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We test the relevance of a model-based approach for sizing and optimizing complex systems. Classically a model-based approach is
characterizedby a clear partition between the problem description and the solving process. In the case of a design problem, we show
that the sizing task could be systematically characterized and therefore could lead to a declarative model combining both system
description and design requirements. Once translated into a constraint satisfaction problem, the resulting model can be solved
with interval constraint programming methods and algorithms. Our first contribution to this approach is to precisely characterize
the sizing task in design. The resulting terminology enables us to easily and systematically express the problem as a constraint
satisfaction problem (CSP) which combines in the same model the system description and the design requirements.We have tested
the approach on the optimal sizing problem of a power transmission system. Previous authors have described this scalable case
study. They provide a mathematical formulation of the problem and solve it with an evolutionary algorithm. Starting from their
description, we apply our methodology to model the problem as a CSP and then solve it with interval constraint programming
algorithms. Our solutions are more adequate both in computational time and in optimization results than those published in the
literature on the same problem. Moreover the declarative nature of constraint programming makes modifications or extensions
easier than with evolutionary programming. The explanation of these results is our second contribution to the approach. However
some important modelling issues remain to address in order to capture more and more complex system specifications. Further
research is presented at the end of this paper.

1. Introduction

Following Pahl and Beitz [1], the design process can be
divided into three main phases: conceptual design, embod-
iment design, and detailed design.

In this paper, we will focus on the embodiment design
phase which is the first phase requiring calculus. More pre-
cisely, we intend to split the embodiment design phase into
two subphases that will be called architectural generation and
system sizing.

Broadly speaking, architectural generation fixes the struc-
ture of the system, i.e., the type and number of components
used in the system building. System sizing focuses on setting
the value of each physical and technological parameter.

Nowadays, virtually all products can be considered as sys-
tems. They are made up of components which are connected
together and some components are themselves subsystems.

The resulting system has to fulfil the requirements deriv-
ing from the conceptual design phase such as physical perfor-
mance. In the case of technical products, many other types
of requirements matter like technological, normative, or
even legal constraints.

The current paper lays emphasis on the use of computa-
tional methods for modelling technological system and for
solving the system sizing problem.

This paper revolves around four chapters. The first offers
to apply a model-based approach for system sizing. The
second explains the scientific paradigm used to support our
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model-based system sizing method. This paradigm is known
as constraint solving.The third presents the tool used to carry
out this study and the last chapter is dedicated to the scalable
case study of the sizing problem of a power transmission
system.

2. System Sizing with a Model-Based Approach

In this chapter, we will point up a particular design phase
which is commonly called “sizing”. Putting it in informal
terms, sizing a system is aimed at fixing its design in order to
produce performances which will both fulfil the physical and
technological constraints and meet the customer’s require-
ments.

Over the last years, many authors have pointed out that
the art of design can be considered as a kind of problem
solving task [2] which relies heavily on all kinds of knowledge.
In this perspective, the field has been widely investigated by
Artificial Intelligence researchers. A lot of various reasoning
techniques have been experimented on design applications
such as rule-based, case-based, or model-based reasoning
[3, 4].

Broadly speaking, rule-based systems better suit expert
knowledge while case-based systems are more suitable to
experimental knowledge and model-based reasoning suit
better with knowledge of the physical world. In the following,
we will narrow down the study to engineering systems. These
systems are artefacts which follow the laws of the physical
world; therefore using a model-based reasoning approach for
designing them, particularly for sizing them, stands to reason.

A model-based reasoning approach puts emphasis on
the development of an abstract model which represents the
system. This model offers a basis for any kind of reasoning
underlying the system; the reasoning task is processed by
an “engine” dedicated to intended task (planning, diagnosis,
sizing, etc.).This engine combines the model knowledge with
additional data to derive the results required.

Many kinds of modelsmay be used.Their choice depends
both on the application domain and on the intended task.
Previous works in various technical fields [5, 6] helped us to
set some minimal characteristics of the models which are to
be used for sizing and optimizing engineering systems.

Firstly these models must be quantitative because most
parameters are continuous in engineering. Secondly, the
appropriate behaviour of the targeted system has to be de-
scribed. It may be (behaviour over time) dynamic behaviour
or steady-state behaviour. Practically steady-state models are
already of a great interest in design especially in preliminary
design; hence we will limit our study to these hereafter.
Thirdly we will set out some technological or regulation con-
straints applying to the system. Finally we will lay down the
customer requirements that the system is required to fulfil.
To summarize we need to build a quantitative model of the
problem to solve (i.e., sizing or optimizing). This problem
model is the combination of the steady-state model of the
targeted system, the technological and regulation constraints
model, and the requirements model.

2.1. Sizing Model Specification. Before giving further details
about the structure of sizing models, let us now introduce

Table 1: Typology of variables.

Type\Value Known Unknown
design Constant Design Variable
physical Constant Behavioural Variable
objective - Performance Indicator

some terminology that will be used further down. Many
researchers in preliminary design [7, 8] represent the knowl-
edge related to the product to be designed by using a set of
typed parameters. It stands to reason that apart from types,
parameters can be characterized by many other attributes
such as dimension, unit, type of value, range of value, and so
forth and some of them, especially dimension and unit, are
very important design modelling characteristics but they are
beyond the scope of the present paper. Focusing on the type,
we observe that the number, name, and above all the semantic
of the considered types depend on the authors. X. Fischer
in his Ph.D. Thesis [9] makes a typical proposal based on 3
kinds of parameters: the “design parameters”, the “physical
parameters”, and the “objective parameters”. Their semantic
is informally defined as follows. The “design parameters” are
related to the structural description of the system and its
conceptual definition. The “physical parameters” are related
to the physical behaviour of the system. The “objective
parameters” are performance indicators which enable one to
validate the quality of the design. This proposal is completed
by an additional classification of parameters in knownparam-
eters (i.e., with a value) and unknown parameters.

In a model-based approach, such a product description
is destined to be translated into a mathematical model. We
propose to refine the above model as follows by considering
4 types of elementary concepts:

(i) Unknown design parameters
(ii) Unknown physical parameters
(iii) Objective parameters
(iv) Known parameters
Known parameters are translated into any kind of con-

stant; in an obvious way, unknown design parameters are
translated into Design Variables and unknown physical
parameters are translated into Behavioural Variables.

Objective parameters will not be translated into variables
but in criteria functions of some design or Behavioural
Variables which will be called performance indicators.

Finally Table 1 summarizes the new classification.
Let us give some examples in the field of mechanics.

Assuming we have to design a mechanical product,
(i) geometrical dimensions or material characteristics

will be expressed with DVs;
(ii) forces, movements, and energies will be expressed

with BVs;
(iii) total weight and whole cost will be expressed with PIs.
Moreover, sizing models are not only made up of con-

stants and variables but also of relations. Many relations of
different nature connect both DVs and PVs through a set of
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(i) equations expressing the laws of physics (e.g., conser-
vation laws);

(ii) inequalities expressing technological limitations (e.g.,
elastic limit) or regulation constraints (e.g., “min-
imum of two independent power sources in the
system”);

(iii) inequalities or optimization criteria expressing cus-
tomer requirements (e.g., range min, mass minimiza-
tion).

