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In this paper, we study the𝐻∞ control problem for Linear Parameter Varying (LPV) discrete systems with random time-varying
network delay. The state matrices of LPV discrete systems are deterministic functions and changed with parameters; the range
of parameters is measurable. Considering the characteristics of networks with random time-varying delay, we proposed a new
parameter-dependent𝐻∞ performance criterion based on the Lyapunov stability theory.The coupling between Lyapunov functions
and system matrices could be eliminated by introducing an additional matrix in this criterion, which made it easier for numerical
implementation. On this basis, we designed a state feedback controller by virtue of linear matrix inequalities, which transformed
the sufficient conditions into existence condition of solution of parametric linear matrix inequalities.The designed controller could
keep the closed-loop system asymptotically stable under given time delay and probability andmeet predefined performancemetric.
The validity of the proposed method is verified by numerical simulation.

1. Introduction

In recent years, the gain scheduling control has becomeone of
themost effectivemethods in nonlinear control domains, and
the application of gain scheduling control based on Linear
Parameter-Varying (LPV) system is boosting. The LPV sys-
tem is a type of system with constantly changing parameters
[1–4]. The state matrices of LPV systems are deterministic
functions with time-varying parameters, and the range of
these time-varying parameters associated with the functions
can be online measured. However, most of the control
research works for physical systems use a normal (or regular)
model. In fact, LPV systems are of quite importance for the
physical representation of some real systems [5–7]. Nowa-
days, the LPV system is widely used in aviation, aerospace,
robotic, industrial control, and so on. The reports about the
LPV systems can be found in much literature [7–10].

The modern networked control systems are developing
rapidly by virtue of such advantages as low cost, easy instal-
lation, high reliability/flexibility, strong fault tolerance/
diagnosis ability, convenient remote manipulation/control,

and so on. One of the most important requirements for
a control system is the so-called robustness [11]. However,
the combination of LPV system with network will cause
problems as data quantization, network delay, and data loss,
which will deteriorate the performance metric of the whole
system and even lead to system instability [12]. Due to
the network delay, system analysis will become much more
complex and difficult in real closed-loop control system
and the designed controller without considering network
delay will always cause instability or the degradation of
performance metric. Therefore, it is necessary to investigate
the LPV system with network delay. To date, there are only
a few reports about the networked LPV system. Wang [13]
and Mehendale & Grigoriadis [14] investigated 𝐻∞ control
of the LPV system with inherent delay. Hencey & Alleyne
[15] analyzed the stability of LPV system with time delay.
Wu & Su & Shi [16], Xiao & Jia & Matsuno [17], Shao [18],
and Deuce & Sipahi [19] analyzed the time delay problems
for networked control system. Faiz & Sing [20] and Luan &
Shi & Liu [21] researched the stability problems of networked
control system with random time delay. They proposed the
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design of controller with random time delay, which will
keep the closed-loop system asymptotically stable. Yuan [22]
investigated the stability of LPV system with state time delay
and the controller design; he proposed the system model
structure and designed an effective controller, which will
keep the system asymptotically stable. However, 𝐻∞ control
problem of LPV discrete systems with random time-varying
network delay is still an open problem. The investigation
of these systems has practical reference value and realistic
signification. Therefore, we investigate the above-mentioned
LPV discrete systems with random time-varying network
delay in this paper.

In summary, we investigate the control of LPV discrete
system with time-varying network delay while there is very
little literature on this aspect. The main contribution of this
paper is as follows. First, it has lower conservative property in
comparison with constant time delay system.We constructed
a suitable Lyapunov function, and the occurrence of network-
induced time delay was described by sequence generated
from Bernoulli distribution. Secondly, the corresponding
controller was designed to keep the quantized closed-loop
LPV system asymptotically stable. Finally, the proposed
controller design conditions were transformed into an opti-
mization problem. The optimal solutions can be obtained
by linear matrix inequalities based on stability theory and
system can meet optimal𝐻∞ performance metric [23–25].

The following sections of this paper are as follows.
Section 2 outlines the problem formulation. Section 3
describes the main theorems with their proofs. Section 4
demonstrates numerical simulation results. Section 5 gives
conclusion for this paper.

