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We used the algebraic manipulations and the properties of Chebyshev polynomials to obtain an interesting identity involving the
power sums of the integral of the first-kind Chebyshev polynomials and solved an open problem proposed byWenpeng Zhang and
Tingting Wang.

1. Introduction

As we all know, the famous Chebyshev polynomials of the
first and second kind 𝑇𝑛(𝑥) and 𝑈𝑛(𝑥) are defined by the
second-order linear recursive formulae 𝑇0(𝑥) = 1, 𝑇1(𝑥) = 𝑥,
and 𝑇𝑛+1 = 2𝑥𝑇𝑛(𝑥) − 𝑇𝑛−1(𝑥) for all 𝑛 ≥ 1. 𝑈0(𝑥) = 1,𝑈1(𝑥) = 2𝑥, and 𝑈𝑛+1 = 2𝑥𝑈𝑛(𝑥) − 𝑈𝑛−1(𝑥) for all 𝑛 ≥ 1.

The general term formulae of 𝑇𝑛(𝑥) and 𝑈𝑛(𝑥) are
𝑇𝑛 (𝑥) = 𝑛2

[𝑛/2]∑
𝑘=0

(−1)𝑘 (𝑛 − 𝑘 − 1)!𝑘! (𝑛 − 2𝑘)! (2𝑥)𝑛−2𝑘 (1)

and

𝑈𝑛 (𝑥) = [𝑛/2]∑
𝑘=0

(−1)𝑘 (𝑛 − 𝑘)!𝑘! (𝑛 − 2𝑘)! (2𝑥)𝑛−2𝑘 (2)

Many authors had studied the elementary properties of
Chebyshev polynomials and obtained a series of interesting
conclusions. For example, C. Cesarano [1], C.-L. Lee and K.
B. Wong [2], and Wenpeng Zhang and Tingting Wang [3]
proved a series of identities involving Chebyshev polynomi-
als. A. H. Bhrawy et al. (see [4–7]) and N. Bircan and C.
Pommerenke [8] obtained many important applications of
the Chebyshev polynomials. Xiaoxue Li [9] obtained some
identities involving power sums of 𝑇𝑛(𝑥) and 𝑈𝑛(𝑥). At the
same time, she also proposed the following open problem.

Whether there exists an exact expression for the deriva-
tive or integral of the Chebyshev polynomials of the first kind
in terms of the Chebyshev polynomials of the first kind (and
vice versa)?

Tingting Wang and Han Zhang [10] partly proved this
problem. That is, they proved the identities

ℎ∑
𝑚=1

(𝑇󸀠𝑚 (𝑥))2𝑛 = (−1)𝑛
4𝑛 (𝑥2 − 1)𝑛 ⋅

(2𝑛)!
(𝑛!)2 ⋅ (

ℎ∑
𝑚=1

𝑚2𝑛)

+ 𝑛+1∑
𝑖=1

𝑛∑
𝑘=1

( 2𝑛
𝑛 − 𝑘) (−1)𝑛−𝑘

⋅ 𝑟 (𝑖, ℎ) 𝑇2𝑘𝑖 (𝑥) + 𝑠 (𝑖, ℎ) 𝑇2𝑘(𝑖−1) (𝑥)
4𝑛+𝑖 (𝑥2 − 1)𝑛+𝑖𝑈2𝑖

𝑘−1
(𝑥)

+ 𝑛+1∑
𝑖=1

𝑛∑
𝑘=1

( 2𝑛
𝑛 − 𝑘) (−1)𝑛−𝑘

⋅ 𝑝 (𝑖, ℎ) 𝑇2𝑘(ℎ+𝑖) (𝑥) + 𝑞 (𝑖, ℎ) 𝑇2𝑘(ℎ+𝑖−1) (𝑥)
4𝑛+𝑖 (𝑥2 − 1)𝑛+𝑖𝑈2𝑖

𝑘−1
(𝑥)

(3)

where 𝑟(𝑖, ℎ), 𝑠(𝑖, ℎ), 𝑝(𝑖, ℎ), and 𝑞(𝑖, ℎ) are computable con-
stants.

