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We employ the Rayleigh entropy maximization to develop a novel IDP scheme which requires computing only five features for
each residue of a protein sequence, that is, the Shannon entropy, topological entropy, and the weighted average values of three
propensities. Furthermore, our scheme is a linear classification method and hence requires computing simpler decision curves
which are more robust as well as using fewer learning samples to compute. The simulation results of our scheme as well as some
existing schemes demonstrate its effectiveness.

1. Introduction

Accurately identifying intrinsically disordered proteins
(IDPs) which have at least a region lacking a unique 3D
structure with a dynamic conformational ensemble [1, 2] is
vital to obtain more effective drug designs, better protein
expressions, and functional annotations. This is because
it is confirmed that some of these intrinsically disordered
proteins are involved in some of the most important
regulatory functions in the cell [3], which have a great impact
on diseases such as Alzheimer’s disease, Parkinson’s disease,
and certain types of cancer [4]. It is essential to investigate
the IDPs through the computation of the amino acid
sequence of a protein [4]. This is because it is often difficult
to purify and crystallize the disordered protein regions [5],
which creates great problems for the disordered protein
regions identification with the experimental approaches.
Furthermore, experimental approaches for the disordered
protein regions identification are usually both expensive and
time-consuming [4].

Many IDP schemes have been proposed in the past
decades, which can be roughly classified into two categories.
(1) The first category is to exploit the amino acid propensity
scales of the protein sequences for IDPs, such as FoldIndex
[6], GlobPlot [7], IUPred [8], and FoldUnfold [9]. These
schemes utilize the amino acid propensity scales to compute

parameters such as the ratio of mean net charges with the
mean hydropathy, the relative propensity of an amino acid
residue, and the interresidue contacts for IDPs. These IDP
schemes are simple but not accurate enough in general [10].
(2) The second category is to employ machine learning
techniques for the IDPs. The examples of these include
PONDR�s [11], RONN [12], DISOPRED2 [13], BVDEA [4],
and DisPSSMP [14]. Many of these schemes are based on the
artificial neural networks as well as support vector machine
(SVM) which in general require computing a lot of features
of a given protein sequence for IDPs. The computation of
these features of a protein sequence could be expensive and
time-consuming. More recently, MetaPrDOS [15] and Meta-
Disorder predictor [16] which use several different predictors
and their trade-off to yield an optimal decision for IDPs are
also reported.

In this paper, we employ the Rayleigh entropy maximiza-
tion to develop a novel IDP scheme which requires comput-
ing only five features for each residue of a protein sequence,
that is, the Shannon entropy, topological entropy, and the
weighted average values of three propensities. In contrast
with most existing IDP schemes which need to compute no
less than 30 features for each residue of a protein sequence,
our scheme with a similar performance greatly reduces the
computational complexity. Furthermore, our scheme based
on the linear classification method has simpler decision
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curves which are more robust and require fewer learning
samples to compute. Our scheme is trained and tested by
the dataset DIS803 with 10-fold cross-validation, firstly. The
dataset DIS803 is comprised of 803 protein sequences with
1254 disordered regions and 1343 ordered regions, which
include 92423 disordered and 315503 ordered residues. As a
comparison, we run our scheme together with some existing
schemes, such as PONDR [11], FoldIndex [6], DISOPRED2
[13], RONN [12], and DISPRO [17] on the datasets PU159
and R80 which are comprised of 239 protein sequences with
183 disordered regions and 231 ordered regions. They are
comprised of 18111 disordered and 46477 ordered residues,
respectively. The simulation results suggest that only our
scheme, BVDEA [4], andDisPSSMP [14] have PE (probability
excess) values exceeding 0.5 for both datasets PU159 and
R80. Our scheme is at least as accurate as BVDEA [4] and
DisPSSMP [14] and requires computing only 5 features for
each residue of a protein sequence, while the other two need
to compute 188 and 120 features for each residue, respectively.
In addition, both BVDEA [4] and DisPSSMP [14] are based
onnonlinear classificationmethodswhich require computing
the complex decision curves that are less robust in general.

