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Frozen wall design theory is a key technique of the freezing method. However, previous design theories for a deep artificial frozen
wall have neglected the influence of shaft flank displacement, that is, the displacement of the inner boundary of a frozen wall.Thus,
the associated designs tend to be unsafe and earthwork excavations tend to be underestimated.This study builds a newdesign theory
for frozen wall thickness which considers the influence of a large strain and obtains new solution formulas for the thickness and
excavation radius before deformation occurs. The analytical results are compared with numerical calculation results by analyzing
the influences of various parameters, such as crustal stress, cohesion and internal friction angle of frozen soil, and cohesion and
internal friction angle of unfrozen soil as well as the elastic modulus of the ground, on the frozen wall thickness and the shaft flank
displacement. The results indicate that the new formula is applicable for large deformation calculation with a strain of up to 0.2.
The new formula can accurately calculate the amount of excavation earthwork and serves as a safer andmore reasonable theoretical
support for the design of frozen walls in ultradeep soil layers.

1. Introduction

The freezing method is the primary sinking method used in
deep and unstable aquifer strata, and it is used in more than
90%of shaft sinking projects.The freezingmethod is a special
shaft sinking method in which deep holes surrounding
the shaft are drilled before excavation, the freezing pipes
are placed into holes, and then low temperature brine is
circulated in freezing pipes to freeze the ground into an
enclosed curtain (frozen wall) to resist ground pressure and
water seepage; finally, the well is dug and a shaft lining is built
under the protection of the frozen wall [1, 2].

The German engineer Poetsch invented the freezing
method in 1883, and since then the method has been used
worldwide and represents an effective method of building
wells in complex formations. Implementation of the freezing
method in the former Soviet Union, Poland, Germany, and
other countries outside of China includes eight frozen shafts
that passed through soil thicknesses of more than 400 m,
with four exceeding a depth of 500 m through alluvium
and the maximum depth reaching 571 m [3]. In China,

approximately 1100 frozen shafts were constructed from 1956
to 2018. After 2002, the number of frozen shafts with soil
depth that exceeded 400 m, 500 m, 600 m, and 700 m was
71, 28, 4, and 3, respectively. The deepest shaft extended to
753.95 m, which represents the world record for shaft topsoil
thickness.

Freezing shaft sinking increases in difficulty as the soil
thickness increases, and one of the key techniques for
addressing this problem is frozen wall design theory. In
general, the mechanical model of thick-walled cylinder is
adopted for designing the frozen wall thickness. Practice
shows that the G. Lame formula is ideal for calculating
the frozen wall thickness for a soil depth of approximately
150 m and the O. Domke formula is applicable for the soil
depth of approximately 300 m, and when the alluvium depth
reaches the range of 300 m to 400 m, the Liberman and
Vialov formulas are appropriate for designing the frozen
wall thickness. Yang et al. [4, 5] assumed that the frozen
wall is an ideal homogenous elastoplastic and plastic mate-
rial, respectively, which follows the Mohr-Coulomb yield
criterion, and based on a planar strain and asymmetrical
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unloading model, they deduced a strict analytical solution
that considers the interaction between the frozen wall and
the surrounding soil as well as the effect of initial stress
field. Consequently, the formulas for calculating the frozen
wall thickness were obtained and successfully applied in the
design of frozen walls at soil depths of 400 to 800 m. Field
measurements illustrate that the radial absolute displacement
of the frozen wall in the vertical shaft at soil depths of
500∼800 m can exceed 10% of the excavation radius [6, 7],
although the average temperature can reach -15∼-25∘C.When
the soil depth reaches up to 800∼1000 m, the radial absolute
displacement will be significantly greater, and it exhibits the
obviously large deformation characteristics of the frozenwall.

Under large deformation conditions, the size and location
of the frozen wall are significantly different before and after
the deformation; however, these parameters are neglected
in previous small deformation formulas, which will result
in great error to the design for frozen wall thickness in
ultradeep soil layers. Due to the fact that the design of
a frozen wall thickness is similar to a cavity contraction
(expansion), the analytical solutions of a cavity contraction
(expansion), including perfect plasticity, strain hardening,
and softening [8–18], are of great importance for designing
a frozen wall thickness. The problems of both cylindrical
cavities contraction (externally pressurized) and expansion
(internally pressurized) in an infinite isotropic medium
using theMohr-Coulomb and the Drucker-Prager hardening
solids were reported by Papanastasiou and Durban [19–21],
while the derived differential equations had to be solved
numerically.