They also gave the exact expressions for all constants𝑟(𝑖, ℎ), 𝑠(𝑖, ℎ), 𝑝(𝑖, ℎ), and 𝑞(𝑖, ℎ) with 1 ≤ 𝑖 ≤ 𝑛 + 1, if 𝑛 is
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a small positive integer. If 𝑛 is large enough, then they only
gave an exact computational method for these constants, but
the computation is more complex.

For the power sums ∑ℎ𝑚=1(∫𝑥0 𝑇𝑚(𝑦)𝑑𝑦)𝑛, they have not
given any results in [10].Wenpeng Zhang and Tingting Wang
[3] proved that

ℎ∑
𝑛=1

∫𝑥
0

𝑇2𝑛 (𝑦) 𝑑𝑦 = 𝑇2ℎ+1 (𝑥)2 (2ℎ + 1) − 𝑥2 ,
ℎ∑
𝑛=1

∫𝑥
0

𝑇2𝑛 (𝑦) 𝑑𝑦 = 14 [𝑇2ℎ+1 (𝑥)2ℎ + 1 + (2ℎ − 1) 𝑥]
(4)

and
∞∑
𝑚=1

∫1
0

𝑇2𝑛+12𝑚 (𝑦) 𝑑𝑦

= −12 + 𝜋4𝑛+1
𝑛∑
𝑘=0

( 2𝑛+1𝑛−𝑘 )2𝑘 + 1 ⋅ cot ( 𝜋4𝑘 + 2)
(5)

WenpengZhang andTingtingWang [3] also proposed the
following two open problems. Whether there exists a exact
calculation formula for

ℎ∑
𝑘=1

(∫𝑥
0

𝑇𝑘 (𝑦) 𝑑𝑦)𝑛 or ∞∑
𝑚=0

∫1
0

𝑇2𝑛+12𝑚+1 (𝑦) 𝑑𝑦. (6)

In this paper, as a note of [3, 9], we shall use the analytic
and elementary method to give an interesting computational
formula for the second sums of (6).That is, we shall prove the
following conclusion.

Theorem 1. For any positive integer 𝑛, one has the identity
∞∑
𝑚=0

∫1
0

𝑇2𝑛+12𝑚+1 (𝑦) 𝑑𝑦

= 𝜋4𝑛+1
𝑛∑
𝑘=0

(−1)𝑘 ⋅ ( 2𝑛+1𝑛−𝑘 )2𝑘 + 1 ⋅ cot(𝜋4 + 𝜋4 ⋅ (−1)𝑘2𝑘 + 1) .
(7)

Taking 𝑛 = 1 and 2, noting that cot(𝜋/2) = 0, cot(𝜋/6) =√3, and cot(3𝜋/10) = tan(𝜋/5), from our theorem we may
immediately deduce the following two identities:

∞∑
𝑚=0

∫1
0

𝑇32𝑚+1 (𝑦) 𝑑𝑦 = − 𝜋48 ⋅ √3 (8)

and
∞∑
𝑚=0

∫1
0

𝑇52𝑚+1 (𝑦) 𝑑𝑦 = 𝜋320 ⋅ tan (𝜋5 ) − 5𝜋192 ⋅ √3. (9)

2. Several Simple Lemmas

In this section, we shall give several simple lemmas, which
are necessary in the proof of our theorem. Hereinafter, we
shall use a few basic results, including the properties of sin 𝑥,
for which we refer the reader to the introductory books by
Chengdong Pan and Chengbiao Pan [11]. First we have the
following.

