders in tandem arrangement and flows past
NACA-0012 airfoil with 10∘ AOAand 15∘ AOAare conducted
to validate the presentmethod for complex boundaries. Some
existing results are chosen as references for comparison. The
computational efficiency is given as well.

In the following numerical experiments, the Reynolds
number (Re) is defined as

Re = 𝑈∞𝐷𝜐 , (28)

where𝑈∞ is the free stream velocity and𝐷 is the diameter of
the cylinder and 𝜐 is the kinematic viscosity of the fluid. The
drag coefficient of cylinder is defined as

𝐶𝑑 = 2𝐹𝐷𝜌𝑈2∞𝐷, (29)

where 𝐹𝐷 is the drag force. The lift coefficient is defined as

𝐶𝑙 = 2𝐹𝐿𝜌𝑈2∞𝐷, (30)

where 𝐹𝐿 is the lift force. For the unsteady flow, the Strouhal
number is defined as

𝑆𝑡 = 𝑓𝑞𝐷𝑈∞ , (31)

where 𝑓𝑞 is the vortex shedding frequency.
3.1. Flow Past a Fixed Cylinder. In the experiments of this
article, the density 𝜌 of the fluid is set as 1.0. The free stream
velocity 𝑈∞ is 0.1. The diameter 𝐷 of the cylinder is 40.
The numerical simulations occupy a rectangle domain with
the height 𝐻 of 1024 and the length 𝐿 of 2048. The center
of the fixed cylinder is located at (𝐻/2,𝐻/2), as shown in
Figure 3. The computational meshes for these experiments
are shown in Figure 4. For the cases of Re = 20 and40, the flows will reach a steady state. Behind the fixed
cylinder, a pair of stationary recirculating eddies will develop.
With the Reynolds number increasing, the end of the wake
will also move farther away from the rearmost point of the
cylinder.The comparison of drag coefficient𝐶𝑑, length of the
recirculation region 𝐿 (scaled by 𝐷/2), and separation angle𝜃𝑠 with the results of previous literatures is shown in Table 1.
The contour plots of velocities and streamlines are shown in
Figure 5.

From Table 1, the present numerical results agree well
with those in the previous studies. It can be seen in Figure 5
that the region of the recirculation becomes bigger when the
Reynolds number grows from 20 to 40. These mean that the
computational meshes set up for the cases of Re = 20, 40 are
good enough to get correct results.

For the cases of Re = 100 and 200, the flows will reach
a unsteady state. A Kármán vortex street will develop behind
the cylinder. Also, a lift force will act on the cylinder. With
the augmentation of Reynolds number, the vortices value and
the area of vortices behind the cylinder will increase. The

u = 0

 = 0

u = 0

 = 0H = 25.6D

u = 0,  = 0

u = 0,  = 0

L = 51.2D

D

Figure 3: Computational domain and boundary conditions for
flows past a fixed cylinder.

Table 1: Drag coefficient, length of bubbles, and separation angle for
flows past a cylinder at Re = 20 and Re = 40.
Case References 𝐶𝑑 𝐿 𝑠 𝜃𝑠

Re = 20
Niu et al. [24] 2.144 0.945 42.9∘

Shukla et al. [25] 2.07 0.92 43.2∘
Wu and Shu [5] 2.091 0.93 -

Present uniform-mesh 2.11 0.912 42.9∘
Present local-refined-mesh 2.11 0.913 42.9∘

Re = 40
Niu et al. [24] 1.589 2.26 53.86∘

Shukla et al. [25] 1.55 2.34 52.7∘
Wu and Shu [5] 1.539 2.23 -

Present uniform-mesh 1.57 2.23 52.8∘
Present local-refined-mesh 1.58 2.24 52.8∘

drag coefficient, the lift coefficient, and Strouhal number are
compared with those of previous studies in Table 2. From
Table 2, it can be found that a good agreement is gotten
between the presents results and those in previous studies.
The evolution of drag and lift coefficients for the cases of
Re = 100 and 200 are given in Figure 6, and the streamlines
and velocity contours are shown in Figure 7.