2. A Brief Review of Some Notations

In a protein sequence, the complexity denotes how a sequence
can be rearranged in many different ways [18]. It has been
demonstrated that the low complexity regions are more
likely to be disordered than ordered [12]. Shannon entropy
and topological entropy are two parameters to measure the
complexity of a sequence. To begin with, let us first recall
some notations.

Given a protein sequence {𝑤(𝑗), 1 ≤ 𝑗 ≤ 𝑁} of length𝑁,
the Shannon entropy is

𝐻𝑆 (𝑤) = −
20

∑
𝑘=1

𝑓𝑘log2𝑓𝑘, (1)

where 𝑓𝑘 for 1 ≤ 𝑘 ≤ 20 is defined as

𝑓𝑘 =
∑𝑁𝑗=1𝐾(𝑗)

𝑁 , 𝐾 (𝑗) = {{
{

1, 𝑤 (𝑗) = Φ (𝑘)
0, 𝑤 (𝑗) ̸= Φ (𝑘)

(2)

with Φ = {𝐴, 𝐶,𝐷, 𝐸, 𝐹, 𝐺,𝐻, 𝐼, 𝐾, 𝐿,𝑀,𝑁, 𝑃, 𝑄, 𝑅, 𝑆, 𝑇,
𝑉,𝑊,𝑌} being an ordered set of 20 amino acid symbols.

The complexity function 𝑝𝑤(𝑛) representing the total
number of different 𝑛-length subwords of 𝑤 (1 ≤ 𝑛 ≤ 𝑁)
is defined as [19]

𝑝𝑤 (𝑛) = |{𝑢 : |𝑢| = 𝑛}| , (3)

where a subword 𝑢 of a length 𝑛 is one of any 𝑛 consecutive
symbols of 𝑤. |𝑢| denotes the length of 𝑢. For example, for a
given sequence 𝑤 = 𝑀𝑆𝑇𝐸𝐴𝑆, the subwords of length 2 are

{𝑀𝑆, 𝑆𝑇, 𝑇𝐸, 𝐸𝐴,𝐴𝑆} , (4)

which yields

𝑝𝑤 (𝑛) = 5. (5)

Given a finite protein sequence 𝑤 of length 𝑁, let 𝑛 be the
unique integer satisfying 20𝑛+𝑛−1 ≤ |𝑤| < 20𝑛+1+(𝑛+1)−1
and 𝑤20𝑛+𝑛−11 denote the first 20𝑛 + 𝑛 − 1 consecutive symbols
of 𝑤; that is, 𝑤20𝑛+𝑛−11 = 𝑤(1) ⋅ ⋅ ⋅ 𝑤(20𝑛 + 𝑛 − 1).

The topological entropy of 𝑤 is

𝐻top (𝑤) =
log20𝑝𝑤20𝑛+𝑛−11

(𝑛)
𝑛 , (6)

where 𝑝𝑤20𝑛+𝑛−11
(⋅) is defined in (3). Thus, we have 𝐻top(𝑤) =

1 when the subwords of 𝑤20𝑛+𝑛−11 run over all the possible
subwords of length 𝑛. On the other hand, 𝑤20𝑛+𝑛−11 is a
repetition sequence comprising a single letter which suggests
𝐻top(𝑤) = 0. Similar to [19], we also compute the average of
the topological entropy of 𝑤 as

𝐻top (𝑤) =
1

𝑁 − (20𝑛 + 𝑛 − 1) + 1

⋅
𝑁−(20𝑛+𝑛−1)+1

∑
𝑙=1

log20𝑝𝑤20𝑛+𝑛−1+𝑙−1
𝑙

(𝑛)
𝑛 .