Finally a sizingmodel is a set of equations and inequalities
linking together Design Variables and Behavioural Variables
as it presents some significant characteristics:

(1) the set of equations is usually nonlinear;
(2) the number of inequalities can be greater than the

number of equations;
(3) the model combines continuous and discrete vari-

ables.

Indeed, most of the equations which are part of the model
express physics laws which are nonlinear; therefore the whole
model itself is usually nonlinear. In engineering domains, the
number of technological limitations or constraints of confor-
mity to standards is ever increasing. In many models, some
Design Variables related to technological parameters are
discrete either intrinsically (e.g., the number of teeth of a gear
wheel) or because of standards (e.g., normalized screw dia-
meters).

2.2. Sizing Task Features. Following the previous definition of
DesignVariables andBehaviouralVariables, sizing the system
consists in finding an assignment of Design Variables and
Behavioural Variables such that

(1) the assignment of Design Variables determines the
structure of the system;

(2) the assignment of Behavioural Variables determines
the behaviour of the system;

(3) the whole assignment is consistent with all the ele-
ments of the sizing Model.

In classical engineering fields, most system behaviours are
deterministic and ruled by a mathematical system of “n”
behavioural equations and “n” unknown variables. These
variables correspond to the Behavioural Variables in our ter-
minology. Therefore finding the behaviour consists in solv-
ing a square system of equations. A number of more or
less sophisticated mathematical methods are dedicated to
this solving problem which remains intrinsically difficult
especially in the presence of nonlinear equations. The task
addressing the rendering of behaviour is a “simulation” task.
This terminology mainly refers to dynamic behaviour that
will also use it hereafter for stationary behaviour.

Simulation can be and is effectively used in design,
especially during the detailed design phase in order to check
on the appropriate behaviour of the final product with
respect to the requirements. However in earlier design phases

(preliminary design, embodiment design) an important part
of the problem is to determine the system structure of the
future product itself.The task addressing this point is a sizing
task. For a sizing task the number of behavioural equations
remains the same but the number of unknown variables
increases with the addition of some Design Variables to as-
sign. Hence, we no longer obtain a square system but an un-
derconstrained system of equations to solve. Therefore sizing
a system is generally much more difficult than simulating it!

Since the system is underconstrained, many solutions to
the problem can be found out. Therefore it is worthwhile to
use optimization criteria in order to come up with the
ultimate solution amongst all the solutions of the “design
space”. It is important to notice that in such a search space
solutions can radically differ from each other; therefore the
optimization process has to be as global and exhaustive as
possible in order not to be trapped in a local optimum.

2.3. Overview of Existing Methods and Tools. A range of
numerical tools are used in engineering. Our purpose in this
paragraph is to make a survey of some of the most popular
software tools currently used by engineers for their prelim-
inary design studies. For each tool or type of tool, we will
investigate whether their mathematical solving methods can
suit or not the sizing task.

2.3.1. Simulators. Simulators are more and more widely used
in the study of systems. Many products with attractive user
interfaces are hence available in various engineering domains
(e.g., Simulink, Saber, AmeSim, and Modelica) and recent
advances in modelling (multiphysics, higher level modelling
language) aim at positioning them as favourite tools for
system design and architecture evaluation like Modelica [10],
one of the leading tools in the field. However the under-
lying characteristics of Modelica have remained since the
beginning and are still available in the outset versions of the
language, precluding the related tools from matching the
sizing task. Indeed since both language and computational
process are simulation task oriented,

(1) only square systems of differential and algebraic equa-
tions are solved;

(2) inequalities are not taken into account during the
solving process.

Item (1) implies that the parameters you need to set in order
to run a calculus are precisely the design parameters you want
to compute.

Item (2) implies that the solutions which are computed
can be false solutions regarding the numerous technical and
customer requirements which are laid down in terms of
inequalities.

2.3.2. Optimizers. Amongst the commercial Analysis and
Decision tools, Excel is certainly one of the most widespread.
This success can be explained by the large distribution
of the Office Suite in companies. In particular, numerous
design engineers resort to Excel as a convenient desk cal-
culator that offers great functionalities to set out their work
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results. Regarding the engineering problems the basic solving
capabilities of the calculus sheets (formula evaluation and
iterations for the case of circular references) are inadequate;
therefore Excel provides a solver as a complementary macro.

The solver of Microsoft Excel uses 2 optimization codes:

(i) a mixed linear programming code designed and
commercialized by Frontline Systems, Inc.;

(ii) a nonlinear optimization code GRG2 (“Generalized
Reduced Gradient”) designed by Leon Lasdon, Texas
University Austin and AllanWarren, Cleveland Uni-
versity.

GRG2 is the code that best matches engineering problems.
Unfortunately it shares the drawbacks of all iterative conver-
gent methods: A good starting point has to be chosen in the
search space and if the method converges, a local optimum
is obtained. As explained above, the context of solving in a
sizing task goes in the other direction: the structure of the
search space is unknown and we search for globally optimal
solutions.

This kind of algorithm is available in the Matlab Opti-
mization toolbox and is the most commonly used by engi-
neers too.The case of stochastic algorithms likeGenetic Algo-
rithms available in Matlab too will be discussed later in the
fourth part of this paper.

Apart frommathematical programming methods, name-
ly, linear programming or gradient based nonlinear optimiza-
tion, other types of numerical methods can be investigated
to solve engineering sizing problems. We will focus hereafter
on the use of constraint programming methods and more
specifically of interval constraint programming. Constraint
programming is a solving paradigmwhich combines an origi-
nal solving approachwith a problemdescriptionmodel called
constraint satisfaction problem (CSP).

3. Constraint Solving Approach

Unlike iterative methods which start from an initial point
and then build series of points converging towards a solution,
the solving approach is based on the idea of exploring
the whole search space. This approach has been initially
developed for solving combinatorial problems [11]. Since
these problems have a finite search space, it is theoretically
possible to generate (i.e., enumerate) each potential solution
and test whether or not it is a solution or not. This general
“Generate and Test” method naturally leads to a first solving
algorithm scheme which is in fact an exploration algorithm.
Unfortunately this algorithm is computationally intractable
whenever the size of the finite search space is huge. For
this reason, the constraint programming community has
developed numerous sophisticated methods for reducing the
search space in order to avoid costly space explorations. The
more advanced solving methods combine exploration meth-
ods and reduction methods. Developing a reduction method
requires defining andmaintaining the variation domain of all
problem variables. Domains are reduced by various consis-
tency methods which eliminate sets of values from domain
variables which are inconsistent with the problemdescription

[12]. Reasoning on variation domains in order to approximate
the set of solutions characterizes the constraint solving ap-
proach.

