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This paper presents a novel hole filling method for the scattered point sampled surfaces, particularly for recovering the missing
points at featured curves or corners. Firstly, a tensor voting based multicriterion is proposed to identify the hole boundary points;
accordingly, the holes on point sampled surface are classified into featured holes and nonfeatured holes. Secondly, a novel spline
curve guided tensor voting mechanism is proposed and used in inference of missing feature points. Thirdly, the featured holes
are split into nonfeatured holes using local projection. Then, a plane guided tensor voting mechanism is proposed to recover the
missing surface points. Experimental results validate the effectiveness and accuracy of proposed methods in filling holes on point
sampled surface including the sharp features.

1. Introduction

Point sampled surfaces are sets of data points and can be
acquired through three-coordinate measuring equipment. It
is an important data source in reverse engineering and is
widely used in many fields, such as industrial measurement,
restoration of cultural relics, fashion design, and medical
research [1]. Point cloud or point sampled surface has become
an important form of digital media. However, for many rea-
sons, such as occlusion, the damaging of original models, or
limitation of scanners, the point cloud model of the original
object may be incomplete and form different types of holes.
These holes influence many subsequent operations, such
as model rebuilding, rapid prototyping, and finite element
analysis. Therefore it is necessary to fill and repair them in
a reasonable manner.

Although several hole filling methods have been pro-
posed, it is worthy pointing out that most of them are suitable
for some holes located on smooth regions (without missing
feature points). However, an ideal hole filling algorithm
should be able to deal with the complex holes including an
island or one with missing sharp features. In addition, it
should be able to preserve the geometric features of the origi-
nal object. Due to the diversity and complexity of the holes,
none of existing methods work for all holes.

In this paper, we focus on the different holes thatmay have
some locating on feature regions and present a novel feature
preserving hole filling algorithm. Firstly, we determine the
hole boundary and the incomplete feature curves and cate-
gorize the holes on point sampled surface into two types, the
featured holes and the nonfeatured holes.Then, spline guided
tensor voting was proposed and used to restore the missing
part of feature curves. And these reconstructed feature curves
split the original hole into simple subholes. Finally, all the
nonfeatured holes were filled by the plane guided tensor vot-
ing. Themain contributions of our algorithm can be summa-
rized as follows:

(1) A multicriterion is developed in order to improve
the reliability of hole boundary point identification. In the
construction, the tensor voting based hole boundary iden-
tification criterion is proposed and combined with half disk
criterion and maximum angle criterion.

(2) A spline curve guided tensor voting mechanism is
proposed and used in inference of missing feature points,
which gets rid of either the oversmoothed reconstruction of
direct spline curve fitting or the inefficiency of traditional
Single Sub-Voxel C Marching.

(3) A plane guided tensor voting mechanism is proposed
and used in inference of surface points, to improve the accu-
racy and efficiency of the algorithm.
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The rest of this paper is organized as follows. The related
work is briefly reviewed in Section 2. Section 3 presents the
outline of our method. Hole boundary point identification
and hole classification methods are proposed in Section 4.
Section 5 presents our feature point filling method. Our sub-
hole filling method is described in Section 6. Section 7
presents the experimental results. And, in the last section, the
limitations of our method and proposals for future research
are indicated.

2. Related Work

Many holes filling algorithms have been proposed in recent
years. In general, existing algorithms can be categorized into
two types: mesh-based methods and point-based methods.
At present, a large portion of methods is based on mesh
models, which make use of topological information. Topo-
logical connectionmake the hole boundary identification and
geometrical estimation easy; meanwhile, the topological re-
construction of incomplete point itself is still challenging. On
the other hand, the point model is often obtained by scanning
equipment and is easily affected by noise and not being able
to deal directly with it. Thus, the geometrical estimation as
well as hole filling directly on point sampled surface is more
challenging than that on meshed surface.

2.1. Mesh-Based Methods. Mesh-based methods often fill
holes locally with the rest of the surface unchanged. Liepa
[2] used refinement and fairing to refine the obtained patch
mesh, so that the triangle density coincide with that of the
surrounding mesh. This method was further used by Attene
[3]. Pernot et al. [4] filled holes by minimizing the curvature
variant between the surrounding and inserted meshes.