Lemma 2. For any integer 𝑘 ≥ 0, one has the identity

𝐹 (𝑘) ≡ ∞∑
𝑚=0

( 1 + (−1)𝑚(2𝑚 + 1) (4𝑘 + 1) + 1
− 1 − (−1)𝑚(2𝑚 + 1) (4𝑘 + 1) − 1) = 𝜋2 ⋅ 14𝑘 + 1
⋅ cot(𝜋 (2𝑘 + 1)2 (4𝑘 + 1) ) .

(10)

Proof. For any real number 𝑥, from the infinite product of
sin(𝜋𝑥), we have

sin (𝜋𝑥) = 𝜋𝑥 ∞∏
𝑛=1

(1 − 𝑥2𝑛2) (11)

Taking the logarithm for (11) and then differentiating it for 𝑥
we have

𝜋 cot (𝜋𝑥) = 1𝑥 − ∞∑
𝑛=1

2𝑥𝑛2 − 𝑥2
= 1𝑥 + ∞∑

𝑛=1

( 1𝑛 + 𝑥 − 1𝑛 − 𝑥) .
(12)

Let 𝑁 be a positive integer. Then from the properties of
infinite series we have

𝐹 (𝑘) = lim
𝑁→+∞

∑
0≤𝑚≤2𝑁

( 1 + (−1)𝑚(2𝑚 + 1) (4𝑘 + 1) + 1
− 1 − (−1)𝑚(2𝑚 + 1) (4𝑘 + 1) − 1) .

(13)

On the other hand, we have

∑
0≤𝑚≤2𝑁

( 1 + (−1)𝑚(2𝑚 + 1) (4𝑘 + 1) + 1
− 1 − (−1)𝑚(2𝑚 + 1) (4𝑘 + 1) − 1) = 12𝑘 + 1
+ ∑
𝑚≤𝑁

2(4𝑚 + 1) (4𝑘 + 1) + 1
− ∑
𝑚≤𝑁

2(4𝑚 − 1) (4𝑘 + 1) − 1 = 12𝑘 + 1
+ 24𝑘 + 1 ( ∑

𝑚≤𝑁

14𝑚 + 1 + 1/ (4𝑘 + 1)
− ∑
𝑚≤𝑁

14𝑚 − 1 − 1/ (4𝑘 + 1)) = 12𝑘 + 1
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+ 12 (4𝑘 + 1) ( ∑
𝑚≤𝑁

1𝑚 + (2𝑘 + 1) /2 (4𝑘 + 1)
− ∑
𝑚≤𝑁

1𝑚 − (2𝑘 + 1) /2 (4𝑘 + 1)) = 12𝑘 + 1
+ 12 (4𝑘 + 1) ∑

𝑚≤𝑁

( 1𝑚 + (2𝑘 + 1) /2 (4𝑘 + 1)
− 1𝑚 − (2𝑘 + 1) /2 (4𝑘 + 1)) .

(14)

Taking𝑁 → +∞ in (14) and then combining (12) and (13) we
may immediately deduce the identity

𝐹 (𝑘) = ∞∑
𝑚=0

( 1 + (−1)𝑚(2𝑚 + 1) (4𝑘 + 1) + 1
− 1 − (−1)𝑚(2𝑚 + 1) (4𝑘 + 1) − 1) = 12𝑘 + 1 + 12 (4𝑘 + 1)
⋅ ∞∑
𝑚=1

( 1𝑚 + (2𝑘 + 1) /2 (4𝑘 + 1)
− 1𝑚 − (2𝑘 + 1) /2 (4𝑘 + 1)) = 𝜋2 ⋅ 14𝑘 + 1
⋅ cot(𝜋 (2𝑘 + 1)2 (4𝑘 + 1) ) .

(15)

This proves Lemma 2.

Lemma 3. For any positive integer 𝑘, one has the identity
∞∑
𝑚=0

( 1 − (−1)𝑚(2𝑚 + 1) (4𝑘 − 1) + 1 − 1 + (−1)𝑚(2𝑚 + 1) (4𝑘 − 1) − 1)
= −𝜋2 ⋅ 14𝑘 − 1 cot(𝜋2 ⋅ 2𝑘 − 14𝑘 − 1) .

