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To be different from the traditional concept of congestion, congestion propagation based on the correlation between aircraft is
given. And the main resource shared and competed for in airspace is the air route network, especially the intersection linking the
multiroute. The system composed of congestion propagation units operates in airspace network, which is limited by the network
geometry and the correlation between aircraft.This paper presentsmodels based on the congestion and propagation characteristics
in complex network, predicting the trend of congestion propagation and the peak of congestion size. By analyzing the relationships
between system parameters and congestion propagation and accounting for the effects of propagation across networks, this paper
enhances the current dynamicsmodels of congestion propagation in airspace. Firstly, a heterogeneousnetworkmodel is introduced
to reveal the propagation process of aircraft with different degrees of correlation. This is followed by the specification of two
simplified models for short-term prediction, just taking the sector capacity, propagation rate, and dissipation rate into account.
And the propagation rate and dissipation rate depend on the sector geometry and aircraft distribution. Using them (sector capacity,
propagation rate, and dissipation rate), the prediction models are accurate in predicting the evolution of congestion peak and
propagation trend in comparison with the sample data of intersections in the sector. Of them, the model with capacity limitation
is more accurate on busy hour. And on non-busy hour, capacity is insensitive in predicting congestion clusters. Furthermore, the
computingmethod of propagation rate anddissipation rate is given in our paper. Finally, a numerical analysis is performed, inwhich
it is demonstrated that system capacity, propagation rate, and dissipation rate have different effects on congestion propagation in
airspace. The results show that low propagation and high dissipation rates not only are nonlinear but also decrease the level of
congestion in the propagation of congestion. In particular, of the three parameters, system capacity affects the rate of convergence,
with a low-capacity system reaching a stable state quickly and therefore providing a basis for sector partitioning. The method
proposed in this paper should enable air traffic controllers to better understand the characteristics of congestion and its propagation
for the benefits of both congestionmanagement and improvement of efficiency. Significantly, airspace designers can take congestion
propagation into consideration for optimizing the airspace structure in the future.

1. Introduction

The rapid growth in air traffic is increasing the complexity of
airspace/airline operations resulting in higher levels of con-
gestion. As a result, many airports are experiencing signifi-
cant flight delays. Delay may cause air traffic unit congested
in a certain period, and congestion is one of the events caus-
ing delay. Both of them usually are applied to describe the
traffic condition, and they can be transmitted between flights,
airports, or both, having wider impacts across the airspace
network [1]. Traditionally, congestion and delay are addressed
largely by tactical management of flight scheduling [2], ignor-
ing the evolution of congestion or delay. However, in order to
significantly reduce congestion and delay, a detailed analysis

of the propagation process and its influencing factors is re-
quired. Delay propagation derives from the interdependen-
cies between different scheduled flights [3–5].

Traditionally, delay trees have been used to describe delay
propagation, with flights and connectivity represented by the
vertices and edges, respectively [6, 7]. Some delay propagation
models consider factors such as aircraft rotation, flight con-
nectivity, and airport congestion [8, 9]. However, although
delay propagation can be used to describe airport congestion,
it is not a direct measure of airspace traffic. Congestion prop-
agation, on the other hand, through the consideration of air
traffic and other factors, can enable the understanding of the
actual operation of the airspace network. However, it should
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be noted that there are other causes of airspace congestion,
such as adverse weather, equipment failure, and military acti-
vities [2, 10, 11]. Furthermore, congestion propagation oper-
ates on air routes, which are complex networks [12–15], usu-
ally hub and spoke [16–23]. Some studies determine airspace
congestion by computing the complexity of flights in airspace
[24–26], but they do not take congestion propagation into
consideration. Airspace congestion and airport congestion
both propagate on a complex network [8, 27–29]. Queueing
[30] and aircraft recovery [31] models take into account the
constraints of congested airspace and the correlation between
flights. Simulation tools [2, 30, 31] and operation data [8, 9,
19, 29] are used for modeling delay time. In order to mitigate
airspace congestion, disruption management is used together
with flight plans [32, 33] for proactive control of aircraft, but
they do not take congestion propagation into consideration.

The correlation between aircraft’s activities, for example,
trajectory synchronization, ismeasuredwith synchronization
likelihood to detect differences between two classes of safety-
related events [34]. The congestion correlation between road
segments is explored, proposing a three-phase framework,
and some important patterns leading to a high/low conges-
tion correlation are found [35]. But the correlation between
aircraft in congestion propagation on airspace networks is not
included in these studies.