(7)

The Rayleigh entropy maximization [20] of X =
[x1 x2 ⋅ ⋅ ⋅ x𝑁𝑠], where 𝑁𝑠 represents the total number of all
the samples and x𝑗 (1 ≤ 𝑗 ≤ 𝑁𝑠) represents the features of the
𝑗th sample, is to compute the projection direction W which
optimizes the cost function

𝐽 (W) = W𝑇S𝐵W
W𝑇S𝑊W

. (8)

S𝑊 and S𝐵 in (8) are, respectively, defined as

S𝑊 =
2

∑
𝑖=1

𝑁𝑖

∑
𝑗=1,x𝑗∈X𝑖

(x𝑗 −m𝑖) (x𝑗 −m𝑖)
𝑇

(9)

S𝐵 = (m1 −m2) (m1 −m2)𝑇 (10)

m𝑖 =
1
𝑁𝑖
𝑁𝑖

∑
𝑗=1,x𝑗∈X𝑖

x𝑗, (11)

where 𝑁𝑖 is the number of samples in the 𝑖th class and X𝑖 is
the set of samples in the 𝑖th class.

Using the Lagrange method, the optimal W and the
corresponding optimal projection Y of X on the direction of
W are given as

W = S−1𝑊 (m1 −m2) (12)

Y =W𝑇X. (13)

3. The Computation of the Optimal
Projection Direction

In this section, we compute the Shannon entropy and the
topological entropy of the dataset DIS803 from DisProt
[21] (http://www.disprot.org/). Then, choosing Remark 465,

http://www.disprot.org/
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Table 1: Bulky hydrophobic and aromatic amino acid.

A R N D C Q E G H I L K M F P S T W Y V
hyd aro 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 1

Deleage/Roux, and Bfactor(2STD) propensities provided by
the GlobPlot NAR paper [7] (http://globplot.embl.de/html/
propensities.html), we compute the weighted average values
of these propensities of the dataset DIS803. Finally, uti-
lizing the computed Shannon entropy, topological entropy,
and the weighted average values of three propensities of
the dataset DIS803, we derive the optimum projection
direction W defined in (8). The procedure proceeds as
follows:

(1) Let 𝑤 be a protein sequence. We choose a window
of length 𝑁 to extract 𝑁 consecutive residues from
𝑤. Therefore, we assume the length of 𝑤 to be 𝑁.
Using (1), we can compute the Shannon entropy of
𝑤. To compute the topological entropy of 𝑤, we
first map 𝑤 to the propensities as follows. We map
bulky hydrophobic (I, L, V) as well as aromatic (F,
W, Y) amino acid residues defined in [10] to 1 and
the rest of residues to 0. We use 𝑤 to represent the
mapped sequence of 𝑤. Table 1 lists all the amino
acid residues and their corresponding mapping
values.

Then, utilizing (7), we compute the average topologi-
cal entropy of 𝑤 as

𝐻top (𝑤) =
1

𝑁 − (2𝑛 + 𝑛 − 1) + 1

⋅
𝑁−(2𝑛+𝑛−1)+1

∑
𝑙=1

log2𝑝𝑤2𝑛+𝑛−1+𝑙−1𝑙
(𝑛)

𝑛 ,
(14)

where the parameter 𝑛 here satisfies 2𝑛 +𝑛−1 ≤ |𝑤| <
2𝑛+1 + (𝑛 + 1) − 1. 𝑤2𝑛+𝑛−1+𝑙−1𝑙 denotes the 𝑙th 2𝑛 +
𝑛 − 1 consecutive symbols of 𝑤; that is, 𝑤2𝑛+𝑛−1+𝑙−1𝑙 =
𝑤(𝑙) ⋅ ⋅ ⋅ 𝑤(2𝑛 + 𝑛 − 1 + 𝑙 − 1).
For example, Table 1 suggests that the protein
sequence

𝑤
= 𝑀𝑆𝑇𝐸𝐴𝑆𝑉𝑆𝑌𝐴𝐴𝐿𝐼𝐿𝐴𝐷𝐴𝐸𝑄𝐸𝐼𝑇𝑆𝐸𝐾𝐿𝐿𝐴𝐼𝑇𝐾𝐴𝐴𝐺𝐴

(15)

is mapped to

𝑤 = 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0. (16)

Therefore, we have |𝑤| = 35 which yields 𝑛 = 4
satisfying 2𝑛 + 𝑛 − 1 ≤ |𝑤| < 2𝑛+1 + (𝑛 + 1) − 1.
Substituting 𝑛 = 4 into 2𝑛 +𝑛−1, we obtain𝑤2𝑛+𝑛−11 =
𝑤191 . Thus, from (14), the topological entropy of 𝑤 is
0.8508.