3.1. Constraint Satisfaction Problem (CSP). The problem de-
scription model is called CSP in constraint programming. A
CSP [13] is usually defined by a triplet <X, D, C> where X
is a set of variable, D is a set of domains, and C is a set of
constraints and

(i) ∀xi ∈ X, Di is the domain of possible values of xi;
(ii) ∀ci ∈ C, ci is a constraint expressed as a relation be-

tween {xj} ⊆ X.

A relation should be any kind of mathematical linear or non-
linear equations, inequalities, logical formulas, and so forth.

As an example, let us study the following short CSP:

X = {x1, x2}
D = {{0, 1} , {0, 1}}
C = {x1 ̸= x2, x1 < x2} (1)

It is convenient to use the additional notations D= {Dx1,Dx2};
hence,

(i) Dx1 = {0, 1};
(ii) Dx2 = {0, 1}.

A solution of a CSP is an assignment of all variables such that
all constraints are satisfied. For instance, the unique solution
of the above CSP is

x1 = 0;
x2 = 1.

This solution can be interpreted as an elimination of values
from domain variables:

(i) Initially Dx1 = {0, 1}, Dx2 = {0, 1}.
(ii) Finally Dx1 = {0}, Dx2 = {1}.

This global domain reduction proceeds from the application
of CSP constraints which implement a local way to reduce the
values of the variables. Following the current CSP example,

(i) from x1<x2, we eliminate 1 from Dx1 since there is no
value of Dx2 consistent with and then Dx1 becomes{0};

(ii) from x1 ̸=x2, we obviously eliminate 1 from Dx2 and
then Dx2 becomes {1}.

After the reduction process, we have to enumerate the re-
duced search space. In our example, it is easy to check that
the unique potential solution <x1, x2> = <0, 1> is a solution.

At this stage, it is worth noticing that a CSP is fundamen-
tally a logical model expressed as a set of logical properties.
In particular in a CSP model,
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(i) the order of constraints does not matter;
(ii) constraints are noncausal properties;
(iii) solving a CSP offers some logical guarantees such as

proving there is no solution, finding all solutions or
finding globally optimal solutions.

On the one hand, constraint programming provides a natural
way of writing problem descriptions without requiring any
kind of rewriting.

On the other hand, the overall impact of constraint
solving naturally suits the sizing task, i.e., finding all solutions
in the design space and globally optimizing the design.

However, we have to keep in mind that this global nature
has a negative effect on the computational complexity of cal-
culus methods. In particular, constraint solving methods are
much more time and memory consuming than local iterative
convergent methods. Therefore, the applicability of such
methods on real engineering problems remains to prove since
most papers focus on short scale problem solving [14].

Finally, it is important to point up that the constraint
programming framework can be adapted to various calculus
domains like finite, Boolean, rational, or real domains.

3.2. Interval Constraint Programming. When real variables
are considered, the domain is called interval constraint pro-
gramming. The global approach remains the same as in con-
straint programming but domains are replaced by intervals
and constraints and therefore domain reductions are devel-
oped from methods based on Interval Analysis [15] while
search space methods are based on subboxes or subpavers
exploration. The resulting interval solvers aim at finding all
solutions of sets of nonlinear equations and inequalities or at
finding a global optimum. This is called a Numerical Con-
straint Satisfaction Problem (NCSP).

Various tools are completely dedicated to NCSP solving
like CLP(R), UniCalc, RealPaver [16], Numerica [17], or
Constraint Explorer [6]. Others include numerical features
in more general CSP frameworks like Eclipse [18] or ILOG
Solver C++ library [19].

We have decided to choose Constraint Explorer for our
case study. The main reason for this choice is that unlike
most of the other available tools which are general numerical
solvers, Constraint Explorer has been specified with the aim
of offering a design tool.This has led to software development
presenting some characteristics which are relevant for our
modelling and optimizing purposes and will be laid down
hereafter.

4. Constraint Explorer

4.1. Overview. Constraint Explorer [6] is a software tool
which is the major result of the CO2 project, a research
project granted by the FrenchMinistry of Research in 2002. It
has been specified formodelling, sizing, and decisionmaking
in design.

Constraint Explorer addresses design problems that can
be expressed by a set of relations on integer or real variables.
These relations are either equations or inequalities; they can

Figure 1: Constraint Explorer Front view.

be linear or nonlinear. Expert rules supplement the language
in order to dynamically store in the model additional rela-
tions which are expressed in the right-hand side of the rules
and activated according to the logical state of left-hand side
conditions.

Constraint Explorer supplies numerical algorithms based
on solving methods supplied by the numerical constraint
programming community.

Most of the functionalities are available through a graph-
ical user interface (cf. Figure 1).

4.2. Modelling with Constraint Explorer. As explained above,
the language for modelling a CSP in constraint programming
is the <V, D, C> model. The first experiments with various
engineering problems have pointed out that this model was
too poor for efficiently describing industrial design prob-
lems. If we make a kind of comparison between constraint
programming and classical programming, we could say that<V, D, C> is closer from a low-level machine language than
fromahigh-level end-user language.TheConstraint Explorer
language has extended this model in order to increase the
power of expression and then to make the design problem
solving easier. The most important features are

(i) the introduction of constants as primitive elements of
the model like variables or constraints;

(ii) many types of variables depending on the nature
of their variation domain: real, integer, enumerated
integer, and enumerated real;

(iii) declaration of functions, e.g., f( x, y) fl ( x+ y)/2;
(iv) declaration of aliases, e.g., #mab fl f(a, b);
(v) declaration of matrix and matrix calculus.

All these features help to describe mathematical formulas
intensively used in engineering design problems.

For instance, the following expression

𝑟𝑒𝑠 = (𝑃𝐾𝑒 × [[[[
𝜎2𝜎1𝜎0
]]]]) × [[[[

(ln (Re) + Re)2(ln (Re) + Re)1(ln (Re) + Re)0
]]]]
𝑇

(2)

is naturally expressed in the Constraint Explorer mod-
elling language:
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f( X)=ln( X)+ X

#d = f(Re);

PKe:mat [3,3] = [[−3.05762874E − 04, . . .]
M:mat [3,1] = [[s∧2], [s], [1]] ;
N:mat [3,1] = [[#d∧2], [#d], [1]] ;
res:mat [3,3] ;

res=(PKe x M) x trans(N);

Constraints building can use all these elements either
to express equations or inequalities built from sophisticated
mathematical expressions or to express n-ary user constraints
built from an extension table of valid n-tuples, i.e., the set of
all consistent values.

Moreover, additional syntactic sugars like n-ary sums and
products operators for expressions, iterators for constraints,
or meta-constraints like rules complete the language and still
increase its modelling capabilities.

4.3. Solving with Constraint Explorer. The solving techniques
implemented in CE rely on a branch and prune algorithm.
Pruning is provided by recent interval constraint consistency
techniques (namely, Hull and Box consistency [20]). Branch-
ing allows you to explore the search space by bisecting the
variable domains.