As finding an analytical solution for the large deforma-
tion mechanical problems is very difficult, in this paper,
the authors take reference of the elastoplastic large-strain
solutions proposed by Papanastasiou andDurban [19–21] and
comprehensively consider the in situ stress, the unloading
condition, and the interaction between frozen soil and sur-
rounding soil, as well as using some reasonable assumptions
to simplify the large-strain solutions, and then we present
a new calculation formula for frozen wall thickness which
is applicable to a certain range of large deformation. The
work provides a theoretical basis for frozen wall design in an
ultradeep soil layer.

2. Mechanical Model

2.1. Basic Assumptions. (1)The frozen wall and unfrozen soil
exhibit an axisymmetric distribution and are in the planar
strain state.(2) The frozen wall is an ideal homogeneous plastic
material, and the volume is incompressible in the plastic zone.
Unfrozen soil is a homogenous elastic material whose elastic
modulus and Poisson’s ratio are 𝐸u and 𝜇u, respectively.(3)Theexcavation is finished in a single instant within the
radius 𝑟1.(4) The initial in situ stress is constant before and after
freezing, and the initialdisplacement is zero.

2.2. Definite Solution Conditions. The mechanical model is
divided into two parts (see Figure 1): (1) the frozen wall zone

Figure 1: Mechanical model.

(zone 1) with radial stress 𝜎1𝑟, circumferential stress 𝜎1𝜃, and
displacement 𝑢1𝑟; (2) the unfrozen ground zone (zone 2) with
related parameters indicated by 𝜎2𝑟, 𝜎2𝜃, and 𝑢2𝑟, respectively.
Moreover, 𝑟1 and 𝑟2 are the interior and external radii of
the frozen wall before deformation, respectively. 𝑟1 and 𝑟2
are the interior and external radii of the frozen wall after
deformation, respectively. The horizontal ground pressure is𝑝0. The dimensionless radial and circumferential stresses are𝜎𝑖𝑟 = 𝜎𝑖𝑟/𝑝0 and 𝜎𝑖𝜃 = 𝜎𝑖𝜃/𝑝0 (i = 1, 2, presenting zone 1
and zone 2, resp.), the dimensionless displacement is 𝑢𝑖𝑟 =𝑢𝑖𝑟/𝑟1, the dimensionless radial coordinates are 𝜉 = 𝑟/𝑟1 and𝜉 = 𝑟/𝑟1, and the dimensionless inner and outer radii before
deformation are 𝑥 = 𝑟1/𝑟1 and 𝑦 = 𝑟2/𝑟1 respectively. After
deformation, the dimensionless internal and external radii
are 1 and 𝑦 = 𝑟2/𝑟1.The initial stresses of the aforementioned
zones prior to excavation are expressed as

𝜎0𝑟 = 𝜎0𝜃 = −1, (1)

where 𝜎0𝑟 = 𝜎0𝑟 /𝑝0, 𝜎0𝜃 = 𝜎0𝜃/𝑝0, and 𝜎0𝑟 and 𝜎0𝜃 are radial and
hoop initial ground stress.

After excavation, the stress boundary condition at exca-
vation radius 𝜉 = 𝑥 is

𝜎1𝑟𝜉=𝑥 = 0. (2)

At 𝜉 → +∞, the displacement and stress boundary
condition are

𝑢2𝑟𝜉→+∞ = 0, (3)

𝜎2𝑟𝜉→+∞ = 𝜎2𝜃𝜉→+∞ = −1. (4)

At 𝜉 = 𝑦, the radial stress and displacement continuous
conditions are

𝜎1𝑟𝜉=𝑦 = 𝜎2𝑟𝜉=𝑦 , (5)

𝑢1𝑟𝜉=𝑦 = 𝑢2𝑟𝜉=𝑦 . (6)
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3. Stress and Displacement Solutions

3.1. Stress andDisplacement Solutions for the FrozenWall. The
dimensionless equilibrium equation of the frozen wall is

d𝜎1𝑟
d𝜉 + 𝜎1𝑟 − 𝜎1𝜃𝜉 = 0. (7)

The frozen soil follows theMohr-Coulomb yield criterion
[22]:

𝑎f𝜎1𝑟 − 𝜎1𝜃 = 𝑏f , (8)

where 𝑎f = (1 + sin𝜑f )/(1 − sin𝜑f ), 𝑏f = (2𝑐f cos𝜑f )/(1 −
sin𝜑f ), 𝑐f = 𝑐f/𝑝0, and 𝑐f and 𝜑f are the cohesion and internal
friction angle of frozen soil, respectively.