(2) For this protein sequence 𝑤 of length 𝑁, we also
compute the weighted average values of Remark 465,
Deleage/Roux, and Bfactor(2STD) propensities
defined in the GlobPlot NAR paper [7]:

𝑀𝑝 (𝑤) =
1
𝑁
𝑁

∑
𝑙=1

𝑤𝑝 (𝑙) ⋅ ln (𝑙 + 1) , 𝑝 = 1, 2, 3, (17)

where 𝑤𝑝(𝑙) with 1 ≤ 𝑙 ≤ 𝑁 represents the values of
the 𝑝th propensity of 𝑤. We use the 𝑝th propensity
of 𝑤 with 𝑝 = 1, 2, 3 to denote Remark 465,
Deleage/Roux, and Bfactor(2STD) propensities,
respectively. The weight ln(𝑗 + 1) in (18) is identical
to the sum function of the GlobPlot NAR paper [7].
For example, Remark 465 propensity of the sequence
in (15) is

𝑤1 = −0.1113 0.2627 −0.1297 0.5214 0.1739 ⋅ ⋅ ⋅ . (18)

From (18), it follows that 𝑀1(𝑤) of Remark 465
propensity is 0.1551. Similarly, 𝑀2(𝑤) and 𝑀3(𝑤),
respectively, corresponding to the Deleage/Roux
and Bfactor (2STD) propensities are −0.4255 and
−0.1368.

(3) For a general protein sequence 𝑤 of length 𝐿, we use
a sliding window of length 𝑁 (𝑁 < 𝐿) to extract 𝑁
consecutive residues w𝑗 = 𝑤(𝑗) ⋅ ⋅ ⋅ 𝑤(𝑗 + 𝑁 − 1), 1 ≤
𝑗 ≤ 𝐿 − 𝑁 + 1. For this sliced w𝑗, we compute
the Shannon entropy𝐻𝑆(w𝑗), the topological entropy
𝐻top(w𝑗), and𝑀𝑝(w𝑗) for 𝑝 = 1, 2, 3 defined in (18).
Define a 5 × 1 vector v𝑗 to be

v𝑗

= [𝐻𝑆 (w𝑗) 𝐻top (w𝑗) 𝑀1 (w𝑗) 𝑀2 (w𝑗) 𝑀3 (w𝑗)]
T .

(19)

Thus, we can compute the feature matrix of the
protein sequence 𝑤 of length 𝐿 as

F = [x1 x2 ⋅ ⋅ ⋅ x𝐿] , (20)

http://globplot.embl.de/html/propensities.html
http://globplot.embl.de/html/propensities.html
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where vector x𝑙(1 ≤ 𝑙 ≤ 𝐿) is

x𝑙 =

{{{{{{{{{{{
{{{{{{{{{{{
{

1
𝑙
𝑙

∑
𝑗=1

v𝑗, 1 ≤ 𝑙 ≤ 𝑁

1
𝑁
𝑙

∑
𝑗=𝑙−𝑁+1

v𝑗, 𝑁 < 𝑙 ≤ 𝐿 − 𝑁 + 1

1
𝐿 − 𝑙 + 1

𝐿−𝑁+1

∑
𝑗=𝑙−𝑁+1

v𝑗, 𝑙 > 𝐿 − 𝑁 + 1

(21)

with v𝑗 for 1 ≤ 𝑗 ≤ 𝐿 − 𝑁 + 1 being defined in (19).
For the protein sequence𝑤 of (15), we choose the size
of window 𝑁 = 20 and compute the 10th and 30th
residues of 𝑤. x10 and x30 are

x10 =
1
10
10

∑
𝑗=1

v𝑗,

x30 =
1
6
16

∑
𝑗=11

v𝑗,
(22)

where v𝑗 is defined in (19).
(4) Utilizing 10-fold cross-validation [22], we randomly

divide the dataset DIS803 into ten subsets of approx-
imately equal size. The protocol uses nine subsets as
the training dataset to build a model and the remain-
ing 10th subset for testing. Using the training dataset
of 10-fold cross-validation [22], we can compute the
feature matrix