Another class of mesh-based methods is the volumetric
based methods in which the mesh model is firstly converted
into a volume representation. During the repairing process,
the generation of a signed volume is the key step. Davis et al.
[5] defined a signed distance function in the vicinity of the ob-
served surface and applied a diffusion process to extend this
function until its zero set bridged all holes. Ju [6] employed a
space-efficient octree grid and generated blobby surfaces by
recording Hermite data, to reproduce the sharp features.

NURBS curves and surfaces are also a kind of repair tools
for the holes located on smooth regions of a model. For these
types of methods, one needs to choose weights and solve a
large system of equations to compute the knot vectors. Piegl
and Tiller [7] used NURBS patches to fill an n-sided region.
Besides, Xu et al. [8] and Park et al. [9] proposed the surface
filling method based on PDEs independently. Zhao et al. [10]
proposed the mesh repair algorithm based on the Poisson
equation.

2.2. Point-BasedMethod. Thepoint model are often obtained
by scanning equipment, and is easily affected by noise and
not being able to deal directly with it. Thus, the geometrical
estimation as well as hole filling directly on point sampled
surface is more challenging than that on meshed surface. In
this field, Sharf et al. [11] proposed a context-basedmethod, in
which, the characteristics of the given surface were analyzed,

and the holes were iteratively filled by copying patches from
valid regions of the given surface. Pavel and Bert [12] de-
scribed a method for identifying and filling holes on point
sampled surfaces; they fitted an algebraic surface patch to the
neighborhood and sample auxiliary points. Chen et al. [13]
proposed an algorithm based on the average error and aver-
age curvature to fill up hole areas of point sampled surfaces.

Above-mentioned algorithms including the mesh-based
methods and the point-based methods are able to fill certain
holes precisely, while when the hole exhibits complex shapes,
e.g., containing the sharp corners or edges of original model,
the filling quality declines significantly. In response to this
issue, a sensible strategy is to split the original complex hole
into small subholes according to a feature analysis and then
fill those small holes, respectively. The key step is to re-
construct missing parts of the feature curves in advance. Jun
[14] presented a piecewise hole filling algorithm for complex
holes. This algorithm incrementally splits a complex hole
into small subholes with respect to the shape of the holes
boundary and then fills 104 simple holes each with planar
triangulation method. Li et al. [15] proposed a feature pre-
serving mesh holes filling algorithm, which used a polyno-
mial blending curve to construct the missing parts of the
feature curves and used the Bézier-Lagrange hybrid patch
to fill each subhole. Similarly, Wang et al. [16] used Gaussian
mapping and convex/concave analysis to produce missing
feature curves and filled each subhole by a modified advanc-
ing front method individually. Lin and Wang [17] presented
a tensor voting based hole filling method for the scattered
point cloud, particularly for recovering the missing points at
featured curves or corners.

It is worth mentioning that these methods are suitable
for meshmodel rather than point models. Feature preserving
filling of complex holes directly on point sampled surface
is still an issue. This paper extended the tenor voting based
hole filling method proposed in [17] through novel feature
curves reconstruction using spline guided tensor voting and
recovering of nonfeatured points using plane guided tensor
voting.

3. Algorithm Overview

In this paper, we make use of the robust structure inference
ability of tensor voting technique to identify the hole bound-
ary points and infer the missing curve points and the surface
points. Fundamental usage and further application of tensor
voting technique can be found in [18–23].

The procedure of the proposed hole filling method is
illustrated in Figure 1. Firstly, the multicriterion hole bound-
ary point identification method is proposed based on tensor
voting. Secondly, the feature points are identified using tensor
voting; refer to [24]. Then, holes are classified into featured
holes and nonfeatured holes by checking whether feature
points are contained in the hole boundary points sets. Fea-
tured holes are firstly treated with feature sets matching [16],
and then spline guided tensor voting is proposed and used in
feature curves reconstruction. Finally, the featured holes are
split into nonfeatured hole through local projection, and the
nonfeatured holes are filled by proposed plane guided tensor
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Figure 1: Overview of the holes filling method.