This paper develops simple and accurate models based on
the correlation between aircraft for congestion propagation.
Aircraft in the airspace are divided into different clusters
according to the correlation between flights. The correlation
between the clusters is then analyzed in turn to capture the
propagation of congestion. The factors that influence the cor-
relation between clusters are mainly capacity limitation and
geometric construction of air traffic unit. Hence optimal ope-
ration should satisfy both the limitations of capability and
configuration, while controlling the scale of congestion by
regulating the flight distribution. As the operation of flights
depends on the airlines, the correlation between flights varies
with the structure of air routes. This paper builds on our pre-
vious studies [29, 36, 37] in which we apply the model of the
propagation of infectious diseases [38–43] to the airspace and
airport to develop congestion propagation models that con-
sider flight correlation. The ultimate goal of the research on
congestion propagation is to provide theoretical foundations
and strategic and tactical choices for congestion manage-
ment.

2. Congestion Propagation and
Congestion Propagation System

Air traffic congestion arises when the demand of an air
traffic unit (e.g., airport, air route, terminals, and region) ex-
ceeds its capacity. Congestion manifests as high density of
aircraft in the airspace and delay of aircraft departure and
arrival. This is caused by a number of factors including severe
weather, military exercise, and mechanical failure. In actual
operation congestion is dynamic (i.e., not static) in space and
time similar to the spread of infectious diseases and public
sentiment, which have propagation dynamics in complex
networks.

In road transport, the relationship between density and
flow is described in three phases: free flow, a wide moving
traffic jam, and synchronized traffic flow [44]. In this paper, a
new concept of congestion propagation based on congestion
causes is given. As it is known, the sharing and competing of
resources generate the correlation between aircraft. So we can
divide the aircraft into congested cluster and discrete cluster
according to the correlation intension/number. And the con-
version process between congested cluster and discrete clus-
ter is defined as congestion propagation. Air routes are the
main resources shared and competed for in airspace, and they
consist of parallel routes, cross routes, and their intersections.
The conflict (congestion) always occurs on the cross network,
especially on the intersection. A congestion that occurs in a
sector or intersection of a complex airspace network spreads
and is only limited by the airspace configuration. The various
elements in which operations take place can be referred to as
a system consisting of the airspace configuration (i.e., sectors)
and the associated traffic entering and leaving the sectors. In
the event of a disturbance, the system deviates from the stable
state and the resulting congestion state is transmitted to the
aircraft involved, creating a congestion propagation system as
shown in Figure 1.

According to the correlation between aircraft and propa-
gation process, there are aircraft in discrete, congested, and
recovered clusters. The aircraft in the discrete cluster are
independent, and a strong correlation exists between aircraft
in the congested cluster. The correlation increases with the
congestion degree. Focusing on the aircraft in the congested
cluster 𝐶, the aircraft entering the airspace according to the
flight schedule 𝑠 constitute those in the discrete cluster 𝑈.
When disturbed by a congestion incident, 𝑈 becomes 𝐶, and
its propagation rate is expressed as 𝛼. The relief from 𝐶 with
a dissipation rate 𝛽 forms the aircraft in the recovered cluster
𝑅. These are shown in Figure 1. The operation of the system
depends on the control of three parameters, flight schedule
𝑠, propagation rate 𝜂/𝛼, and dissipation rate 𝛽. In particular,
we assume that flights move from one community to another
with a diffusion rate 𝜂, and 𝑈 is affected by congested aircraft
at the rate 𝛼. However, the four parameters are affected by
the limitation of airspace capacity 𝐿 and aircraft propagation
correlation degree 𝑘. Here we assume that 𝑘 is the number
of aircraft affected directly by one aircraft in the congested
cluster. As shown in Figure 1, it influences to some extent the
propagation rate and dissipation rate. 𝐿 limits the growth of 𝑠,
at the same time limiting the size of𝑈 and hence the negative
feedback loop among 𝐿, 𝑠, and 𝑈 and positive feedback loop
among 𝜂/𝛼, 𝑘, and 𝛽.

Basedonthe congestion propagation system,we canmod-
el a congestion propagation tree (in next section) to reveal
the domino effect of aircraft in congestion cluster. And the
correlation between aircraft is the key to the model. By mod-
eling congestion propagation, we can understand how the
factors (propagation rate, dissipation rate, capacity limitation,
and so on) influence congestion propagation; this is beneficial
for predicting evolution of aircraft in congestion cluster.