X = [F1 F2 ⋅ ⋅ ⋅ F𝑁𝑠] (23)

F𝑖 = [x𝑖1 x𝑖2 ⋅ ⋅ ⋅ x𝑖𝐿𝑖 ] , (24)

where𝑁𝑠 is the total number of the protein sequences
of the training dataset. F𝑖 defined in (20) with 1 ≤ 𝑖 ≤
𝑁𝑠 is the feature matrix of the 𝑖th protein sequence
whose length is 𝐿 𝑖. Of all the residues of the training
dataset obtained from DIS803 through 10-fold cross-
validation described above, we divide it into two
disjoint subsets: one comprised of all the disordered
residues and the other of all the ordered residues of
the training dataset. Let 𝑁dis and 𝑁ord, respectively,
denote the number of all the disordered and all the
ordered residues of the training dataset.Xdis andXord,
respectively, represent the feature matrices defined in
(23) corresponding to all the disordered and all the
ordered residues of the training dataset. From (11), it
follows that

mdis =
1
𝑁dis

𝑁dis

∑
𝑗=1

X𝑗dis,

mord =
1

𝑁ord

𝑁ord

∑
𝑗=1

X𝑗ord,
(25)

where X𝑗dis and X𝑗ord represent the 𝑗th column vector
inXdis andXord, respectively. Usingmdis andmord, S𝑊
in (9) can be calculated as

S𝑊 =
𝑁dis

∑
𝑗=1

(X𝑗dis −mdis) (X𝑗dis −mdis)
𝑇

+
𝑁ord

∑
𝑗=1

(X𝑗ord −mord) (X𝑗ord −mord)
𝑇 .

(26)

From (12), the projection direction is

W = S−1𝑊 (mdis −mord) . (27)

The projection Y can be computed by (13). Finally,
using linear searching in Y, we can obtain the thresh-
old of classification.

4. The Simulation Results

We employ the Rayleigh entropy maximization shown in the
previous sections to develop an IDP scheme which requires
computing only five features for each residue of a protein
sequence, that is, the Shannon entropy, topological entropy,
and the weighted average values of three propensities. In
contrast, computing no less than 30 features is demanded by
most existing schemes, such as PONDR [11], DISOPRED2
[13], RONN [12], DISPRO [17], BVDEA [4], and DisPSSMP
[14], for the IDP identification. Furthermore, our scheme
is based on the linear classification method which requires
fewer learning samples to compute the simple decision curves
that are more robust.

In order to train and test our scheme, the sequences
in the dataset DIS803 are randomly split into ten subsets
of approximately equal size to conduct a 10-fold cross-
validation. The dataset DIS803 is comprised of 803 protein
sequences. The results of our scheme with different window
sizes are shown in Table 2. We use Sens., Spec., PE, andMCC
to abbreviate sensitivity, specificity, probability excess, and
Matthews’ correlation coefficient, respectively. In addition,
the values on probability excess and Matthews’ correlation
coefficient with different window sizes are shown in Figure 1.
When the window size is larger than 35, the values tend to be
smooth.Thus, we present our results with the window size of
35 in subsequent simulations.

As a comparison, we run our scheme together with
some of the best known schemes, such as PONDR [11],
FoldIndex [6], DISOPRED2 [13], RONN [12], and DISPRO
[17], on the datasets PU159 and R80 which are comprised
of 239 protein sequences with 183 disordered regions and
231 ordered regions. Dataset PU159 consists of P80 and U79
[23] where P80 and U79 with 80 completely ordered and
79 completely disordered proteins, respectively, are from
PONDR� web site [23, 24]. Dataset R80 is from RONN [12]
and contains 80 proteins with 183 disordered regions and 151
ordered regions.