(16)

Proof. For any positive integer𝑁, we have the identity

∑
0≤𝑚≤2𝑁

( 1 − (−1)𝑚(2𝑚 + 1) (4𝑘 − 1) + 1
− 1 + (−1)𝑚(2𝑚 + 1) (4𝑘 − 1) − 1) = −12𝑘 − 1 + 24𝑘 − 1
⋅ ∑
𝑚≤𝑁

14𝑚 − 1 + 1/ (4𝑘 − 1)
− 24𝑘 − 1 ∑

𝑚≤𝑁

14𝑚 + 1 − 1/ (4𝑘 − 1) = −12𝑘 − 1
+ 12 (4𝑘 − 1) ∑

0≤𝑚≤𝑁

( 14𝑚 − (2𝑘 − 1) /2 (4𝑘 − 1)
− 14𝑚 + (2𝑘 − 1) /2 (4𝑘 − 1)) .

(17)

Taking 𝑁 → +∞ in (17), from the method of proving
Lemma 2, we have

∞∑
𝑚=0

( 1 − (−1)𝑚(2𝑚 + 1) (4𝑘 − 1) + 1 − 1 + (−1)𝑚(2𝑚 + 1) (4𝑘 − 1) − 1)

= −12𝑘 − 1 + 12 (4𝑘 − 1)
⋅ ∞∑
𝑚=1

( 14𝑚 − (2𝑘 − 1) /2 (4𝑘 − 1)
− 14𝑚 + (2𝑘 − 1) /2 (4𝑘 − 1)) = −𝜋2 ⋅ 14𝑘 − 1
⋅ cot(𝜋2 ⋅ 2𝑘 − 14𝑘 − 1) .

(18)

This proves Lemma 3.

Lemma 4. For any positive integer 𝑛, one has the identity

∫𝑥
0

𝑇2𝑛+1 (𝑦) 𝑑𝑦
= 12 [𝑇2𝑛+2 (𝑥)2𝑛 + 2 + (−1)𝑛 (2𝑛 + 1)2𝑛 (𝑛 + 1) − 𝑇2𝑛 (𝑥)2𝑛 ] .

(19)

Proof. See Lemma 1 in [3].

Lemma 5. For any nonnegative integer 𝑛, one has the expres-
sions of 𝑥𝑛 in the following form:

𝑥2𝑛+1 = (2𝑛 + 1)!4𝑛
𝑛∑
𝑘=0

1(𝑛 − 𝑘)! (𝑛 + 𝑘 + 1)!𝑇2𝑘+1 (𝑥) (20)

Proof. In fact this is Lemma 4 of [12].

3. Proof of the Theorem

Now we shall complete the proof of our theorem. Taking𝑥 as 𝑇𝑚(𝑥) in Lemma 5 and noting that 𝑇2𝑘+1(𝑇𝑚(𝑥)) =𝑇(2𝑘+1)𝑚(𝑥) (see Lemma 3 of [13]) we have

𝑇2𝑛+1𝑚 (𝑥)
= (2𝑛 + 1)!4𝑛

𝑛∑
𝑘=0

1(𝑛 − 𝑘)! (𝑛 + 𝑘 + 1)!𝑇(2𝑘+1)𝑚 (𝑥)
(21)
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Applying (1) with 𝑥 = ±1 we have 𝑇𝑛(±1) = (±1)𝑛, and then
from (21), Lemma 2, Lemma 3, and Lemma 4 we can deduce
the identity
∞∑
𝑚=0