We can roughly distinguish three steps in the branch and
prune algorithm:

(1) Application of contractors (or reduction operators)
that prune the domain variables over a single con-
straint.

(2) Propagation of the domain reduction from constraint
to constraint until a fixed point on intervals is
reached.

(3) Application of a bisection algorithm to exhaustively
explore the design space.

Let us describe the branch and prune algorithm on a sys-
tem with a nonlinear constraint:

x + y = 50
x ∗ y = 400 (3)

Starting from x, y ∈ [0, 100], we reduce from the first
equation x and y. Indeed since x + y = 50 and x > 0 and y> 0 then necessarily x, y ∈ [0, 50]. Then from the second
equation, we can infer that all values of x or y smaller than
8 are to be discarded (x ∈ 400 /[0, 50]). Again in the first
equation, we derive the newly reduced domain for x and y:
[8. . . 42] and so on and so forth. When no more variations
are possible (or they become too small to be considered) we
have reached a fixed point (here x, y ∈ [10, 40]). If the domain

Input
sha�

Stage 1 Stage 2 Stage 3

1

Figure 2: A three-stage transmission mechanism.

length is greater than the required precision, we bisect the
domain and start a similar domain reduction on the left
and right subproblems. The algorithm ends when no more
bisection is possible. In our example, the left subproblem (x∈ [10, 25]) leads to the first solution x = 10, y = 40 and the
right subproblem (x ∈ [25, 40]) leads to the second solution x
= 40, y = 10.

This example illustrates the essential property of this
algorithm which is called completeness: no solution of the
problem is lost.

5. Application to a Power
Transmission System

5.1. System Description. Let us apply those concepts, meth-
ods, and tools to our test case: the sizing of a three-stage
power transmission mechanism. The goal of such a mecha-
nism is to transmit a power and modify the ratio between the
input speed and the output one (this is called the reduction
ratio). This object should be modelled as a system. It can
be decomposed into an input shaft and three interrelated
subsystems called stages. Each of those subsystems is an
aggregation of three interrelated parts (or components) (cf.
Figure 2).

5.1.1. Overall Description. As we said previously, a multistage
transmission mechanism is a complex system. It should
be split into an input shaft and several stages. Each stage
should be first modelled as a component and interactions
between components have to be expressed. Finally, global
relations and geometrical (closure conditions) as much as
technological ones (required reduction ratio) have to be
modelled.

5.1.2. Design Variables. Each stage of the transmission system
is defined by seven design parameters: an angle, a module,
the tooth number of the pinion, the tooth number of the
wheel, a shaft radius, and a shaft length (Table 2). As soon
as the 3 x 7=21 Design Variables are valued under constraints,
the system is fully defined. We should add two other Design
Variables, i.e., the radius and the length of the input shaft of
the mechanism.

5.1.3. One-Stage Description. As we mentioned above, each
stage has three elements: a pinion, a wheel, and an output
shaft. This model includes local level constraints such as the
equations describing each stage or each gear. We should find
in annex A the nomenclature of the product.
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Table 2: The design variables.

Input Shaft Angle Module Tooth number Face width Shaft radius 𝑟𝑎,0 Shaft length 𝑙𝑎,0Pinion Wheel
Stage 1 𝜉1 𝑚1 𝑍1,1 𝑍2,1 𝑏1 𝑟𝑎,1 𝑙𝑎,1
Stage 2 𝜉2 𝑚2 𝑍1,2 𝑍2,2 𝑏2 𝑟𝑎,2 𝑙𝑎,2
Stage 3 𝜉3 𝑚3 𝑍1,3 𝑍2,3 𝑏3 𝑟𝑎,3 𝑙𝑎,3

Let us recall the constraints of one stage [21]:
(i) Acceptable maximum transmission powers with the

surface pressure and the rupture of the teeth:

𝑃mini ≤ (𝐶1 ⋅ 𝐶2 ⋅ 𝐶3 ⋅ 𝐶4 ⋅ 𝐶5 ⋅ 𝐶6𝐾𝐵𝑝

) (4)

𝑃mini ≤ (𝐶𝐵1 ⋅ 𝐶𝐵2 ⋅ 𝐶𝐵3 ⋅ 𝐶𝐵4 ⋅ 𝐶𝐵5 ⋅ 𝐶𝐵6𝐾𝐵𝑅

) (5)

We should find in Appendix B the expression of C1, . . .,C6
and CB1, . . .,CB6.

(ii) Condition on the transverse contact ratio:1.3 ≤ 𝜀𝛼,𝑠 (6)

(iii) Condition on the linear velocity of teeth:

𝑍1,𝑠.𝑉100 √ 𝑍2
2,𝑠𝑍2

2,𝑠 + 𝑍2
1,𝑠

≤ 10 (7)

(iv) Conditions on meshing interference:

𝜋.𝑌1,𝑠.𝑈1,𝑠 ≤ 𝑍2,𝑠2 . tan 𝛼𝑡 (8)

𝜋.𝑌2,𝑠.𝑈2,𝑠 ≤ 𝑍1,𝑠2 . tan 𝛼𝑡 (9)

(v) Limit on the value of the face width compared to the
diameter of pinion and wheel:𝑏𝑠 ≤ 𝑑1,𝑠 = 𝑚𝑠𝑍1,𝑠 (10)𝑏𝑠 ≥ 0.1𝑑2,𝑠 = 0.1𝑚𝑠𝑍2,𝑠 (11)

max{𝑑1Mini,𝑠, 𝑑2Mini,𝑠𝑢𝑠 } ≤ 𝑑1,𝑠 (12)

𝑑1,𝑠 ≤ min{𝑑1Maxi,𝑠, 𝑑2Maxi,𝑠𝑢𝑠 , 60𝑉Max𝜋.𝑁𝑠

} (13)

𝑏𝑠 ≤ min {𝑑1,𝑠, 𝑏Maxi,𝑠} ≤ 0 (14)

max {0, 1.𝑑2,𝑠, 𝑏Mini,s} ≤ 𝑏𝑠 (15)

(vi) Noninterference between shaft, pinion, andwheel (cf.
Figure 3): (𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2 > (𝑟𝑖 + 𝑟𝑗)2(𝑧𝑖 + ℎ𝑖2 ) − (𝑧𝑗 + ℎ𝑗2 ) > ℎ𝑖 + ℎ𝑗2 (16)

ℎj

Figure 3: Noninterferences between shaft and gears.
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Figure 4: Noninterferences with the casing box.

(vii) Noninterference with the casing box (cf. Figure 4):

(𝑥𝑖 − 𝑟𝑖 > 𝑥𝑚𝑖𝑛) ,(𝑥𝑖 + 𝑟𝑖 < 𝑥𝑚𝑎𝑥)(𝑦𝑖 − 𝑟𝑖 > 𝑦𝑚𝑖𝑛) ,(𝑦𝑖 + 𝑟𝑖 < 𝑦𝑚𝑎𝑥)(𝑧𝑖 > 𝑧𝑚𝑖𝑛) ,(𝑧𝑖 + ℎ𝑖 < 𝑧𝑚𝑎𝑥)
(17)

5.1.4. Connexions between Stages. Let us now recall the
constraints related to the interactions between stages [18]:
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Figure 5: Closure conditions.