3. Model

The dynamical complexity of the network can be charac-
terized by the interactions among its nodes. The congestion
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propagation network in two-dimensional space (Figure 2) is
constructed with aircraft as the nodes and the correlation be-
tween aircraft as the edges. The model of congestion propa-
gation focuses on the propagation correlation within hetero-
geneous network. This is the key to finding the nature of the
propagation correlation between two aircraft, on the basis of
spatiotemporal complexity.

Figure 3 presents a simple example of congestion correla-
tion on a cross network, which is constituted by three in-
bound routes and one outbound route. If congestion propaga-
tion can be seen as a queueing problem, it is easy to under-
stand the cause of congestion and the process of propagation.
The intersection can be seen as a single server; in fact, the con-
gestion propagation on crossing routes is the queueing sys-
temwithmultiple queues and a single server.The competition
for resources causes aircraft correlation to be close, and the
sharing of resource makes the aircraft be associated, generat-
ing congestion propagation. The resources competed for and
shared in Figure 3 are the air routes, especially the intersec-
tion. The aircraft operated on the cross traffic are marked
as 𝐴1, 𝐴2, 𝐴3, . . .. The correlation degree among aircraft is
diverse. For example, the operation of aircraft 𝐴3 is affected
by the aircraft 𝐴2 and 𝐴4, satisfying the limitations of lateral
separation and intersection service capacity. At the same
time, flight of𝐴3 needs to take the horizontal separation with
former aircraft 𝐴1 into account. In contrast, the operation of
𝐴8 is mainly affected by the longitudinal interval with the
aircraft𝐴5. So the congestion propagation on a cross network
constitutes a heterogeneous network.The congestion clusters
with 𝑘 can be denoted as 𝐶𝑘. According to the correlation
intension, aircraft on crossing routes can be divided into
some clusters/communities, such as 𝐶1, 𝐶2, 𝐶3, . . ., which are
shown in Figure 3, and the correlation intension between

aircraft in different clusters/communities can be denoted as
𝑇𝐶1 , 𝑇𝐶2 , 𝑇𝐶3 , . . ., 𝑇𝐶1 ≫ 𝑇𝐶2 ≫ 𝑇𝐶3 . The research on con-
gestion propagation focuses on the cluster/community 𝐶1,
that is, aircraft passing the intersection in a short time. The
time lag can be set as 5 minutes or 15 minutes according to
the prediction demand.

𝑃(𝑘) denotes the probability that an aircraft has correla-
tion degree 𝑘 and 𝑃(𝑖 | 𝑘) is the conditional probability of
joining two aircraft with correlation degrees 𝑖 and 𝑘, respec-
tively. 𝑈𝑘 and 𝐶𝑘 are the aircraft in discrete and congested
clusters on the routewith correlation degree 𝑘, respectively.𝑈𝑖
denotes the set of𝑈with correlation degree 𝑖.The congestion
propagation with different correlation degrees is formulated
as follows:

𝑑𝑈𝑘
𝑑𝑡 = 𝑠 − 𝜂𝑈𝑘 + 𝑘

𝑛

∑
𝑖=1

𝑃 (𝑖 | 𝑘) 𝜂
𝑖 𝑈𝑖 − 𝛼𝑈𝑘𝐶𝑘 + 𝛽𝐶𝑘

𝑑𝐶𝑘
𝑑𝑡 = 𝛼𝑈𝑘𝐶𝑘 + 𝑘

𝑛

∑
𝑖=1

𝑃 (𝑖 | 𝑘) 𝜂
𝑖 𝑈𝑖 − 𝛽𝐶𝑘

(1)

Although model (1) is more close to pratical operation,
controllers still need to do a lot of work. Of them, statistical
analysis of correlation degree, conditional probability, and
cluster analysis spend a lot of time. For short-term prediction,
for example, prediction in one hour, time, and accuracy are
the keys to the controllers. And the most congested area is
the intersection in Figure 3. So the congestion cluster 𝐶1 is
our research priority. Simplified models based on model (1)
can be introduced for short-term prediction.

Focusing on the cluster 𝐶1, the relationships between
different parameters are distinct in expressions (2) and (3).
Expression (2) takes system/sector capacity 𝐿 into account as
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Figure 3: Congestion propagation correlation in a cross network.

a limitation of 𝑠. And expression (3) can reveal the relation-
ship between 𝛼 and 𝛽 directly. The computing method of 𝛼
and 𝛽 is introduced in next sections.