Table 1: The classification of points.

Decision vector Point type
𝜂1 ≫ 𝜂2 ≈ 𝜂3 Inner point
𝜂1 ≈ 𝜂2 ≫ 𝜂3 Curve point
𝜂1 ≈ 𝜂2 ≈ 𝜂3 Corner point or noise
𝜂1 ≫ 𝜂2 ≫ 𝜂3 Hole boundary point

voting. Due to this split and inference strategy, structures as
well as sharp features of original model could be preserved
effectively.

4. Hole Classification

4.1. Hole Boundary Point Identification. Identification of hole
boundary points can be challenging due to the deficiency of
topological connection information in point sampled surface.
Hence, a multicriterion hole boundary point identification
method is proposed in this section based on tensor voting.

Let P be a point sampled surface, p(𝑥0,𝑦0, 𝑧0) be a 3D
point in P, and p1, p2, ⋅ ⋅ ⋅ , p𝑘 are neighbors of p. n(𝑛𝑥, 𝑛𝑦, 𝑛𝑧)
is the normal at p, as illustrated in Figure 2.

The local tangent plane Π at p can be expressed as 𝑛𝑥𝑥 +
𝑛𝑦𝑦 + 𝑛𝑧𝑧 − (𝑛𝑥𝑥0 + 𝑛𝑦𝑦0 + 𝑛𝑧𝑧0) = 0. Let p󸀠𝑗, 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑘,
be the projected neighbors on Π along normal n.

Suppose T ∈ 𝑅3×3 is voted tensor at point p and 𝑒1, 𝑒2,
𝑒3 and 𝜆1, 𝜆2, 𝜆3 (where 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ 0) are the eigen
vectors and corresponding eigenvalues of T. Let us construct
the tensor voting decision vector 𝜂 = [𝜂1, 𝜂2, 𝜂3]𝑇 by

𝜂1 = √𝜆1
√𝜆1 + √𝜆2 + √𝜆3 ,

𝜂2 = √𝜆2
√𝜆1 + √𝜆2 + √𝜆3 ,

𝜂3 = √𝜆3
√𝜆1 + √𝜆2 + √𝜆3 .

(1)

According to tensor voting theory, the relationship
between point type and constructed tensor voting decision
vector can be concluded as in Table 1.

Let us construct our tensor voting criterion 𝑓𝑇(𝑝, 𝑘) by
𝑓𝑇 (p, 𝑘) = 9 (𝜂1 − 𝜂2) (𝜂2 − 𝜂3) , (2)

where p is the point to be analyzed and 𝑘 is the neighboring
number.

Suppose 𝑓𝜃(p, 𝑘) is the hole boundary identifying func-
tion composed of the half disk criterion, defined as follows
[25]:

𝑓𝜃 (p, 𝑘) = 𝜃𝑚𝑎𝑥 − 2𝜋/𝑘
𝜋 − 2𝜋/𝑘 , (3)

where 𝜃𝑚𝑎𝑥 is the maximum separated angle.
Suppose 𝑓𝑔(p, 𝑘) is the hole boundary identifying func-

tion composed of the half disk criterion, defined as follows
[25]:

𝑓𝑔 (p, 𝑘) = 3𝜋 󵄩󵄩󵄩󵄩𝑔 − 𝑝󵄩󵄩󵄩󵄩
4𝑟 , (4)

where g = (1/𝑘)∑𝑘𝑖=1 p󸀠𝑖 is the gravity center of projected
neighbors and r = (1/𝑘)∑𝑘𝑖=1 ‖p−p󸀠𝑖‖ is the averaged distance
between projected neighbors and point p.