Substituting (8) into (7) and combining boundary condi-
tion (2), the radial stress solution of the frozenwall is obtained
as

𝜎1𝑟 = − 𝑏f𝑎f − 1 [(
𝜉𝑥)
𝑎f−1 − 1] . (9)

Substituting (9) into (8), circumferential stress is obtained
as

𝜎1𝜃 = − 𝑎f𝑏f𝑎f − 1 [(
𝜉𝑥)
𝑎f−1 − 1] − 𝑏f . (10)

The strain of frozen wall is the sum of elastic strain and
plastic strain, which is

𝜀1𝑟 = 𝜀e1𝑟 + 𝜀p1𝑟
𝜀1𝜃 = 𝜀e1𝜃 + 𝜀p1𝜃, (11)

where 𝜀1𝑟 and 𝜀1𝜃 are radial and circumferential strain, 𝜀e1𝑟 and𝜀e1𝜃 are radial and circumferential elastic strain, and 𝜀p1𝑟 and 𝜀p1𝜃
are radial and circumferential plastic strain.

Elastoplastic constitutive relations [22, 23] are described
as

𝜀e1𝑟 = (1 − 𝜇f) (𝜎1𝑟 − 𝜎0𝑟) − 𝜇f (𝜎1𝜃 − 𝜎0𝜃)
2𝐺f

𝜀e1𝜃 = (1 − 𝜇f) (𝜎1𝜃 − 𝜎0𝜃) − 𝜇f (𝜎1𝑟 − 𝜎0𝑟)
2𝐺f

,
(12)

where𝐺f = 𝐸f/2(1+𝜇f ) and 𝐸f = 𝐸f/𝑝0. The elastic modulus
and Poisson’s ratio of frozen soil are 𝐸f and 𝜇f , respectively.
Substituting (1) into (12),

𝜀e1𝑟 = (1 − 𝜇f) (𝜎1𝑟 + 1) − 𝜇f (𝜎1𝜃 + 1)2𝐺f

𝜀e1𝜃 = (1 − 𝜇f) (𝜎1𝜃 + 1) − 𝜇f (𝜎1𝑟 + 1)2𝐺f
.

(13)

The expression of Mohr-Coulomb plastic potential func-
tion can be expressed as [21]

𝜙 = 𝛽f𝜎1𝑟 − 𝜎1𝜃, (14)

where 𝜙 = 𝜙/𝑝0, 𝛽f = (1 + sin𝜓f )/(1 − sin𝜓f ), 𝜙 is
the plastic potential function, and 𝜓f is the dilatancy angle
of frozen soil. According to the literature [23], the plastic
potential is identical to the yield condition when the internal
friction angle 𝜑f is equal to the dilatancy angle 𝜓f , and the
associated Mohr-Coulomb flow rule is obtained. Moreover,
nonassociativity is defined by deviation from associativity
through decreasing of 𝜓f , which can be expressed as 0 ≤𝜓f < 𝜑f . In view of a weaker material behavior induced by
nonassociativity [23], the nonassociated flow rule should be
applied when the frozen wall attains the plastic state.

Based on the plastic potential theory, the expressions of
plastic strain are [20]

𝜀p1𝑟 = 𝜆 𝜕𝜙𝜕𝜎1𝑟 = 𝜆𝛽f
𝜀p1𝜃 = 𝜆 𝜕𝜙𝜕𝜎1𝜃 = −𝜆,

(15)

where 𝜆 is the plastic scale coefficient.
From (15), the relationship of the plastic strains is

obtained:

𝜀p1𝑟 + 𝛽f𝜀p1𝜃 = 0. (16)

Substituting (11) into (16), the expression is got by

𝜀1𝑟 + 𝛽f𝜀1𝜃 = 𝜀e1𝑟 + 𝛽f𝜀e1𝜃. (17)

In order to consider the effect of large strain on plastic
zone, the logarithmic strains [24] should be used, and the
geometric equations are

𝜀𝑟 = ln(d𝜉
d𝜉 ) ,

𝜀𝜃 = ln(𝜉𝜉 ) ,
𝜀𝑧 = 0,

(18)

where 𝜉 and 𝜉 are the dimensionless coordinates before and
after deformation, respectively.