𝑑𝑈
𝑑𝑡 = 𝛼𝑈(1 − 𝑈

𝐿 ) − 𝛼𝑈𝐶
𝑑𝐶
𝑑𝑡 = 𝛼𝑈𝐶 − 𝛽𝐶

(2)

𝑑𝑈
𝑑𝑡 = 𝑠 − 𝛼𝑈𝐶
𝑑𝐶
𝑑𝑡 = 𝛼𝑈𝐶 − 𝛽𝐶

(3)

For either model (2) or (3), the system threshold value is𝑈∗ =
𝛽/𝛼. When 𝑈 > 𝑈∗, the congestion is aggravated; otherwise,
there is no propagation.The characteristics of congestion data
and accuracy of models are introduced in next section.

4. Parameter Calculation

The operation of aircraft in sectors/airspace is based on the
structure of hub-and-spoke network, in which the intersec-
tion of air routes is the basic unit as seen in Figure 4.The con-
gestion characteristics diffuse on the airspace network de-
pending on the network structure.The propagation capability
of an intersection can be expressed by node degree (correla-
tion degree) 𝑘, the number of routes connecting the assigned
intersection.

In general, the flow distributions are similar in two sec-
tors, in which the number and distribution of intersections
are similar. If the capacities of two sectors are similar or the
same, the consistency of flow distribution is more obvious.
Take two sectors in Shanghai area for example; the con-
struction graph of the Shanghai sectors with sector partition
and route distribution is shown in Figure 5(a). Comparing
the sectors (ZSSSAP09 and ZSSSAP12), the number of
intersections, sector capacity, and degree distribution (for
details of this analysis, see the Supplemental Material [S2
Results]) are similar as seen in Table 1. If the aircraft in the

congestion cluster can be defined as the ones exceeding the
capacity of sector, the evolution of congestion flights exhibits
similarities in peak, trend, and congestion periods as seen
in Figure 5(b). Hence, the congestion evolution in airspace
is closely associated with the route distribution and capacity,
with the intersection (node) structure being the key to
congestion propagation.

For model prediction, the other sector (GYA) data are
used. GYA is known to be one of the most congested inter-
sections in Guangzhou Approach, China. It has three inward
and one outward air routes. The average inbound traffics for
each route are 0.823, 0.108, and 1.031 aircraft per 5 minutes,
with the respective standard deviations of 1.012, 0.353, and
1.219 (for details of this analysis, see the Supplemental
Material [S1 Dataset]). Let 𝐹(𝑡) denote the flow passing the
intersection at time 𝑡; then 𝛼 is determined as

𝑀 = 𝐹 (𝑡) − 𝐴V𝑔𝐹 (𝑡)
𝐴V𝑔𝐹 (𝑡)

𝐺 = 𝑖𝑓 (𝑀 < 0, 0,𝑀)
𝛼 = 𝐴V𝑔𝐺

(4)

The propagation rate on GYA 𝛼 = 0.27 (for details of this
analysis, see the Supplemental Material [S1 Results]) and the
average degree ⟨𝑘⟩ = 10/7. The average values and stand-
ard deviations of three in-routes linked to GYA are diverse.
Denote 𝐼𝑖, 𝑖 = 1, 2, 3, as the average values of three inputs,
respectively, and 𝜎𝑖, 𝑖 = 1, 2, 3, as the corresponding standard
deviations of three in-routes, and the dissipation rate of GYA
can be formulated as

𝛽 = 1
∑3𝑖=1 (𝜎𝑖/𝐼𝑖)

≈ 0.17 (5)

5. Comparison with Model Prediction

Supposing the timespan as 5 minutes, the comparison
between the historical data and prediction result with model
(3) is shown in Figure 7(a). At the same time, considering the
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Figure 4: Part of airspace construction of Shanghai in China (2015).
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Figure 5: Flow of different sectors with similar/same degree.

limitation of capacity, the comparison between the result of
model (2) and the flow of GYA is shown in Figure 7(b). In
our previous paper [36], we have used model (2), model of
SIR with logistic, to describe the trend and maximum size of
congestion in cross network. Compared with model based on
probability [5], the prediction result ofmodel (2) ismore close
to the historical data from amplitude difference and phase
difference, which is shown in Figure 6. Based on the above
research results, we divide the hour into busy and non-busy
hour and select the sample data on non-busy hour as sample 1
and the sample on busy hour as sample 2.We have carried out
a case study based on operation data from October 16, 2016,

00:00:00 to October 23, 2016, 23:50:00 of the intersection
GYA in Guangzhou area of China.