2. Problem Formulation

Consider the following polytypic LPV discrete control sys-
tem:

x (𝑘 + 1) = A (𝜌 (𝑘)) x (𝑘) + B1 (𝜌 (𝑘))u (𝑘)
+ B2 (𝜌 (𝑘))𝜔 (𝑘)

z (𝑘) = C (𝜌 (𝑘)) x (𝑘) + D (𝜌 (𝑘)) u (𝑘)
(1)

x (𝑘) = Φ (𝑘) , 𝑘 ∈ [−𝑑, 0] (2)

where [ A(𝜌(𝑘)) B1(𝜌(𝑘)) B2(𝜌(𝑘))C(𝜌(𝑘)) D(𝜌(𝑘)) 0 ] =
{∑𝑟𝑖=1 𝛼𝑖 [ A𝑖 B1𝑖 B2𝑖C𝑖 D𝑖 0 ] , 𝛼𝑖 ≥ 0,∑𝑟𝑖=1 𝛼𝑖 = 1};

x(𝑘) ∈ R𝑛 represents the state vector; z(𝑘) ∈ R𝑛 repre-
sents the system output; u(𝑘) ∈ R𝑝 represents the sys-
tem control input; 𝜔(𝑘) ∈ R𝑞 represents the disturbance
input. 𝛼𝑖 represents the coordinate of polytope. A𝑖, B1𝑖,
B2𝑖, C𝑖, and D𝑖 represent each vertex of the polytope for
system matrix A(𝜌(𝑘)), B1(𝜌(𝑘)), B2(𝜌(𝑘)), C(𝜌(𝑘)), and
D(𝜌(𝑘)), respectively. {Φ(𝑘), 𝑘 = −𝑑, −𝑑 + 1, ⋅ ⋅ ⋅ , 0} rep-
resents a sequence with known initial conditions. 𝜌(𝑘) =[𝜌1(𝑘) 𝜌2(𝑘) ⋅ ⋅ ⋅ 𝜌𝑠(𝑘)]T represents a parameter vector and𝜌𝑖(𝑘) can be online measured and fall into the closed interval
of [𝜌
𝑖
, 𝜌𝑖]. For convenience, we use 𝜌 and 𝜌𝑖 to represent 𝜌(𝑘)

and 𝜌𝑖(𝑘), respectively.

Construct the following state feedback controller:

u (𝑘) = (1 − 𝛿𝑘)K (𝜌) x (𝑘) + 𝛿𝑘K (𝜌) x (𝑘 − 𝑑 (𝑘)) (3)

where 1 ≤ 𝑑𝑚 ≤ 𝑑(𝑘) ≤ 𝑑𝑀 and K(𝜌) ∈ R𝑝×𝑛 represents
the unknown gain matrix of state feedback controller, which
depends on parameter vector 𝜌(𝑘), 𝑑(𝑘) represents the
random time-varying network delay. 𝑑𝑚 and 𝑑𝑀 represent
the lower and upper bound of time delay, respectively. 𝛿𝑘
represents whether a delay will occur or not when the signal
is transmitted from the sensor to the controller through
network channel. The Bernoulli distribution sequence with
a value of 0 or 1 is utilized to represent the occurrence of time
delay. 𝛿𝑘 = 0 means no random time delay while 𝛿𝑘 = 1
means random time delay.

Suppose the probability of random time-varying delay is

𝑝𝑟𝑜𝑏 {𝛿𝑘 = 1} = 𝐸 {𝛿𝑘} = 𝛼
𝑝𝑟𝑜𝑏 {𝛿𝑘 = 0} = 𝐸 {1 − 𝛿𝑘} = 1 − 𝛼 (4)

where 0 ≤ 𝛼 ≤ 1 is a known constant.
From (1) and (3), we can obtain the following closed-loop

LPV control system:

x (𝑘 + 1) = A (𝜌) x (𝑘) + A𝑑 (𝜌) x (𝑘 − 𝑑 (𝑘))
+ B2 (𝜌)w (𝑘)
+ (𝛼 − 𝛿𝑘)B1 (𝜌)K (𝜌) x (𝑘)
− (𝛼 − 𝛿𝑘)B1 (𝜌)K (𝜌) x (𝑘 − 𝑑 (𝑘))

z (𝑘) = C (𝜌) x (𝑘) + D (𝜌) x (𝑘 − 𝑑 (𝑘))
+ (𝛼 − 𝛿𝑘)D (𝜌)K (𝜌) x (𝑘)
− (𝛼 − 𝛿𝑘)D (𝜌)K (𝜌) x (𝑘 − 𝑑 (𝑘))