Considering the classification method used, we use DIS-
REM as the abbreviation of our scheme. The simulation
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Table 3: Performance comparison with existing schemes on dataset
PU159.

Schemes Sens. Spec. PE MCC
DISREM 0.821 0.757 0.577 0.576
DisPSSMP 0.825 0.765 0.590 0.589
BVDEA 0.796 0.785 0.581 0.586
RONN 0.675 0.888 0.563 0.580
FoldIndex 0.722 0.815 0.536 0.540
DISOPRED2 0.469 0.981 0.449 0.543
PONDR 0.632 0.782 0.414 0.420
DISPRO 0.383 0.982 0.365 0.467

0.6

0.55

0.5

0.45

0.4

0.35

0.3

�e window size
15 20 25 30 35 40 45 50 55 60

PE
MCC

Figure 1: The performance with different window sizes on PE and
MCC.

results listed inTables 3 and 4 show that the IDP identification
accuracy of our scheme is approximately accurate as those of
BVDEA [4] and DisPSSMP [14] whose performance exceeds
the rest of the schemes mentioned above on the datasets
PU159 and R80. From Tables 3 and 4, it is suggested that
only our scheme, BVDEA [4], and DisPSSMP [14] have PE
(probability excess) values exceeding 0.5 for both datasets
PU159 and R80. To achieve these PE values, our scheme
requires computing only 5 features of each residue, while
computing 188 and 120 features for each residue of a protein
sequence is demanded by DisPSSMP [14] and BVDEA [4],
respectively.

Furthermore, unlike nonlinear classification of
DisPSSMP [14] and BVDEA [4] which require computing
the complex decision curves, our scheme is based on
the Rayleigh entropy maximization which is the linear
classification method. Therefore, our scheme has simpler
decision curves to compute and hence decision curves are
more robust and require fewer learning samples than those
of DisPSSMP [14] and BVDEA [4].

Table 4: Performance comparison with existing schemes on dataset
R80.

Schemes Sens. Spec. PE MCC
DISREM 0.736 0.888 0.625 0.507
DisPSSMP 0.767 0.848 0.615 0.463
BVDEA 0.817 0.728 0.545 0.451
RONN 0.603 0.878 0.481 0.395
DISPRO 0.418 0.993 0.411 0.578
DISOPRED2 0.405 0.972 0.377 0.470
PONDR 0.557 0.816 0.373 0.278
FoldIndex 0.488 0.811 0.299 0.224

5. Conclusions

In this paper, we compute the Shannon entropy, the topologi-
cal entropy, and the weighted average values of three propen-
sities to develop a criterion based on Rayleigh entropy max-
imization for predicting the intrinsically disordered regions
of a protein. Compared with several existing schemes, the
identification accuracy of our scheme is at least as accurate
as those schemes whose performance exceeds the rest of
the compared schemes. Particularly, in contrast with those
schemes that require computing no less than 30 features, our
scheme only relies on computing five features.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] J. Yan, M. J. Mizianty, P. L. Filipow, V. N. Uversky, and L.
Kurgan, “RAPID: Fast and accurate sequence-based prediction
of intrinsic disorder content on proteomic scale,” Biochimica et
Biophysica Acta (BBA) - Proteins and Proteomics, vol. 1834, no.
8, pp. 1671–1680, 2013.

[2] V. N. Uversky, “The mysterious unfoldome: Structureless,
underappreciated, yet vital part of any given proteome,” Journal
of Biomedicine and Biotechnology, vol. 2010, Article ID 568068,
14 pages, 2010.

[3] P. E. Wright and H. J. Dyson, “Intrinsically unstructured pro-
teins: Re-assessing the protein structure-function paradigm,”
Journal of Molecular Biology, vol. 293, no. 2, pp. 321–331, 1999.
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