Substituting (18) into (17), we got

ln[d𝜉
d𝜉 (𝜉𝜉 )

𝛽f] = 𝜀e1𝑟 + 𝛽f𝜀e1𝜃. (19)

Taking (9) and (10) into (13),

𝜀e1𝑟 = 𝐴1 ( 𝜉𝑥)
𝑎f−1 + 𝐴3

𝜀e1𝜃 = 𝐴2 ( 𝜉𝑥)
𝑎f−1 + 𝐴3,

(20)

where 𝐴1 = [𝜇f (𝑎f + 1) − 1]𝑏f/2𝐺f (𝑎f − 1), 𝐴2 = [𝜇f (𝑎f + 1) −𝑎f ]𝑏f/2𝐺f (𝑎f−1), and𝐴3 = ((1−2𝜇f )/2𝐺f )((𝑎f+𝑏f−1)/(𝑎f−1)).
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Figure 2: Unloading model.

Substituting (20) into (19),

ln[d𝜉
d𝜉 (𝜉𝜉 )

𝛽f] = 𝐴4 ( 𝜉𝑥)
𝑎f−1 + 𝐴5, (21)

where𝐴4 = 𝐴1 +𝛽f𝐴2 and𝐴5 = (𝛽f +1)𝐴3. The solution for
(21) is

(𝜉)𝛽f+1 − 1 = (𝛽f + 1)∫𝜉
𝑥
𝜉𝛽f 𝑒𝐴4(𝜉/𝑥)𝑎f−1+𝐴5d𝜉. (22)

The whole frozen wall attains the plastic state; then,
substituting the outer radii of a frozen wall before and after
deformation into (22),

(𝑦)𝛽f+1 − 1 = (𝛽f + 1)∫𝑦
𝑥
𝜉𝛽f 𝑒𝐴4(𝜉/𝑥)𝑎f−1+𝐴5d𝜉. (23)

3.2. Stress and Displacement Solutions for Unfrozen Soil Zone.
The solutions of the stress and displacement for the unfrozen
zone are equal to the superposition of the unloading model
solution [25] (Figure 2) and the initial ground stress and dis-
placement.Therefore, according to the thick-walled-cylinder
equation [26] and considering the interaction between the
frozen wall and the surrounding soil, the stress and displace-
ment solutions for the unfrozen zone can be determined in
combination with (3) and (4):

𝜎2𝑟 = −1 + 𝑞𝑦2𝜉2
𝜎2𝜃 = −1 − 𝑞𝑦2𝜉2 ,

(24)

𝑢2𝑟 = − 𝑞
2𝐺u

𝑦2𝜉 , (25)

where 𝐺u = 𝐸u/2(1 + 𝜇u), 𝐸u = 𝐸u/𝑝0, and 𝑞 is a
dimensionless load.

The inner-edge stresses of unfrozen zone can be obtained
from (24):

𝜎2𝑟𝜉=𝑦 = −1 + 𝑞
𝜎2𝜃𝜉=𝑦 = −1 − 𝑞. (26)

According to the assumptions and definite solution
conditions in Section 2, it is necessary to ensure that the
surrounding soil does not attain the plastic state. Atmost, (26)
satisfies the M-C yield criterion,

𝑎u 𝜎2𝑟𝜉=𝑦 − 𝜎2𝜃𝜉=𝑦 = 𝑏u, (27)

where 𝑎u = (1 + sin𝜑u)/(1 − sin𝜑u), 𝑏u = (2𝑐u cos𝜑u)/(1 −
sin𝜑u), 𝑐u = 𝑐u/𝑝0, and 𝑐u and 𝜑u are the cohesion and
internal friction angle of unfrozen soil, respectively.

Taking (26) into (27), one has

𝑞 = 𝑎u + 𝑏u − 1𝑎u + 1 . (28)

The outer-edge radial stress of the frozen wall is obtained
by (9):

𝜎1𝑟𝜉=𝑦 = − 𝑏f𝑎f − 1 [(
𝑦𝑥)
𝑎f−1 − 1] . (29)

Substituting (29) and the first equation of (26) into (5),
the expression of 𝑞 also can be expressed as

𝑞 = 1 − 𝑏f𝑎f − 1 [(
𝑦𝑥)
𝑎f−1 − 1] . (30)

Combining (28) with (30), the relationship of inner and
outer radii can be got by

𝑦𝑥 = [1 + (𝑎f − 1) (2 − 𝑏u)𝑏f (𝑎u + 1) ]1/(𝑎f−1) . (31)

4. New Calculation Equation for the Frozen
Wall Thickness

4.1. Derivation of the New Calculation Equation. The loca-
tions prior to and after excavation deformation are shown in
Figure 3. The internal radius, external radius, and thickness
of frozen wall are changed from 𝑟1 to 𝑟1, from 𝑟2 to 𝑟2, and
from 𝑇 to 𝑇.