Finally, we construct our multicriterion hole boundary
point identification function 𝐹(p, 𝑘) by normalizing and
weighting 𝑓𝜃(p, 𝑘), 𝑓𝑔(p, 𝑘) and proposed 𝑓𝑇(𝑝, 𝑘) by

𝐹 (p, 𝑘) = 𝜔𝜃𝐺 (𝑓𝜃 (p, 𝑘)) + 𝜔𝑔𝐺 (𝑓𝑔 (p, 𝑘))
+ 𝜔𝑇𝐺 (𝑓𝑇 (p, 𝑘)) ,

(5)

where 𝐺(x) = (𝑥 − 𝑥𝑚𝑖𝑛)/(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) is the normalization
function, 𝜔𝜃, 𝜔𝑔, and 𝜔𝑇 (fulfilling 𝜔𝜃 + 𝜔𝑔 + 𝜔𝑇 = 1) are
weights of the three identifying criterion, and 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥
are the minimum and maximum value of the variable.

Figure 3 shows identifying results of hole boundary points
using different methods, which reveals that the proposed
multicriterion function is able to identify the hole boundary
points reliably.

4.2. Hole Classification. Considering the variety of holes and
the efficiency of holes filling methods we simply classify the
holes based on their feature. In recent years some methods
of hole classification have been presented, and the general
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Figure 3: Hole boundary points identifying results: (a) original point cloud, (b) partial enlarged detail of hole region, (c) identified result
by maximum angle criterion, (d) identified result by half disk criterion, (e) identified result by tensor voting criterion, (f) identified result
by proposed multicriterion method, (g) partial enlarged detail of identified result by maximum angle criterion, (h) partial enlarged detail of
identified result by half disk criterion, (i) partial enlarged detail of identified result by tensor voting criterion, and (j) partial enlarged detail
of identified result by proposed multicriterion method.



Mathematical Problems in Engineering 5

Hole boundary points
Hole curves

(a)

Hole boundary points
Hole curves

(b)

Hole boundary points
Hole curves

(c)

Feature points
Hole boundary points

Feature curves
Hole curves

(d)

Feature points
Hole boundary points

Feature curves
Hole curves

(e)

Figure 4:The basic hole classification: (a) single-close hole, (b) island-close hole, (c) unclosed hole, (d) featured closed hole, and (e) featured
unclosed hole.

t2

1

2

4

3

1
3

1
2
1

1

L2

Figure 5: Illustration of the hole with missing feature.

method are showed in [26].This paper reclassifies the holes by
checking whether the feature points are contained in the hole
boundary point sets. Accordingly, all holes on point sampled
surfaces are classified into featured holes, as shown in Figures
4(a), 4(b), and 4(c) or nonfeatured holes as shown in Figures
4(d) and 4(e).

5. Feature Curve Reconstruction

In order to acquire satisfactory results in filling of complex
holes (with missing sharp features), a reasonable method is
to split the complex hole region combining the neighboring
points into nonfeatured ones. In fact, multiple choices can be
made for segmentation of the neighboring points. An effec-
tive way is the feature based region segmentation. Hence, re-
construction of feature curve and inference of curve structure
within the hole region become the key operation.

For inference of missing curve structure, a straight way
is fitting or interpolating of the neighboring feature points.
Unfortunately, this type of operation often achieves over-
smoothed curve structure, leading to distortion in complex
hole filling. Another substitution is the robustmachine learn-
ing method, such as Single Sub-Voxel C march [27], which
is highly related on tensor voting and Marching Cubes. This
type of methods tends to repair the missing points accurately
with feature preserving. But, the filling-and-judge strategy
of Single Sub-Voxel C march restricts its potential efficiency,
preventing its further application. Thus, this section presents

a novel curve structure inference method, benefiting both
from spline fitting and tensor voting.

Firstly, feature sets are matched using tangent projection
[16]. As shown in Figure 5, points V1 and V4 are matched.
Meanwhile, points V2 and V3 are also matched.

Afterwards, a new spline guided tensor voting strategy is
proposed to infer the missing feature points, as illustrated in
Figure 6.

Suppose 𝑝1, 𝑝2, ⋅ ⋅ ⋅ is the matched featured points and 𝐿
is the fitted spline curve. 𝑜 is a point on 𝐿, 𝑢 and V span the
normal plane of 𝐿 at 𝑜, and 𝜔 is the normal of plane 𝑢V.