3.2. Flow Past Two Tandem Arranged Cylinders. To verify
the capability of the present method to simulate complex
flows, flows past a pair of circular cylinders tandem arranged,
which have been studied by many researchers [28–31], are
chosen as experiments. Compared with the flows past a
single circular cylinder, the flows past a pair of cylinders
tandem arranged aremore complicated. For this problem, the
distance between these two cylinders represented by 𝐿𝑔/𝐷, as
shown in Figure 8, plays an extremely important role in the
development of vertex structures of the flows, as well as the
evolution of drag and lift coefficients. In Figure 8, the com-
putational domain and boundary conditions are presented,
and the computational meshes are shown in Figure 9. For
the presented experiments, the Reynolds number Re is set
as 200. For different 𝐿𝑔/𝐷 experiments conducted, 𝐿𝑔/𝐷 =1.5, 2.0, 3.0, 4.0.

From Figure 10, it can be seen that when 𝐿𝑔/𝐷 is
set as 1.5, 2.0, 3.0, vortex shedding develops behind the
downstream cylinder. But between the upstream cylinder
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Figure 4: Computational meshes for flows past a cylinder.
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(b) Streamlines and velocity contours for Re = 40

Figure 5: Steady flow past a cylinder at Re = 20 and Re = 40.

Table 2: Drag coefficient, length of bubbles, and separation angle for flows past a cylinder at Re = 100 and Re = 200.
Case References 𝐶𝑑 𝐶𝑙 𝑆𝑡

Re = 100
Benson et al. [26] 1.46 ± 0.01 ±0.38 0.17
Ding et al. [27] 1.325 ± 0.008 ±0.28 0.164
Wu and Shu [5] 1.334 ± 0.012 ±0.37 0.163

Present uniform-mesh 1.361 ± 0.099 ±0.345 0.166
Present local-refined-mesh 1.361 ± 0.099 ±0.346 0.166

Re = 200
Benson et al. [26] 1.45 ± 0.04 ±0.65 0.193
Ding et al. [27] 1.327 ± 0.045 ±0.60 0.196
Wu and Shu [5] 1.43 ± 0.051 ±0.75 0.195

Present uniform-mesh 1.337 ± 0.046 ±0.688 0.196
Present local-refined-mesh 1.338 ± 0.045 ±0.688 0.196
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Figure 6: Evolution of drag and lift coefficients at Re = 100 and Re = 200.
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Figure 7: Unsteady flow past a cylinder at Re = 100 and Re = 200.
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Figure 8: Computational domain and boundary conditions for
flows past two tandem arranged cylinders.

and the downstream cylinder, there is no vortex shedding.
For these three experiments, the drag coefficients of the
upstream cylinders are positive, as shown in Figure 11, but
the downstream cylinders’ are negative. The drag coefficient
amplitudes of both upstream and downstream cylinders
reduced further with the augment of the distance between
two cylinders. When 𝐿𝑔/𝐷 turns to 4.0, great changes
happen. The vortex shedding develops not only behind the
downstream cylinder but also between the upstream cylinder
and the downstream cylinder. The drag coefficient becomes
positive. For all the four experiments, the drag coefficients
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Figure 9: Computational meshes for flows past a pair of circular cylinders in tandem arrangement.
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Figure 10: Streamlines and velocity contours for flows past two cylinders in tandem arrangement.

of upstream and downstream cylinders oscillate at the same
frequency, which means the Strouhal numbers are equal.The
comparison of the present results with the data in previous
literatures is represented in Table 3, from which a good
agreement can be seen.

3.3. Flow Past a NACA-0012 Airfoil. For the practical appli-
cation of the LBM-VP with local mesh refinement, the flows
past a NACA-0012 airfoil at Re = 500 with AOA = 0∘ and
at Re = 1000 with AOA = 15∘ are selected for numerical
experiments. Just like in the previous numerical experiments,
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Figure 11: Evolution of drag coefficients of two cylinders in tandem arrangement.

Table 3: Drag coefficient and Strouhal number for flows past a pair of circular cylinders in tandem arrangement at Re = 200.
𝐿𝑔/𝐷 1.5 2.0 3.0 4.0

Upstream cylinder

Meneghini et al. [28] 1.06 1.03 1.00 1.18
Hu et al. [29] 1.158 1.126 1.080 1.355

Present uniform-mesh 1.120 1.107 1.050 1.338
Present local-refined-mesh 1.120 1.108 1.049 1.339

Downstream cylinder

Meneghini et al. [28] −0.18 −0.17 −0.08 0.38
Hu et al. [29] −0.197 −0.209 −0.140 0.582

Present uniform-mesh −0.206 −0.216 −0.150 0.545
Present local-refined-mesh −0.206 −0.217 −0.149 0.545
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Table 4: Comparisons of the computing time per step and number of the used points.