If the effect of deformation on the size and location
of frozen wall is not considered, the design of frozen wall
thickness can meet the safety requirements according to the
size after deformation; namely,

𝑥 = 1
𝑦 = 𝑦. (32)

Substituting (32) into (31), the outer-edge size of the
frozen wall after deformation is obtained as

𝑦 = [1 + (𝑎f − 1) (2 − 𝑏u)𝑏f (𝑎u + 1) ]1/(𝑎f−1) . (33)
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Figure 3: The locations prior to and after deformation.

Equation (33) is the same as Yang’s plastic formula [5]. If𝑎f = 1 and 𝑎u = 1, 𝑏u = 0; then (33) degenerates into

𝑦 = 𝑒1/𝑏f , (34)

and (34) is the same as the formula of Liberman [27].
The dimensionless thickness of the frozen wall after

deformation is

𝑡 = 𝑇𝑟1 = 𝑦
 − 1. (35)

After shaft excavation, the displacements at the internal
and external edges of frozen wall (considering the large
deformation characteristics) are provided by

𝑢1𝑟𝜉=𝑥 = 1 − 𝑥, (36)

𝑢1𝑟𝜉=𝑦 = 𝑢2𝑟𝜉=𝑦 = 𝑦 − 𝑦. (37)

From (25),

𝑢2𝑟𝜉=𝑦 = − 𝑞𝑦
2𝐺u

. (38)

Combining (23) and (33) with (36)∼(38), the iterative
formulas for the internal and external radii of frozen wall
before deformation are determined as follows:

(𝑦)𝛽f+1 − 1 = (𝛽f + 1)∫𝑦
𝑥
𝜉𝛽f 𝑒𝐴4(𝜉/𝑥)𝑎f−1+𝐴5d𝜉

𝑦 = 𝑦
1 − 𝑞/2𝐺u

.
(39)

Equation (39) can only be solved by numerical method.
According to the hypothesis that the volume of plastic

zone is incompressible (𝜇f = 0.5 and 𝜓f = 0), the elastic

ux by Eq.(40)
ux by small strain
ux by large strain

Dimensionless cohesion of frozen soil c＠

D
im

en
sio

nl
es

s d
isp

la
ce

m
en

tu
x

0.05

0.10

0.15

0.20

0.25

0.30

0.3 0.4 0.5 0.6 0.70.2
0.0

0.4

0.8

1.2

1.6

2.0

D
im

en
sio

nl
es

s t
hi

ck
ne

ss 
t

t by Eq.(40)
t by small strain
t by large strain

＠=8
∘ ,

cＯ=0.03,Ｏ=15∘

EＯ=15,Ｏ=0.3

Figure 4: Influence of 𝑐f on 𝑢𝑥 and t.

deformation of plastic zone is neglected [6, 7]; (39) is
simplified as

𝑥 = √1 + 𝑦2 − (𝑦)2
𝑦 = 𝑦

1 − 𝑞/2𝐺u
. (40)

Apparently, the frozen wall discussed here, for 𝜇f = 0.5 and𝜓f = 0, is a fully incompressible solid, which is extremely
nonassociated.

The dimensionless thickness of the frozen wall before
deformation is

𝑡 = 𝑦 − 𝑥. (41)

The dimensionless side-wall displacement of a shaft is

𝑢𝑥 = 𝑥 − 1. (42)

Comparing the situations of neglecting and considering
side-wall displacement, the underestimated percentage of
excavation volume is obtained as follows:

𝑤1 = 100 (𝑥2 − 1) . (43)

4.2. Comparisons and Calibrations. Given typical engineer-
ing parameters, the finite-element model of unit depth [28–
30] is established by the size of the frozen wall by formula
(33). The calculation results obtained by the new formula
(40) are compared to those obtained from the finite-element
calculations based on small and large deformation theory.
The comparisons of the results are presented in Figures 4–8.
The elastic modulus and Poisson’s ratio of frozen soil in
numerical calculation are 𝐸f = 𝐸f/𝑝0 = 60 and 𝜇f = 0.2;
horizontal ground pressure 𝑝0 = 1.