𝑥 = 𝐹𝑥 (𝑡) ,
𝑦 = 𝐹𝑦 (𝑡) ,
𝑧 = 𝐹𝑧 (𝑡) ,

(6)

Since L is the approximated feature curve, the real feature
point must locate on the normal plane of L and receives local
maximum plate tensor saliency (most probably being a curve
point).Thus, we construct our local coordinate system 𝑢V𝑤 as
shown inFigure 6 and place four imagined points 𝑞1 , 𝑞2, 𝑞3, 𝑞4
on 𝑢V around the circle centered at 𝑜, with radius 𝑟. The
imagined points receive and accumulate tensor tokens voted
from neighboring matched featured points 𝑝1, 𝑝2, ⋅ ⋅ ⋅. Denote
the tensor token at the four imaginary points by T1,T2,T3,
and T4 independently. Similarly, denote the plate saliency at
the four imaginary points by 𝑠1, 𝑠2, 𝑠3, and 𝑠4 independently.
According to tensor voting theory, the real feature point holds
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the local maximum plate saliency on plane 𝑢V, which means
𝑑𝑠/𝑑𝑢 = 𝑑𝑠/𝑑V = 0, where s is the plate saliency of points
on plane 𝑢V. Hence, the real feature point can be computed
through interpolate of derivation of 𝑠1, 𝑠2, 𝑠3, and 𝑠4.

Mechanism of the proposed feature point estima-
tion method is illustrated in Figure 7. Suppose 𝑔𝑖,𝑢 =
𝑑𝑠𝑖/𝑑𝑢, 𝑔𝑖,V = 𝑑𝑠𝑗/𝑑V, where 𝑖, 𝑗 = 1, 2, 3, 4. Since 𝑔2,𝑢 < 0
and 𝑔3,𝑢 > 0, hence a point 𝑔5,𝑢 = 0 can be estimated by linear
interpolation of 𝑔2,𝑢 and 𝑔3,𝑢. Similarly, 𝑔6,𝑢 = 0 can also be
estimated. Thus, the points on the line connecting 𝑔5,𝑢 and𝑔6,𝑢 are considered to hold 𝑑𝑠/𝑑𝑢 = 0. Similarly, another line
with 𝑑𝑠/𝑑V = 0 can also be estimated. And the feature point
located on plane 𝑢V can be estimated by intersecting the two
lines. In fact, the distribution of 𝑔𝑖,𝑢 and 𝑔𝑖,V on 𝑢V can be
rather complicated, and the readers can refer to the Marching
Cube type algorithms.

6. Subhole Filling

After feature curves reconstruction, the complex holes com-
bining with their neighbors can be split into simple ones. For
this, we constructed a local projection plane through gravity

Table 2: The number of distribution points.

Interval (0, 𝑑/2] (𝑑/2, 𝑑] (𝑑, 3𝑑/2] (3𝑑/2, 2𝑑] ⋅ ⋅ ⋅
Count 0 1 2 3 ⋅ ⋅ ⋅

center and averaged normal of hole boundary points. And
then project the neighboring points and feature points on to
the projection plane and segment the neighbor points by their
relationship with the projected feature curve. Thus, the hole
region and the neighboring points can be split into simple
ones, as shown in Figure 8.

In order to fill the nonfeatured simple holes, this section
proposed a plane guide tensor voting method as follows.

Step 1. Project all hole boundary points onto a local projec-
tion plane defined by gravity center and averaged normal of
hole boundary points, as shown in Figure 9(a). In fact, the
gravity center p of the hole and the averaged normal n of the
projection plane can be computed by

p = 1
𝑙
𝑙

∑
𝑗=1

p𝑗 = [𝑥0, 𝑦0, 𝑧0]𝑇 , (7)

n = 1
𝑙
𝑙

∑
𝑗=1

n𝑗 = [𝑛𝑥, 𝑛𝑦, 𝑛𝑧]𝑇 , (8)

where p𝑗 is the 𝑗th hole boundary point, n𝑗 is the normal
of the p𝑗. The projection plane defined by p and n can be
expressed as follows:

[[[
[

𝑥󸀠𝑗
𝑦󸀠𝑗
𝑧󸀠𝑗

]]]
]

= [[[
[

𝑥𝑗
𝑦𝑗
𝑧𝑗
]]]
]