(i) Torsion shaft resistance between stages:2.103.𝐶𝑒,𝑠. (𝑍1,𝑠/𝑍2,𝑠)𝐺.𝜃𝑚𝑎𝑥.𝜋.𝑟𝑎,𝑠4 ≤ 1 (18)

(ii) Consistency between velocities:𝑁2,𝑠 = 𝑁1,𝑠−1 (19)

Geometrical Consistency and Global Relations
(i) Speed ratio: 𝑢𝑟 − 𝑠=3∏

𝑠=1

𝑍2,𝑠𝑍1,𝑠

 ≤ Δ𝑢𝑟 (20)

(ii) Closure conditions (cf. Figure 5):𝑍𝐼 + (𝑟1,1 + 𝑟2,1) . sin (𝜉1) + (𝑟1,2 + 𝑟2,2) . sin (𝜉1 + 𝜉2)+ (𝑟1,3 + 𝑟2,3) . sin (𝜉1 + 𝜉2 − 𝜉3) = 𝑍𝑂

(21)

𝑌𝐼 + (𝑟1,1 + 𝑟2,1) . cos (𝜉1) + (𝑟1,2 + 𝑟2,2) . cos (𝜉1 + 𝜉2)+ (𝑟1,3 + 𝑟2,3) . cos (𝜉1 + 𝜉2 − 𝜉3) = 𝑌𝑂 (22)

𝑋𝐼 + 𝑙𝑎,0 + 𝑏1 + 𝑙𝑎,1 − 𝑙𝑎,2 + 𝑙𝑎,3 = 𝑋𝑂 (23)

5.1.5. DesignRequirements. Themain requirements are to size
the components and to set them together in order to transmit
a given power in a given reduction ratio ur with a toleranceΔur and minimizing the space required for the system in
overall dimensions. Obviously we need to satisfy the power
transmission Pmin, the reduction ratio ur, and the toleranceΔur requirements.

5.1.6. Optimizing the Volume of the System. The goal is to
minimize the overall volume of the mechanism defined as
follows:

𝑓𝑂𝑏𝑗 (x) = 𝜋.𝑠=3∑
𝑠=0

(𝑟𝑎,𝑠2.𝑙𝑎,𝑠)
+ 𝜋.𝑠=3∑

𝑠=1

(𝑏𝑠.𝑚𝑠
2. (𝑍1,𝑠

2 + 𝑍2,𝑠
2)) (24)

5.2. Problem Modelling with Constraint Explorer. All the
constraints have been directly expressed in the Constraint
Explorer language and the resulting model did not require
any kind of formal rewriting before being compiled and
solved. Once compiled with Constraint Explorer, the various
primitive objects of the computational model can be num-
bered. The results are summarized hereafter:

(i) 57 constants
(ii) 112 variables and amongst them

(a) 23 Design Variables
(b) 89 Behaviour Variables

(iii) 1 performance indicator

As explained in the previous Constraint Explorer description
paragraph, various types of domain variables are used in the
current model: 6 integer variables, 3 enumerated real vari-
ables, and 103 pure real variables.

All these variables are connected through the set of equa-
tions and inequalities of the model. The model is composed
of

(i) 89 equations
(ii) 48 inequalities
(iii) 1 optimization criterion

The following figure details a part of the Constraint Explorer
Three-Stage Design model. It concerns the conditions on
the linear velocity of teeth and on meshing interference. In
this model, “ e” is an index iteratively representing the three
different stages of the transmission system; therefore there are
nine inequalities.

for( e,1,3) {
(∗ Condition on the linear velocity of teeth ∗)
Z[1, e]∗V(Z[1, e], N1[1, e], mn0[1, e])∗
sqrt(Z[2, e]∧2/(Z[2, e]∧2 + Z[1, e]∧2)) <= 1000;
(∗ Conditions on meshing interference ∗)
pi∗Y1(mn0[1, e],mt0[1, e])∗U1(Z[1, e],
alphaprimt[1, e],Y1(mn0[1, e],mt0[1, e]))<=Z[2, e]∗tan(alphaprimt[1, e])/
pi∗Y1(mn0[1, e],mt0[1, e])∗U2(Z[2, e],
alphaprimt[1, e],Y1(mn0[1, e],mt0[1, e]))<=Z[1, e]∗tan(alphaprimt[1, e])/
�

The comparison of this model with the related mathematical
inequalities described beforehand illustrates the fact that the
translation effort is minimized.
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5.3. Problem Solving with Constraint Explorer. Once mod-
elled, the problem remains to be solved. As explained above,
the solving method of Constraint Explorer is based on a
generic branch and prune algorithm that combine space
search reductionmethods (pruning) with space search explo-
ration methods (branching). The space search exploration
consists in bisecting variables whose domain is not reduced
to a value. It is well established that the choice of the variables
to bisect may have a major impact on the performance of
the branch and prune algorithm [22]. In order to improve
its performance, Constraint Explorer may propose various
heuristics for ordering variables which do not fall into the
scope of the present paper and therefore will not be described
here. However concerning the current power transmission
problem, one must underline that all results and perfor-
mances which are presented hereafter are issued from a static
variables ordering that makes use

(1) of the system architecture: in particular it is stage
composition;

(2) of the type of the variables: integer variables are bi-
sected before enumerated variables and enumerated
variables are bisected prior to real variables.

Therefore in a given stage, the pinion tooth number, thewheel
tooth number, and themodule value are bisected in this order.

5.4. Results and Validation. We would now like to illustrate
our approach with a set of numerical results. The initial do-
mains given by the expert for the constraint variables are
presented in Table 3 column 1.

After adding the following requirements,

Pmin = 8.8 kW
NInput = 1500 rpm
ur = 44Δur = 0.01,

and after the first propagation, the intervals are reduced
as in Table 3 column 2.

The solving process (i.e., a branch and prunemechanism)
ends on a first admissible solution presented in Table 3
column 3. The last step gives an optimal solution as shown
in Table 3 column 4.

As a result, we found anoptimal solutionwith f obj =8.1 10
6

mm3. Calculations took a computing time of two-and-half-
minute computing time on a Intel(R) Pentium(R) M 1.6GHz
512Mo RAM and a process time of 50 seconds on a Dell
Optiplex 740 AMD Athlon Dual Core Processor 5400B 2.81
Ghz, 1.93 Go de RAM.

We checked the validity of those results in two ways:

(i) We implemented a dedicated C code to measure the
differences between the values of the design and per-
formance variables given by CE and those processed
in the C program by the instantiated formulas. The
maximum difference is approximately 1e-12, which
means that CE seems to be quite a robust solver.

(ii) We built a working drawing to check the closure and
noninterference conditions of the instantiated mech-
anism.