6 Mathematical Problems in Engineering

ux by Eq.(40)
ux by small strain
ux by large strain

D
im

en
sio

nl
es

s d
isp

la
ce

m
en

tu
x

0.05

0.10

0.15

0.20

0.25

0.30

5 10 150
Internal friction angle of frozen soil ＠ (

∘)

t by Eq.(40)
t by small strain
t by large strain

0.0

0.4

0.8

1.2

1.6

2.0

D
im

en
sio

nl
es

s t
hi

ck
ne

ss 
t

c＠=0.4
cＯ=0.03,Ｏ=15∘

EＯ=15,Ｏ=0.3

Figure 5: Influence of 𝜑f on 𝑢𝑥 and t.

ux by Eq.(40)
ux by small strain
ux by large strain

Dimensionless cohesion of unfrozen soil cＯ

D
im

en
sio

nl
es

s d
isp

la
ce

m
en

tu
x

0.0

0.4

0.8

1.2

1.6

2.0

D
im

en
sio

nl
es

s t
hi

ck
ne

ss 
t

0.05

0.10

0.15

0.20

0.25

0.30

0.02 0.04 0.06 0.08 0.100.00

t by Eq.(40)
t by small strain
t by large strain

c＠=0.4,＠=8
∘ ,Ｏ=15∘

EＯ=15,Ｏ=0.3

Figure 6: Influence of 𝑐u on 𝑢𝑥 and t.

Figures 4 and 5 show that the dimensionless displacement𝑢𝑥 and dimensionless thickness 𝑡 decrease with increases
of the dimensionless cohesion 𝑐f and the internal friction
angle 𝜑f of the frozen soil. As shown in Figures 6 and 7,𝑡 decreases with increases in the cohesion strength 𝑐u and
internal friction angle 𝜑u of unfrozen soil, while 𝑢𝑥 increases.
In Figure 8, 𝑢𝑥 decreases with the increase of dimensionless
elastic modulus 𝐸u of unfrozen soil. The slight increase
of 𝑡 is mainly due to the deformation of the frozen wall,
whose location is very close prior to and after deformation.
The calculation results obtained by the new formula exactly
match those calculated from large deformation numerical
calculations and are inconsistent with the finite-element
results of small deformation theory, which means that the
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new formula (40) is correct and accurate within 0.2 of large
strain.

5. Case Study

The following engineering example is presented: a shaft
passes through a thick clay layer, and the average tem-
perature of its frozen wall is −20∘C. The elastic modulus,
Poisson’s ratio, internal friction angle, and cohesive strength
of unfrozen soil are 𝐸u = 100 MPa, 𝜇u = 0.3, 𝜑u = 15∘, and 𝑐u
= 0.3 MPa, respectively. The aforementioned parameters of
frozen soil separately are 𝐸f = 400 MPa, 𝜇f = 0.2, 𝜑f = 8∘, and𝑐f = 4.0 MPa, and its uniaxial compressive strength is 𝜎f =
8.0 MPa. Based on a frozen wall internal radius of 𝑟1 = 5 m
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Table 1: Comparisons of different design theories.

h/m Thickness (m) u0/m w1/%Liberman Yang This paper
500 6.27 2.893 2.779 0.319 13.3
550 7.22 3.255 3.110 0.379 15.8
600 8.26 3.628 3.448 0.447 18.7
650 9.38 4.013 3.790 0.523 22.0
700 10.59 4.408 4.138 0.609 25.7
750 11.91 4.816 4.491 0.705 29.8
800 13.35 5.235 4.849 0.812 34.5

Table 2: Inner and outer radii of frozen wall obtained by different calculation methods.

h/m r1/m r2/m
(40) SS LS (40) SS LS

500 5.322 5.395 5.312 8.101 8.151 8.101
550 5.381 5.486 5.371 8.492 8.559 8.492
600 5.448 5.598 5.438 8.895 8.991 8.894
650 5.522 5.736 5.512 9.312 9.446 9.310
700 5.605 5.892 5.596 9.743 9.919 9.742
750 5.697 6.074 5.687 10.188 10.413 10.186
800 5.798 6.281 5.798 10.647 10.947 10.644

after deformation (the desired clearance radius), the authors
can determine the excavation radius, frozen wall thickness,
and the underestimated percentage of excavation volume at a
depth range of 500∼800 m.