− 𝑘𝑗[[
[

𝑛𝑥
𝑛𝑦
𝑛𝑧

]]
]
, (9)

where

𝑘𝑗 =
𝑛𝑥 (𝑥𝑗 − 𝑥0) + 𝑛𝑦 (𝑦𝑗 − 𝑦0) + 𝑛𝑧 (𝑧𝑗 − 𝑧0)

𝑛2𝑥 + 𝑛2𝑦 + 𝑛2𝑧 . (10)

Step 2. Distribute the distribution points on hole projection
plane evenly, as shown in Figure 9(b). Denote the distance
betweenp󸀠𝑗 andp by𝑑𝑗. Suppose the average distance between
neighboring points within the original point sampled surface
is 𝑑; then distribute the distribution points with regular
distances as shown in Table 2.

The coordinates of each distribution point can be pre-
cisely computed. As shown in Figure 9(b), the coordinates
of distribution points p󸀠1𝑎 and p󸀠1𝑏 between p󸀠1 and p can be
computed by

[[[
[

𝑥󸀠1𝑎
𝑦󸀠1𝑎
𝑧󸀠1𝑎

]]]
]

= [[[
[

𝑥󸀠1
𝑦󸀠1
𝑧󸀠1

]]]
]

+ 𝑑
3𝑑1

[[[
[

(𝑥0 − 𝑥󸀠1)
(𝑦0 − 𝑦󸀠1)
(𝑧0 − 𝑧󸀠1)

]]]
]
, (11)
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distribution of imaginary points.

and

[[[
[

𝑥󸀠1𝑏
𝑦󸀠1𝑏
𝑧󸀠1𝑏

]]]
]

= [[[
[

𝑥󸀠1
𝑦󸀠1
𝑧󸀠1

]]]
]

+ 2𝑑
3𝑑1

[[[
[

(𝑥0 − 𝑥󸀠1)
(𝑦0 − 𝑦󸀠1)
(𝑧0 − 𝑧󸀠1)

]]]
]
. (12)

Step 3. Distribute evenly the imaginary points along the nor-
mal of the hole projection plane, and each surface saliencies
of the imaginary points is accurately computed. As shown
in Figure 9(c), the point set p󸀠1𝑎1, p󸀠1𝑎2, ⋅ ⋅ ⋅ , p󸀠1𝑎7, for example,
is the imaginary points of the distribution point p󸀠1𝑎1 along
the normal n, and the spacing of two consecutive imaginary
points is the original point cloud density𝑑.The coordinates of
imaginary point p󸀠1𝑎𝑘, 1 ≤ 𝑘 ≤ 7, can be computed as follows:

[[[
[

𝑥󸀠1𝑎𝑖
𝑦󸀠1𝑎𝑖
𝑧󸀠1𝑎𝑖

]]]
]

= [[[
[

𝑥󸀠1𝑎
𝑦󸀠1𝑎
𝑧󸀠1𝑎

]]]
]

+ (𝑖 − 4) 𝑑[[
[

𝑛𝑥
𝑛𝑦
𝑛𝑧

]]
]
, (𝑖 = 1, 2, ⋅ ⋅ ⋅ , 7) . (13)

After determining the coordinates of imaginary points,
their refined tensor tokens are required by dense tensor
voting using existing points belonging to the same areas and
decomposed to compute the surface saliencies.

Step 4. In order to further accurately calculate the filling
point coordinates, two-order polynomial method fit method
is put forward to estimate the extreme of surface saliencies.

Suppose the set of imaginary points p󸀠1𝑎1, p󸀠1𝑎2, ⋅ ⋅ ⋅ , p󸀠1𝑎7
corresponding surface saliencies, respectively, is 𝑠1𝑎1, 𝑠1𝑎2,⋅ ⋅ ⋅ , 𝑠1𝑎7. We firstly construct the 2D local coordinate system
where the normal n corresponds to horizontal axle and the
surface saliency corresponds to vertical axle, as shown in
Figure 10, where 𝑏 is the vertical distance from the imaginary
point and the projection plane, and its sign is decided by their
relative location. Then, the coefficients of a quadratic curve
equation are estimated. The extreme of surface saliency is
computed, when 𝑏󸀠 = −𝐵/2𝐴.