In Figures 7(a) and 7(b), up-down bars (black and white
bars) are used to reveal the gap between the prediction results
of models and sample 1. The historical data used in com-
parison is from the radar track of GYA in October 19, 2016,
from 00:00:00 to 23:59:59. The time slice is 5 minutes. We
use some descriptions to compare the prediction results and
sample 1 (Table 2). We can find that the standard deviation,
variance, and standard error of mean of prediction result
using model (3) are close to the sample data, comparing with
them using model (2). Table 3 describes the difference value
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Table 1: Similarity of two sectors in Shanghai area in China.

Sector

Similarity
Intersection
number Capacity Probability of node

degree 2
Average node degree

⟨𝑘⟩
ZSSSAP09 18 38 50% 4.1
ZSSSAP12 18 38 50% 4.2

Table 2: Descriptions of sample 1 and prediction results.

Comparison Maximum Minimum Standard deviation Variance Standard error of mean
Sample 1 8 0 2.178 4.744 0.604
Result of model (3) 7.7 1 2.1656 4.690 0.6006
Result of model (2) 7.8 1 1.6213 2.629 0.4497
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Figure 6: Comparison of model with reality andmodel with model
[36].

between sample 1 and different models. Maximum, mini-
mum, standard deviation, variance, and standard error of dif-
ference value using model (3) are less than them using model
(2). In a conclusion, comparing model (2), the prediction
result using model (3) is more close to sample 1.

Notably, capacity does not limit the propagation process
in this case because our sample 1 is insensitive to sector capac-
ity. For short period prediction, large variations in sector
or intersection are infrequent. Furthermore, the predicted
values are most of the time higher than the historical data.
This is because human factors have a significant influence
on the actual operation. Both models predict the maxima
of congestion clusters accurately. Model (2) describes the
fluctuation of congestion propagation and dissipation as a
waveform, and model (3) makes the trend and stable state of
propagation more explicit.

Being different from sample 1, sample 2 is GYA flow on
busy hour. Descriptions of sample 2 and prediction results
using model (2) and model (3) can be seen in Table 4. Table 5
describes the difference value between sample 2 and different
models. Maximum, minimum, standard deviation, variance,

and standard error of difference value using model (2) are less
than them using model (3). In a conclusion, model (2) is of
higher accuracy predicting congestion clusters on busy hour,
compared with model (3).

6. Numerical Analysis

For the case of a homogeneous network, both model (2) and
model (3) are able to describe the congestion propagation
system. Numerical analysis of model (2) and model (3) can
reveal how the factors of propagation rate 𝛼, dissipation rate
𝛽, and system capability 𝐿 (in fact, 𝐿 has a direct effect on 𝑠)
affect congestion propagation. In both models (Figures 8(a),
8(b), 9(a), and 9(b)), the congestion clusters grow with the
values of 𝛼 and decrease with the values of𝛽 as seen in Figures
8(a) and 8(b), both nonlinear.

The factor of capability 𝐿 affects the convergence rate of
the system in theory, as seen in Figures 10(a)–10(d) (phase
plots with running time 𝑡 = 300). When disturbed by a con-
gestion incident, the propagation system fluctuation is obvi-
ous, with the amplitude fading until it finally reaches a steady
state. The time to regain the steady state is longer in the high-
capability system, as seen from the comparison of Figures
10(a)–10(d). As sector partitioning is a way of decreasing
capability, dividing the airspace system into smaller sectors
is beneficial for controlling congestion propagation in actual
operation. But sector partitioning is a complex work, it needs
to take many factors into consideration, and congestion
propagation will be one of the factors.

For the largest congestion cluster per unit time, (a) for the
parameter setting 𝛽 = 1/3 and (b) for the parameter setting
𝛼 = 0.1.

For the largest congestion cluster per unit time, (a) for the
parameter setting 𝛽 = 1/3 and (b) for the parameter setting
𝛼 = 0.1.

The proportion of discrete aircraft and congestion aircraft
with setting 𝛼 = 0.1, 𝛽 = 1/3, 𝐶0 = 3, 𝑈 0 = 10, and 𝑡 = 300:
(a) 𝐿 = 12, (b) 𝐿 = 17, (c) 𝐿 = 22, and (d) 𝐿 = 27.

Even though schedule has been ignored in analysis
of parameter relationships, the input distribution of the
inbound traffic resulting from upstream schedule is impor-
tant in calculating the parameters such as propagation and
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Figure 7: Comparison of model with sample 1.

Table 3: Comparison of difference value between model and sample 1.