The initial horizontal ground pressure [27] (expressed in
the unit MPa) is

𝑝0 = 0.013 ⋅ ℎ, (44)

where ℎ is the depth in meters.
Next, according to (33)∼(35) and (40)∼(44), the authors

determined the effective thickness of the frozen wall prior
to excavation, the excavation radius, and the underestimated
percentage of excavation volume (see Tables 1 and 2 and
Figures 9–11). The results are as follows.(1) The results of new design theory are different from
those of Liberman’s design theory (see Table 1 and Figure 9)
because of the poor applicability of Liberman’s theory in an
ultradeep soil layer. In contrast with Yang’s design theory,
the new design theory considers the effect of the frozen
wall deformation on its thickness. Figure 10 shows that the
inner-edge strains of frozen wall (more than 5%) are large
in Yang’s design theory, and inner-edge deformation even
increases with depth. In actual engineering, the inner-edge
deformations must be excavated again to obtain the desired
clearance of the shaft, which reduces the effective thickness of
the frozen wall and makes the conditions unsafe.(2)The frozenwall thickness exhibits a nonlinear increase
with depth. Moreover, the difference between the new design
theory and Yang’s design theory increases with depth, and the
maximum difference is 38.6 cm.
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Figure 9: Comparisons of different design theories.

(3) From Table 2 and Figure 11, both the excavation radii
and outer radii exhibit nonlinear increase with depth. The
calculation results of inner and outer radii of frozen wall
obtained by the new formula present considerable deviations
from the small deformation calculation results but exactly
match those calculated from large deformation numerical
calculations (maximumgap is nomore than 0.2%). Evidently,
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Figure 11: Inner and outer radii of frozen wall obtained by different
methods.

in the depth of 500∼800 m, the frozen wall thickness
calculated by previous plastic design theories neglecting side-
wall displacement of shaft should be treated cautiously.(4)The underestimated percentage of excavation volume
is between 10% and 35%. Larger calculation depths corre-
spond to larger underestimated percentages.𝑢0 represents the inner-edge displacement of frozen wall
by Yang’s theory, SS is the results of small strain finite-element
calculation, and LS expresses the large deformation finite-
element calculation results.
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Figure 12: Comparisons of large and small strains.

6. Discussion

The expressions of engineering strain 𝜀S (small strain) and
logarithmic strain 𝜀L (large strain) are as follows:

𝜀S = Δ𝑙𝑙 , (45)

𝜀L = ln(1 + Δ𝑙𝑙 ) = ln (1 + 𝜀S) , (46)

where Δ𝑙 represents the deformations of 𝑙 which is an
undeformed length. For any 𝜀S > −1, the inequality 𝜀S ≥ 𝜀L
is valid. Formula (46) can be extended to the power series;
then the expression, in the convergence domain (−1, 1], can
be expressed as

𝜀L = 𝜀S − 𝜀2S2 + 𝜀3S3 − 𝜀4S4 + ... = +∞∑
𝑛=1

(−1)𝑛+1 𝜀𝑛S𝑛 . (47)

Apparently, (47) is also valid for any 𝜀S ∈ [0, 0.5], and a
large strain equals a small strain if the higher-order terms on
the right side of (47) are neglected; otherwise, the values of
engineering strain are higher than those of the logarithmic
strain.

From an engineering point of view, small strain solutions
remain sufficient, as long as the error does not exceed
5% (implying that strains do not exceed 0.1 [7]). As seen
in Figure 12, in the range of engineering allowable error,
using small-strain solutions instead of large-strain solutions
is accurate enough. However, small-strain solutions cause
higher errors when an engineering strain range is of 0.1∼0.2.
And a problemon designing a frozenwall thickness and exca-
vation radii is discussed, in this paper, whose engineering-
strain range is of 0.05∼0.2.Therefore, for the plastic design of
a frozen wall thickness and excavation radii in an ultradeep
layer, the large-strain formula is more reasonable than the
small-strain formula.
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7. Conclusions