𝑦 = 𝐴𝑥2 + 𝐵𝑥 + 𝐶. (14)
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Figure 10: Illustration of the two-order polynomial method fit method.

Table 3: The distances from repair points to the original surface.

type Hole Maximum(mm) Average(mm)
Davis et al. Centin et al. Our method Davis et al. Centin et al. Our method

I 0.19 0.00 0.00 (𝜎 = 0.3) 0.14 0.00 0.00 (𝜎 = 0.3)
II 0.21 0.07 0.15 (𝜎 = 0.2) 0.04 0.03 0.04 (𝜎 = 0.2)
III 0.33 0.87 0.01 (𝜎 = 0.3) 0.05 0.60 0.00 (𝜎 = 0.3)
IV 0.52 0.96 0.25 (𝜎 = 0.3) 0.06 0.43 0.03 (𝜎 = 0.3)
V 1.10 2.20 0.14 (𝜎 = 0.2) 0.13 0.88 0.02 (𝜎 = 0.2)

7. Experimental Results

This section performs our feature preserving holes filling
experiments, which is coded with C++, running on Visual
Studio 2010 software and Windows systems. In order to exa-
mine the performances of the algorithm on filling four types
of holes (holes on plane, smoothed surface, with missing
sharp curve, with missing corner), the Fandisk model was
selected as the fundamental model for its possession of all
these features. In our experiments, the techniques by Davis et
al. [5] and by Centin et al. [28] were also used to fill the same
holes for comparison. In order to better observe the experi-
mental results, we demonstrate the meshed Fandisk models
and hole areas.

7.1. Filling of Simple Holes. In order to examine the perfor-
mances of the algorithm on filling simple holes, holes on
plane (Hole I) and smooth surface (Hole II) are artificially
generated and then filled by [5, 28] and proposed method.

As shown in Figure 11, Davis yields biased estimation for
missing plane points, Centin’smethods and proposedmethod
achieve almost flat recovery without error, and numerical
static error can be found in Table 3.This type of hole can also
be ideally filled by plane extension for simplicity.

As shown in Figure 12, Centin’s method yields ideal
smoothed recovery of missing points on surface; the other
two methods yield biased estimation. Numerical static error
shows that the proposed method yields better maximum
error than Davis’s. And the three methods yield similar
averaged error. Centin’s methods achieve best performance
on smooth surface filling. Plane extension filling of this type
of holes tends to yield relative large residue distortion near the

center of the hole, while the NURBS surface extension often
yields better accuracy.

7.2. Filling of Complex Holes. In order to examine the perfor-
mances of the algorithm on filling complex holes, holes with
missing curve points (Hole III and Hole IV) or corner points
(Hole V) are artificially generated. And then, they are filled
by [5, 28] and proposed method.

As shown in Figure 13, Davis’s and Centin’s methods yield
biased estimation for filling of holes with missing feature
points, and our proposed method achieves almost ideal re-
covery without error. Numerical results in Table 3 also vali-
date the accuracy of our proposed method in filling of these
types of holes.

As shown in Figure 14, our proposedmethod performs far
better than Davis’s and Centin’s methods for filling of holes
with missing curve points. Numerical results in Table 3 also
validate the accuracy of our proposed method in filling of
these types of holes.

As shown in Figure 15, our proposedmethod performs far
better than Davis’s and Centin’s methods for filling of holes
with missing corner points. Numerical results in Table 3 also
validate the accuracy of our proposed method in filling of
these types of holes.

In fact, the complex holes are difficult to be filled through
simple plane or fitted surface extension without reliable
neighboring segmentation and robust surface fitting. In addi-
tion, post-point sampled surface smoothing is often involved
for better transition between different surfaces.

7.3. Accuracy Analysis. In this subsection, the maximum and
averaged errors in filling of hole using three methods are
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(a) (b) (c) (d)

Figure 11: Visualization of filled results of Hole I. (a) Hole located on plane. (b) Filling result of Davis et al. (c) Filling result of Centin et al.
(d) Proposed result.