Comparison Maximum Minimum Standard deviation Variance Standard error of mean
Difference value between sample
1 and model (3) 3.2 -1 1.42604 2.034 0.39551

Difference value between sample
1 and model (2)

4.8 -4.5 2.14694 4.609 0.59545

Table 4: Descriptions of sample 2 and prediction results.

Comparison Maximum Minimum Standard deviation Variance Standard error of mean
Sample 2 8 1 2.0817 4.333 0.6009
Result of model (3) 7.9 1 1.9151 3.668 0.5528
Result of model (2) 9 1 2.4325 5.917 0.7022

Table 5: Comparison of difference value between model and sample 2.

Comparison Maximum Minimum Standard
deviation

Variance Standard error of
mean

Difference value between sample
2 and model (3) 3 -2 1.5048 2.264 0.4344

Difference value between sample
2 and model (2) 1.8 -3 1.2799 1.638 0.3695

dissipation rates 𝛼 and 𝛽, respectively. Figure 11 shows us the
correlation between aircraft in different input distribution.
Figures 11(c) and 11(d) are the correlation networks of Figures
11(a) and 11(b), respectively. Congestion spreads backward
and sideward, leading aircraft to have influence on trailing
ones due to safety separation. The correlation network of
Figure 11(a) is more complex than that of Figure 11(b).

The simulation can be used to reveal the relationship
between input distribution and main parameters. Based on
the hypothesis of the same geometry of GYA (as seen in

Figure 12), the three input lines comply with the exponential
distribution. And the service interval of simulated GYA is 10
minutes. The result for the propagation rate can be seen in
Figure 13, computing 131,664 samples of simulation. And the
average propagation rate of aircraft in simulation is 0.122, less
than that in GYA. The inputs of airlines are even, which obey
the same distribution law, so the weights of airlines are the
same in complex networks. If all the arrivals on routes 1, 2, and
3 are distributed evenly and there is no correlation between
them, the dissipation rate can be expressed as
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Figure 9: Effect of the main parameters in model/system (2).

𝛽 = 1
𝑘𝑖𝑛 = 1

3 (6)

𝑘𝑖𝑛 is the in-degree of intersection.
In a conclusion, the distribution of inputs has an impact

on the propagation rate and dissipation rate.The propagation
rate is proportional to the flight density, and the dissipation
rate is inversely proportional to the standard deviation of
inputs. Let 𝜎𝑖/𝐼𝑖 denote the variable coefficient; it can be used
to measure the inequality of airline inputs. The dissipation
rate is inversely proportional to the variable coefficient. If the
sum of inputs is equal, the dissipation rate will be maximum
when the inputs comply with the same distribution.

7. Conclusion

Congestion propagation can be viewed as the transition
between congested cluster and discrete cluster based on the
correlation between aircraft in a complex network. In this
paper, we have presented reaction-diffusionmodels including
the different factors that can predict the evolution of conges-
tion cluster in a sector. Focusing on the relationships between
the main parameters, the propagation rate, dissipation rate,
and system capacity have an impact on the propagation of
congestion. In particular, the distribution of in-routes has

profound influences on the propagation rate and dissipation
rate. The numerical study has shown that the dissipation rate
is maximum when the inputs of airlines linked to the inter-
section are equal and that the propagation rate is proportional
to the flight density.

We can reveal the relationship between different clusters
withmodel (1) and predict the level of congestionwithmodels
(2) and (3) over short time periods. The results from predic-
tion and analysis of the parameters should help air traffic
controllers gain better understanding of congestion propa-
gation. For sector designers, it is important to optimize the
structure of the sectors. Research on airspace design mostly
focuses on the relationship between congestion and geometry
of routes. But the congestion propagation is not taken into
consideration. Further works will be aimed at the application
of congestion propagation models, improving the design of
an airspace. For example, sector partitioning should take the
system recovery into consideration.

This paper builds on our previous paper [36] formodeling
congestion propagation of airspace, by applying SIR with
logistic, which reflects the evolution of congestion peaks. It
focuses on the system of congestion propagation and ana-
lyzes how the factors of the system affect the propagation
process. Although the correlation of aircraft in propagation
is involved, the measuring method is not given in this paper.
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Figure 10: Phase plots with the different system capacity values.

Ignoring the difference of correlations, we get the simplified
models. And of them, model with capacity limitation is more
accuracy on busy hour, and it is not insensitive on non-
busy hour. In the future research, the correlation difference
between aircraft will be taken into account.
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