∫1
0

𝑇2𝑛+12𝑚+1 (𝑦) 𝑑𝑦 = (2𝑛 + 1)!4𝑛

⋅ 𝑛∑
𝑘=0

1(𝑛 − 𝑘)! (𝑛 + 𝑘 + 1)!
∞∑
𝑚=0

∫1
0

𝑇(2𝑘+1)(2𝑚+1) (𝑦) 𝑑𝑦

= (2𝑛 + 1)!2 ⋅ 4𝑛
⋅ 𝑛∑
𝑘=0

1(𝑛 − 𝑘)! (𝑛 + 𝑘 + 1)!
∞∑
𝑚=0

( 𝑇4𝑘𝑚+2𝑚+2𝑘+2 (1)4𝑘𝑚 + 2𝑚 + 2𝑘 + 2
− 𝑇4𝑘𝑚+2𝑚+2𝑘 (1)4𝑘𝑚 + 2𝑚 + 2𝑘) + (2𝑛 + 1)!2 ⋅ 4𝑛
⋅ 𝑛∑
𝑘=0

1(𝑛 − 𝑘)! (𝑛 + 𝑘 + 1)!
∞∑
𝑚=0

( (−1)𝑚+𝑘4𝑘𝑚 + 2𝑚 + 2𝑘 + 2
+ (−1)𝑚+𝑘4𝑘𝑚 + 2𝑚 + 2𝑘) = 24𝑛+1

𝑛∑
𝑘=0

(2𝑛 + 1)!(𝑛 − 𝑘)! (𝑛 + 𝑘 + 1)!
⋅ ∞∑
𝑚=0

( 1 + (−1)𝑘+𝑚4𝑘𝑚 + 2𝑚 + 2𝑘 + 2 − 1 − (−1)𝑚+𝑘4𝑘𝑚 + 2𝑚 + 2𝑘)

= 24𝑛+1
[𝑛/2]∑
𝑘=0

(2𝑛 + 1)!(𝑛 − 2𝑘)! (𝑛 + 2𝑘 + 1)!
⋅ ∞∑
𝑚=0

( 1 + (−1)𝑚(4𝑘 + 1) (2𝑚 + 1) + 1
− 1 − (−1)𝑚(4𝑘 + 1) (2𝑚 + 1) − 1) + 24𝑛+1
⋅ [(𝑛+1)/2]∑
𝑘=0

(2𝑛 + 1)!(𝑛 − 2𝑘 + 1)! (𝑛 + 2𝑘)!
⋅ ∞∑
𝑚=0

( 1 + (−1)𝑚(4𝑘 − 1) (2𝑚 + 1) + 1
− 1 − (−1)𝑚(4𝑘 − 1) (2𝑚 + 1) − 1) = 𝜋4𝑛+1
⋅ [𝑛/2]∑
𝑘=0

(2𝑛 + 1)!(𝑛 − 2𝑘)! (𝑛 + 2𝑘 + 1)! (4𝑘 + 1) cot(𝜋2
⋅ 2𝑘 + 14𝑘 + 1) − 𝜋4𝑛+1
⋅ [(𝑛+1)/2]∑
𝑘=1

(2𝑛 + 1)!(𝑛 − 2𝑘 + 1)! (𝑛 + 2𝑘)! (4𝑘 − 1) cot(𝜋2
⋅ 2𝑘 − 14𝑘 − 1) = 𝜋4𝑛+1

[𝑛/2]∑
𝑘=0

( 2𝑛+1𝑛−2𝑘 )4𝑘 + 1 cot(𝜋2 ⋅ 2𝑘 + 14𝑘 + 1)

− 𝜋4𝑛+1
[(𝑛+1)/2]∑
𝑘=1

( 2𝑛+1𝑛+2𝑘 )4𝑘 − 1 cot(𝜋2 ⋅ 2𝑘 − 14𝑘 − 1) = 𝜋4𝑛+1
⋅ 𝑛∑
𝑘=0

(−1)𝑘 ( 2𝑛+1𝑛−𝑘 )2𝑘 + 1 cot(𝜋4 + 𝜋4 ⋅ (−1)𝑘2𝑘 + 1) .
(22)

This completes the proof of our theorem.
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