This paper described a new design theory for frozen wall
thickness which considers the characteristics of large defor-
mation.The influences of crustal stress, cohesion and internal
friction angle of frozen wall, cohesion and internal friction
angle, and elastic modulus of unfrozen soil on the effective
thickness of frozen wall and the excavation radius were
analyzed. The conclusions are as follows.(1) In the design of a frozen wall in an ultradeep soil
layer, the impact of large deformation should be considered.
At greater depths, the impact of large deformation is more
apparent.(2) The new design theory of frozen wall thickness
proposed in this paper appropriates to large deformation
frozenwall within a strain of 0.2.The theory can provide safer
and more reasonable theoretical support for the design of a
frozen wall in an ultradeep soil layer.(3) The new formulas can accurately calculate the vol-
ume of earthwork excavation. The example presented herein
showed that calculated frozen wall thickness based on prior
theories will result in an underestimated excavation volume
by approximately 10–35%, with the underestimated volume
increasing with depth.
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clay soil,” Géotechnique, vol. 62, no. 5, pp. 447–456, 2012.

[16] T. Cohen and D. Durban, “Fundamental solutions of cavitation
in porous solids: a comparative study,”ActaMechanica, vol. 224,
no. 8, pp. 1695–1707, 2013.

[17] A. Vrakas and G. Anagnostou, “Finite strain elastoplastic solu-
tions for the undrained ground response curve in tunnelling,”
International Journal for Numerical and Analytical Methods in
Geomechanics, vol. 39, no. 7, pp. 738–761, 2015.

[18] H. S. Yu, Cavity Expansion Methods in Geomechanics, Springer,
Dordrecht, the Netherlands, 2000.

[19] P. Papanastasiou andD.Durban, “Elastoplastic analysis of cylin-
drical cavity problems in geomaterials,” International Journal for
Numerical and Analytical Methods in Geomechanics, vol. 21, no.
2, pp. 133–149, 1997.

[20] D. Durban and P. Papanastasiou, “Elastoplastic response of
pressure sensitive solids,” International Journal for Numerical
and Analytical Methods in Geomechanics, vol. 21, no. 7, pp. 423–
441, 1997.

[21] D. Durban and P. Papanastasiou, “Cylindrical cavity expan-
sion and contraction in pressure sensitive geomaterials,” Acta
Mechanica, vol. 122, no. 1-4, pp. 99–122, 1997.

[22] D. Durban and N. A. Fleck, “Spherical cavity expansion in a
drucker-prager solid,” Journal of Applied Mechanics, vol. 64, no.
4, pp. 743–750, 1997.

[23] D. Durban and R. Masri, “Dynamic spherical cavity expansion
in a pressure sensitive elastoplastic medium,” International
Journal of Solids and Structures, vol. 41, no. 20, pp. 5697–5716,
2004.

[24] P. Chadwick, “The quasi-static expansion of a spherical cavity in
metals and ideal soils,”The Quarterly Journal of Mechanics and
Applied Mathematics, vol. 12, pp. 52–71, 1959.



10 Mathematical Problems in Engineering

[25] W.-H. Yang, Z.-J. Yang, T. Han, C. Zhang, and D.-L. Bo, “Elastic
design theory of frozen soil wall based on interaction between
frozen soil wall and surrounding rock,” Chinese Journal of
Geotechnical Engineering, vol. 34, no. 3, pp. 516–519, 2012.

[26] Y. M. Lai, H. Wu, Z. W. Wu, S. Liu, and X. Den, “Analytical
viscoelastic solution for frost force in cold-region tunnels,”Cold
Regions Science and Technology, vol. 31, no. 3, pp. 227–234, 2000.

[27] J. J. Weng, Special Construction Engineering of Mine Shaft and
Drift, Coal Industry Press, Beijing, China, 1991.

[28] D. Wang, B. Bienen, M. Nazem et al., “Large deformation finite
element analyses in geotechnical engineering,” Computers &
Geosciences, vol. 65, pp. 104–114, 2015.

[29] Y. S. Kim, J.-M. Kang, J. Lee, S.-S. Hong, and K.-J. Kim, “Finite
element modeling and analysis for artificial ground freezing in
egress shafts,” KSCE Journal of Civil Engineering, vol. 16, no. 6,
pp. 925–932, 2012.

[30] G.Wachsmuth, M. Lätzer, and E. Leidich, “Analytical computa-
tion of multiple interference fits under elasto-plastic deforma-
tions,” Zamm Journal of Applied Mathematics &Mechanics, vol.
94, no. 12, pp. 1058–1064, 2014.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