5.5. Comparing with Other Approaches. Usually, a constrain-
ed optimization problem onmix variables as the power trans-
mission one is modelled as follows:𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) a set of 𝑛 variables. The value of each𝑥𝑖 should be inR or in Z.𝑓 : R𝑟 × Z

𝑛−𝑟 → R

a scalar function to minimize
(25)

such that∀𝑖 ∈ {1, . . . , 𝑝} ,
X ⊆ 𝑋,𝑔𝑖 (X) = 0

a set of p equations to satisfy∀𝑗 ∈ {1, . . . , 𝑞} ,
X

 ⊆ 𝑋,ℎ𝑗 (X) ≤ 0
a set of q inequalities to satisfy

(26)

Two main categories of techniques for finding a global
minimum to f are described in technical literature:

(i) The deterministic methods: as soon as f, 𝑔𝑖, and hj
are linear functions,Mix Integer Linear Programming
(MILP) algorithms [23, 24] can be used to find the
global optimum. Moreover, when f is a quadratic
function, the right way is to useMix Sequential Quad-
ratic Programming (SQP) algorithms [25]. Unfortu-
nately a lot of functions are nonlinear in the engineer-
ing field. MLP and SQP should take account of such
functions by increasing the number of variables in the
problem. On the one hand, however, this increases
the complexity while users, on the other hand, have
to make specific transformations to set a nonlinear
problem into a linear or a quadratic one if possible.
Thus, particularly in the case of design problems,
the structure of the initial model (i.e., the nonlinear
equations and inequalities) is lost.

(ii) The stochastic methods: they draw upon nature and
are called Genetic Algorithms (GA) [26–28], Sim-
ulated Annealing (SA) [29, 30], or Particle Swarm
Optimization (PSO) [31, 32]. All of them give an
approximation of the global optimum. Optimization
problems in design have been mainly solved by GA
algorithms [27, 28].

In technical literature, the main approach to design prob-
lem solving is the evolutionary (genetic) algorithm method.
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Table 3: Results.

Variables Initial Domains First Propagation Admissible solution Optimal solution
Design Variables (DVs)

Input Shaft
ra,0 (mm) [10.0, 507.073] [12.937, 503.942] 12.937 12.937
la,0 (mm) [10.0, 1014.15] [10.0, 1014.15] 10.155 10.0
Stage1
m1 [0.5, 50.0] [0.5, 22.0] 1.5 1.5
Z1,1 [11, 45] [11, 45] 14 14
Z2,1 [20, 150] [20, 150] 20 20
b1 (mm) [10, 500] [10, 330] 10.0 10.0
ra,1 (mm) [10.0, 507.073] [10.0, 503.875] 10.0 10.0
la,1 (mm) [10.0, 1014.15] [10.0, 1014.15] 19.1168 84.9537729𝜉1 (rad) [−𝜋, 𝜋] [−𝜋, 𝜋] -0.1533 -0.058
Stage 2
m2 [0.5, 50.0] [0.5, 22.0] 5.5 6.0
Z1,2 [11, 45] [11, 45] 16 17
Z2,2 [20, 150] [20, 150] 56 60
b2 (mm) [10, 500] [10, 330] 14.0 10.0
ra,2 (mm) [10.0, 507.073] [10.0, 503.875] 10.0 10.0
la,2 (mm) [10.0, 1014.15] [10.0, 1014.15] 10.0 10.0𝜉2 (rad) [−𝜋, 𝜋] [−𝜋, 𝜋] -0.0169
Stage 3
m3 [0.5, 50.0] [0.5, 22.0] 2.75 2.25
Z1,3 [11, 45] [11, 45] 17 17
Z2,3 [20, 150] [20, 150] 149 149
b3 (mm) [10, 500] [10, 330] 16.0 10.0
ra,3 (mm) [10.0, 507.073] [10.0, 503.875] 10.0 10.0
la,3 (mm) [10.0, 1014.15] [10.0, 1014.15] 189.22 123.5182346𝜉3 (rad) [−𝜋, 𝜋] [−𝜋, 𝜋] -0.4 -0.09

Performance Indicator
f obj (mm3) [0, +∞] [24842.14, 20821e7] 13194785.4 8.1 e6

Fauroux and Lafon [18] implemented and applied a Genetic
Algorithm to solve the problem addressed in this paper.

Although Genetic Algorithms are actually most useful we
would like to focus on two key points: On the one hand,
the capability to find the global optimum depends on the
crossing operators used, the frequency of mutation tuning,
and the simulation duration. On the other hand, the 𝑔𝑖 and
hj functions are mainly integrated as penalty functions (i.e.,
within the objective function) and in this case again, the
structure of the design problem is lost.

Moreover, in such an approach, it is necessary to study the
set of equations and inequalities of the problem to minimize
the number of variables by doing substitutions of variables
and rewriting of expressions. This is not the case with the
CSP approach because the lack of a declarative and modular
modelling language negatively impacts softwaremaintenance
and upgrading. As a consequence, the capability of models
capitalization is very weak.

Although stochastic methods seem to be easy to program,
in counterpart the computational performance is poor and
the related optimization process is nonglobal with a reason-
able finite time.

By way of example, [18] implements a final objective
function as follows:𝑓𝐸V𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 = 𝑓𝑜𝑏𝑗 + 𝑟× (𝑆𝑢𝑚 𝑜𝑓 > 0 V𝑖𝑜𝑙𝑎𝑡𝑒𝑑 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠) (27)

where 𝑟 is a penalty factor, progressively increased during the
resolution.

Moreover, the system of equations and inequalities is
simplified manually. The aim is to remove all the Behavioural
Variables from the problem. As a result, the authors found
an optimal solution with 𝑓𝑜𝑏𝑗 = 3.74 107 mm3. It took 45 min
computer time to work out the calculations on aHP PA-RISC
8600 750 MHz.
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6. Conclusion

We have shown that specifying a design sizing problem is
possible with a model-based approach using constraint solv-
ing technology.

Our proposal consists in two main points:
A specification of system sizing problem based on a ded-

icated terminology: Design Variables, Behaviour Variables,
and Performance Indicators.

An efficient modelling and solving process combining
model-based approach and constraint solving paradigm.

The application of our model-based approach to a power
transmission system has shown that it is possible to success-
fully apply this approach to a scalable problem and with good
results. More precisely, they are better than those obtained
with a stochastic one (i.e., with Genetic Algorithm) in terms
of both performance and quality. Moreover the problem
model does not require any kind of tedious rewriting.
Requirements are naturally expressed and added to themodel
as inequalities.

Constraint modelling gives us a chance to start defining
a language accounting for both system description and elici-
tation of needs. Nevertheless, there remains a gap to address
engineering needs. Even if equations and inequalities are di-
rectly translated, the structure of the system (i.e., components
structure and relations between components and subsystems)
is lost. Awork is in progress to define a new higher level struc-
tured modelling language for design problem specifications.