(a) (b) (c) (d)

Figure 12: Visualization of filled results of Hole II. (a) Hole located on smooth surface. (b) Filling result of Davis et al. (c) Filling result of
Centin et al. (d) Proposed result.

(a) (b) (c) (d)

Figure 13: Visualization of filled results of Hole III. (a) Hole with sharp feature missing. (b) Filling result of Davis et al. (c) Filling result of
Centin et al. (d) Our result.

(a) (b) (c) (d)

Figure 14: Visualization of filled results of Hole IV. (a) Hole with sharp feature missing. (b) Filling result of Davis et al. (c) Filling result of
Centin et al. (d) Our result.
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(a) (b) (c) (d)

Figure 15: Visualization of filled results of hole V. (a) Fandisk with a missing corner. (b) Filling result of Davis et al. (c) Filling result of Centin
et al. (d) Our result.
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Figure 16: Distances comparison between different attenuation factors. (a) Maximum distances. (b) Average distances.

computed and arranged in Table 3. It can be summarized
from Table 3 that the proposed hole filling method for point
sampled surface yields better accuracy than Centin’s and
Davis’s methods, especially for holes with missing sharp
features.

7.4. Parameter Analysis. In our method, the scale parameter
𝜎 in tensor voting is also a user defined parameter. This
parameter influences both the accuracy and the robustness
of the algorithm. Thus, experiments with different 𝜎 values
are performed, and the maximum and averaged error are
computed and plotted in Figure 16. In our experiments, 𝜎
increase from 0.1 to 0.9. As shown in Figure 16, the algorithm
achieves best performance for both maximum and averaged
error for 𝜎 ≈ 0.25. In fact, 𝜎 determines the attenuating rate of
the energy decay function in tensor voting. Larger 𝜎 tends to
achieve smoothed but biased estimation. And smaller 𝜎 tends
to achieve unbiased but noisy estimation.

7.5. Complexity and Efficiency Analysis. This paper presented
a novel feature preserving hole filling method for point sam-
pled surface, especially on multicriterion based hole bound-
ary identification, spline guided tensor voting based missing

feature point estimation, and plane guided tensor voting
based surface point estimation.

The spline guided tensor voting based missing feature
point estimation strategy gets rid of either the oversmoothed
reconstruction caused by direct spline curve fitting, or the
inefficiency of traditional Single Sub-Voxel C Marching. The
spline curve provides the most probable estimation for the
potential feature point. Then, the tensor voting is used to
rectify the estimation in order to achieve a more accurate
estimation. Concerning efficiency, the proposed method
needs only 4 votes, while the traditional Single Sub-Voxel C
Marching needs at least 8 votes (8 vertex of a cube), for one
estimation. Furthermore, the traditional Single Sub-Voxel C
Marching needs to try multiple cubes for one estimation.
Thus, the proposed spline guided tensor voting based missing
feature point estimation strategy yields far better efficiency
than Single Sub-Voxel C Marching.

The plane guided tensor voting based surface point
estimation makes use of plane prediction and tensor voting
rectification. Concerning accuracy, the proposed method
achieves quadratic estimation for surface point estimation
while the traditional Marching Cubes algorithm provides lin-
ear estimation. Concerning efficiency, the proposed method
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needs 3 votes for each surface point estimation, while the
traditional Marching Cubes algorithm needs at least 8 votes.

8. Conclusions and Remarks

This paper proposed a new feature preserving hole filling
algorithm to point sampled surface. A novel hole multicrite-
rion based boundary identificationmethod for point sampled
surface is proposed to improve the reliability of hole bound-
ary point identification. A spline curve guided tensor voting
method is proposed to infer the missing feature points. A
plane guided tensor voting mechanism is proposed to infer
the missing surface points. Experimental results validate the
effectiveness and accuracy of our proposed methods in re-
covering holes on point sampled surface including the sharp
features.

In future research, the authors tend to work on adaptive
scaling and higher order tensor voting and its application in
repairing of higher order data, e.g., simultaneous repairing
of texture and geometrical information of 373 textured point
cloud.
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