Case study Uniform-mesh Local-refined-mesh Speedup

Time
Flows past a single circular cylinder 6.50 0.624 10.41
Flows past a pair of circular cylinders 6.50 0.636 10.22

Flows past a NACA-0012 airfoil 6.50 0.640 10.16
Number of the used points

Flows past a single circular cylinder 1024 × 2048 141601 14.81
Flows past a pair of circular cylinders 1024 × 2048 156121 13.43

Flows past a NACA-0012 airfoil 1024 × 2048 162791 12.88
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Figure 12: Streamline and velocity contours for flows past a NACA-
0012 airfoil at Re = 500 with AOA = 0∘.
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Figure 13: Streamline and velocity contours for flows past a NACA-
0012 airfoil at Re = 1000 with AOA = 15∘.

the fluid density is set as 𝜌 = 1.0 and the free stream velocity
is 0.1. The chord of the airfoil is 320.

The streamlines and the velocity contours for flows past
the NACA-0012 airfoil are shown in Figures 12 and 13. The
flow behind the NACA-0012 airfoil at Re = 500 with
zero angle of attack will reach a steady state. And the drag
coefficient of the present experiment is 0.179, which agrees
well with the results given by Lockard et al. [32] with 0.1762
and Wu and Shu [5] with 0.1759. For the case of Re = 1000

with AOA = 15∘, the flow becomes unsteady, and a lift force
will act on the airfoil. In the present experiment, the Strouhal
number for the drag coefficient is 0.72, while the value given
by Suzuki et al. [33] is 0.73 and that given by Kurtulus [34]
is 0.712. Obviously, a good agreement is gotten between our
result and those in the previous literatures. From the two
experiments, it can be concluded that the present LBM-VP
with local mesh refinement can solve the practical problems
with complex boundaries.

To demonstrate the advantage of the LBM-VP with local
mesh refinement, we compare the computing time and the
number of the used mesh points of the LBM-VP on the
local refined mesh with those on the uniform mesh code.
All the experiments are conducted by eight threads on a
PC with Intel(R) Core(TM) i7-4790K 4.00GHz CPU and
16.0GB RAM. In Table 4, the computing time per step and
the number of the used points of the LBM-VP on local refined
mesh are compared with the uniform mesh code for all the
experiments in this article. For all the experiments, it can be
seen that the local mesh refinement technique used in the
LBM-VP can reduce the computing time per step.

4. Conclusions

In this article, the coupled Lattice Boltzmann-Volume penal-
ization method (LBM-VP) with local mesh refinement is
presented to simulate flows past obstacles. Compared to
the direct-forcing IBM and the velocity IBM, there is no
need to use a delta function to interpolate the velocity
at boundaries and to distribute the force density into the
Eulerian points near the boundaries. On a certain Lagrangian
point, only the variables of this certain Euler point are needed
to perform the VP procedure, which means that the LBM-VP
can be conducted parallelly. By incorporating the local mesh
refinement technique based on the finite-difference LBM,
the LBM-VP are performed on the local refined mesh. As
a result, the number of used mesh points is reduced, thus
improving the computing efficiency. To justify the present
LBM-VP with local mesh refinement, flows past a single
circular cylinder with Re = 20, 40, 100, 200 are carried out
firstly. Then slightly more complex experiments, flows past a
pair of circular cylinders in tandem arrangement, are studied.
For the practical application of the present method, the flows
past a NACA-0012 airfoil at Re = 500 with AOA = 0∘ and at
Re = 1000 with AOA = 15∘ are chosen as experiments.

By comparing the numerical experiment results with
the data in previous literatures, our simulations show good
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agreementwith available data. And the localmesh refinement
technique reduces the number of used points of the LBM-
VP. As a result, the computing time of per step is reduced,
meaning that the computing efficiency improved. Although
the current method is developed in 2D, it is easy to extend it
to 3D by replacing D2Q9 lattice with D3Q15 or D3Q19.
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