Appendix

A. Nomenclature of Parameters and Variables

Requirements (3)𝑁𝐼𝑛𝑝𝑢𝑡: Input rotational speed𝑃𝑀𝑖𝑛: Minimal required input power𝑢𝑟: Global required reduction ratio of the speed
reducerΔ𝑢𝑟: Tolerance on required global ratio.

Design Variables (DVs) (23)𝑚𝑠: Tooth real module of stage 𝑠 (1,2,3)𝑍𝑖,𝑠: Number of teeth for wheel 𝑖 of stage 𝑠𝑙𝑎,𝑠: Length of input shaft (0) or output shaft of stage𝑠 (1,2,3)𝑟𝑎,𝑠: Radius of input shaft (0) or output shaft of stage𝑠 (1,2,3)𝑏𝑠: Gear face width of stage 𝑠 (1,2,3)𝜉s: Angular self rotation of stage 𝑠 (1,2,3) along its
input shaft.

Behavioural Variables (BVs)𝑠: Index stage number𝐶𝑖: Contact stress factors

C1: Speed and ratio coefficient, nonlinear function of𝑚𝑠, Z1,s, and Z2,s

C2: Tooth shape coefficient depends on 𝛼𝑛 and 𝛽
C3: Speed coefficient, nonlinear function of 𝑚𝑠, Z1,s,
Z2,s

C4: Load distribution coefficient, nonlinear function
of𝑚𝑠, Z1,s, Z2,s, 𝑏𝑠
C5: Material coefficient considered as a constant value
C6: Tooth contact coefficient considered as a constant
value𝐶𝐵𝑖: Bending stress factors
CB1: Speed and ratio coefficient, nonlinear function of𝑚𝑠, Z1,s, and Z2,s

CB2: Contact and overlap ratio coefficient considered
as a constant value
CB3: Dynamic behaviour coefficient, nonlinear func-
tion of𝑚𝑠, Z1,s, Z2,s

CB4: Shape and constraint coefficient, nonlinear func-
tion on Z1,s, Z2,s

CB5: Load distribution coefficient, depending on 𝑚𝑠,
Z1,s, Z2,s, 𝑏𝑠
CB6: Fatigue stress coefficient, depending on material
and considered as a constant value
CB7: Stress concentration coefficient, depending
mainly on𝑚𝑠𝑑𝑖,𝑠: Diameter for pinion (i=1) or wheel (i=2) of stage𝑠𝐾𝐵𝑃, 𝐾𝐵𝑅: Service factor for contact / bending stress,
supposed as a constant value𝑈𝑖,𝑠: Geometry coefficient for wheel 𝑖, nonlinear func-
tion of𝑚𝑠, 𝑍𝑖,𝑠𝑉: Linear velocity on teeth𝑉𝑚𝑎𝑥: Maximal allowed linear velocity (typically
20m/s)𝑌𝑖,𝑠: Geometry coefficient for wheel 𝑖, nonlinear func-
tion of𝑚𝑠, 𝑍𝑖,𝑠𝛼𝑛, 𝛼𝑡 : Normal and working transverse pressure angle𝛽: Reference helix angle𝜀𝛼,𝑠: Transverse contact ratio, nonlinear function of𝑚𝑠, Z1,s, Z2,s𝐶𝑒,𝑠: Input torque at stage 𝑠𝐺: Shaft shearing modulus𝑂𝑖: Input shaft location on the housing𝑂𝑜: Output shaft location on the housing𝑟𝑖, 𝑠: Radius of wheel 𝑖 of stage 𝑠𝜃𝑀𝑎𝑥: Maximum torsion angle for shafts (typically
0.1∘/m).

Performance Indicators (BIs) (1)𝑓𝑜𝑏𝑗: Overall volume of the mechanism.
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B. Equations and Inequalities

(i) C1 factor: 𝐶1 = 𝜋60𝑁1 ( 𝑍1𝑍1 + 𝑍2

) (B.1)

(ii) C2 factor:𝐶2 = 1𝑍2
𝐻𝑍2

𝜀𝑍2
𝛽

(B.2)

𝑍2
𝛽 = cos 𝛽0 (B.3)

𝑍2
𝐻 = 2 cos 𝛽0 cos 𝛼𝑛0 cos 𝛼𝑡cos 𝛼𝑡03 sin 𝛼𝑡 (B.4)

𝑍2
𝜀 = {{{{{{{

1𝜀𝛼 𝑠𝑖 𝜀𝛽 > 14 − 𝜀𝛼3 (1 − 𝜀𝛽) + 𝜀𝛽𝜀𝛼 𝑠𝑖 𝜀𝛽 < 1 (B.5)

𝜀𝛽 = 𝑏. sin 𝛽0𝜇.𝑚𝑛0

(B.6)

(iii) C3 factor:

𝐶3 = 𝑍2
V𝐾V

(B.7)

𝑍2
V = 𝐶𝑧V + 2 (1 − 𝐶𝑧V)√0.8 + 32/𝑉 (B.8)

𝐶𝑧V = 0.85 − 0.85 (𝜎𝐻𝑙𝑖𝑚 − 850)350 (B.9)

Si 𝜎𝐻𝑙𝑖𝑚 < 850𝑀𝑃𝑎 alors 𝜎𝐻𝑙𝑖𝑚 = 850 𝑀𝑃𝑎 (B.10)

Si 𝜎𝐻𝑙𝑖𝑚 > 850𝑀𝑃𝑎 alors 𝜎𝐻𝑙𝑖𝑚 = 1200 𝑀𝑃𝑎 (B.11)

𝑉 = 𝜋.𝑚𝑛0𝑍1𝑁160.103 cos 𝛽0 (B.12)

𝐾V = 1 + [ 𝐾1𝐾𝐴 (𝐹𝑡/𝑏) + 𝐾2] .𝑍1.𝑉100 .√ 𝑢2𝑢2 + 1 (B.13)

𝑢 = 𝑍2𝑍1

(B.14)

𝐹𝑡 = 60.106𝑃𝑚𝑖𝑛𝑖 cos 𝛽0𝜋.𝑚𝑛0𝑍1𝑁1

(B.15)

(iv) C4 factor:

𝐶4 = 10−6𝑏 (𝑚𝑡0𝑍1)2𝐾𝐻𝛽𝐾𝐻𝛼

(B.16)

𝐾𝐻𝛽 = 𝐴1 + 𝐵1 ( 𝑏𝑚𝑡0𝑍1

)2 + 𝐶1.𝑏 (B.17)

𝐾𝐻𝛼 = 𝐷1 (B.18)

(v) C5 factor:

𝐶5 = 𝜎𝐻𝑙𝑖𝑚
2𝑍𝐸

2
(B.19)

𝑍𝐸
2 = √ 1𝜋 ((1 − ]12) /𝐸1 + (1 − ]22) /𝐸2) (B.20)

𝜎𝐻𝑙𝑖𝑚 = min (𝜎𝐻𝑙𝑖𝑚1, 𝜎𝐻𝑙𝑖𝑚2) (B.21)

(vi) C6 factor:

𝐶6 = 𝑍2
𝐿.𝑍2

𝑅.𝑍2
𝑊 (B.22)

𝑍𝑅 = ( 3𝑅𝑚

)0.12

(B.23)

If 𝑍𝑊 ≤ 400 𝐻𝐵
then 𝑍𝑊 = (1.2 − 𝐻𝐵𝑟𝑜𝑢𝑒 − 1301700 ) (B.24)

If 𝐻𝑏𝑟𝑜𝑢𝑒 > 400 𝐻𝐵 then 𝑍𝑊 = 1 (B.25)𝑍𝐿 = 1 (B.26)

𝐾𝐵𝑝 = 𝐾𝐴.𝐾𝑅𝑍𝑁

(B.27)

(vii) CB1 factor:

𝐶𝐵1 = 𝜋60106𝑁1𝑚𝑛0
2𝑍1 (B.28)

(viii) CB2 factor:

𝐶𝐵2 = 1𝑌𝜀𝑌𝛽 cos 𝛽0 (B.29)

If 𝛽0 ≤ 30∘ then 𝑌𝛽 = 1 −min (1, 𝜀𝛽) 𝛽0120 (B.30)

If 𝛽0 > 30∘ then 𝑌𝛽 = 1 − 0.25𝜀𝛽 (B.31)

𝑌𝜀 = 0.25 + 0.75𝜀𝛼 (B.32)

(ix) CB3 factor:

𝐶𝐵3 = 1𝐾𝑉

(B.33)
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(x) CB4 factor:

𝐶𝐵4 = 1𝑌𝐹𝐴𝑌𝑆𝐴 (B.34)

𝑌𝐹𝐴 = 6ℎ𝐹𝐴 cos 𝛼𝑎𝑆𝐹𝑛2 cos 𝛼𝑛0 (B.35)

𝑆𝐹𝑛
= 2 [𝑍𝑛2 sin (𝜋3 − 𝛾) − ( ]𝑝

cos 𝛾 + 𝜍𝑎0) cos (𝜋6 )] (B.36)

ℎ𝐹𝐴
= 𝑍𝑛2 (cos 𝛼𝑛0

cos 𝛼𝑎 − cos(𝜋3 − 𝛾))
+ ( ]𝑝

cos 𝛾 + 𝜍𝑎0) sin (𝜋6 )
(B.37)

]𝑝 = ℎ𝑎0 − 𝜒1 − 𝜍𝑎0 (B.38)

𝑍𝑛 = 𝑍1

cos 𝛽03 (B.39)

cos 𝛼𝑎 = 𝑍1 cos 𝛼𝑡0𝑍1 + 2 cos 𝛽0 (1 + 𝜒1) (B.40)

𝑠 = 𝜋2 + 2𝜒1 tan 𝛼𝑛0 (B.41)

𝛼𝑎 = tan 𝛼𝑎 − 𝑠𝑍𝑛

− (tan 𝛼𝑛0 − 𝛼𝑛0) (B.42)

𝛾 + 2]𝑝𝑍𝑛

tan 𝛾 = 𝜋3 − 2𝐻𝑍𝑛

(B.43)

𝐻 = 𝜋4 + ℎ𝑎0. tan 𝛼𝑛0 + 𝜍𝑎0. tan (𝜋4 − 𝛼𝑛02 ) (B.44)

𝑌𝑆𝐴 = (1.2 + 0.13𝐿𝑎) 𝑞𝑡𝑠𝑠 (B.45)

𝑞𝑠 = 𝑆𝐹𝑛2𝜍𝐹 (B.46)

𝐿𝑎 = 𝑆𝐹𝑛ℎ𝐹𝐴 (B.47)

𝑡𝑠 = 1(1.21 + 2.3/𝐿𝑎) (B.48)

𝜍𝐹 = 𝜍𝑎0 + 2]𝑝2
cos 𝛾 (𝑍𝑛cos 𝛾2 + 2]𝑝) (B.49)

(xi) CB5 factor:

𝐶𝐵5 = 𝑏𝐾𝐹𝛽𝐾𝐹𝛼
(B.50)

𝐾𝐹𝛽 = 𝐾𝐻𝛽 (B.51)𝐾𝐹𝛼 = 𝐾𝐻𝛼 (B.52)

(xii) CB6 factor:

𝐶𝐵6 = 𝑌𝑆𝑇𝜎𝐹𝑙𝑖𝑚 (B.53)𝑌𝑆𝑇 = 2 (B.54)

(xiii) CB7 factor:

𝐶𝐵7 = 𝑌𝛿𝑟𝑒𝑙𝑇.𝑌𝑅𝑟𝑒𝑙𝑇.𝑌𝑋 (B.55)𝑌𝛿𝑟𝑒𝑙𝑇 = 𝐴2𝑌𝑆𝐴 + 𝐵2 (B.56)𝑌𝑅𝑟𝑒𝑙𝑇 = 𝐴3.𝐵3 (𝑅𝑚 + 1)𝐶3 (B.57)𝑌𝑋 = 𝐴4 − 𝐵4𝑚𝑛0 (B.58)

𝐾𝐵𝑅
= 𝐾𝐴𝐾𝑅𝑌𝑁𝑇

(B.59)

𝑍1𝑉100 √ 𝑍2
2𝑍2

2 + 𝑍1
2
< 10 (B.60)

𝑚𝑡0 = 𝑚𝑛0

cos 𝛽0 (B.61)

tan 𝛼𝑡0 = tan 𝛼𝑛0
cos𝛽0 (B.62)

tan 𝛼𝑡 − 𝛼𝑡 = tan 𝛼𝑡0 − 𝛼𝑡0 + 2. tan 𝛼𝑛0. 𝜒1 + 𝜒2𝑍1 + 𝑍2
(B.63)

𝑚
𝑡 = 𝑚𝑡0

cos 𝛼𝑡0
cos 𝛼𝑡 (B.64)

𝜀𝛼 = 𝑌1.𝑈1 + 𝑌2.𝑈2 (B.65)

𝑌𝑖=1,2 = 𝑚𝑡0𝑍𝑖 + 2𝑚𝑛0 (1 + 𝜒𝑖) − 𝑚
𝑡.𝑍𝑖2𝑚

𝑡

(B.66)

𝑈𝑖=1,2 = 1𝜇 cos𝛼𝑡 [[[√(
𝑍𝑖 sin 𝛼𝑡2𝑌𝑖 )2 + 𝑍𝑖𝑌𝑖 + 1

− 𝑍𝑖 sin 𝛼𝑡2𝑌𝑖 ]]]
(B.67)

𝜋𝑌1𝑈1 < 𝑍22 tan 𝛼𝑡 (B.68)

𝜋𝑌2𝑈2 < 𝑍12 tan 𝛼𝑡 (B.69)

Data Availability

The problem we addressed is fully described inside this
manuscript. That is to say, all variables, equations, and
inequalities of the problemare available inside this document.
Readers can use this data as they want.
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