(5)

whereA(𝜌) = A(𝜌)+(1−𝛼)B1(𝜌)K(𝜌),A𝑑(𝜌) = 𝛼B1(𝜌)K(𝜌),
C(𝜌) = C(𝜌) + (1 − 𝛼)D(𝜌)K(𝜌), and D(𝜌) = 𝛼D(𝜌)K(𝜌).

First, we investigate the 𝐻∞ performance criteria for (1).
Secondly, we design the corresponding feedback controller,
which should meet the following two metrics.

(a) Equation (5) should be exponentially mean square
stable.

(b) Equation (5) has a certain level of disturbance attenu-
ation for 𝐻∞; i.e., the gain from the disturbance input 𝜔(𝑘)
to the system output z(𝑘) is less than a predefine value.
Moreover, (5) should meet the following criterion under zero
initial condition (i.e.,Φ(𝑘) = 0)

𝐸 {‖z‖22} ≤ 𝛾2 ‖𝜔‖22 (6)

where performance metric 𝛾 > 0, ‖𝜔‖22 = ∑∞𝑘=0 𝜔T(𝑘)𝜔(𝑘)
and ‖z‖22 = ∑∞𝑘=0 zT(𝑘)z(𝑘).
3. Main Theorems

Lemma 1 (see [26] (Schur complement)). Given real matrices𝐿1, 𝐿2, 𝐿3 where 𝐿1 = 𝐿𝑇1 and 𝐿2 = 𝐿𝑇2 < 0, then 𝐿1 −𝐿𝑇3𝐿−12 𝐿3 ≤ 0 if and only if [ 𝐿1 𝐿𝑇3𝐿2 𝐿2 ] ≤ 0 or [ 𝐿2 𝐿3𝐿𝑇3 𝐿1 ] ≤ 0.
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Theorem 2. For (5), given the probability of communication
time delay occurrence 0 < 𝛼 ≤ 1 and the performance metric𝛾 > 0, if there are matrices P(𝜌) > 0,Q(𝜌) > 0, Z > 0, Y1, and
Y2 such that the following linear matrix inequality equation
holds for all parameters changing trajectories, then (5) meets
the above-mentioned two performance metrics.

[
[
∏
1
∏
2

∗ ∏
3

]
]
< 0 (7)

where ∗ represents the symmetric matrices block transpose,

∏
1
= [[[
[

−P (𝜌 (𝑘)) + (𝑑𝑀 − 𝑑𝑚 + 1)Q (𝜌 (𝑘)) + Y1 + Y𝑇1 Y𝑇2 − Y1 0
∗ −Q (𝜌 (𝑘 − 𝑑𝑘)) − Y2 − Y𝑇2 0
∗ ∗ −𝛾2I

]]]
]

∏
2

= [[[[
[

A𝑇 (𝜌)P (𝜌 (𝑘 + 1)) 𝑑𝑀 (A𝑇 (𝜌) − I)Z 𝑙 ⋅ (B1 (𝜌)K (𝜌))𝑇 P (𝜌 (𝑘 + 1)) −𝑑 (𝑘)Y1 C𝑇 (𝜌) 𝛽 ⋅ (D (𝜌)K (𝜌))𝑇
A𝑇𝑑 (𝜌)P (𝜌 (𝑘 + 1)) 𝑑𝑀A𝑇𝑑 (𝜌)Z −𝑙 ⋅ (B1 (𝜌)K (𝜌))𝑇 P (𝜌 (𝑘 + 1)) −𝑑 (𝑘)Y2 D𝑇 (𝜌) −𝛽 ⋅ (D (𝜌)K (𝜌))𝑇
B𝑇2 (𝜌)P (𝜌 (𝑘 + 1)) 𝑑𝑀B𝑇2 (𝜌)Z 0 0 0 0

]]]]
]
,

∏
3
=
[[[[[[[[[[[
[

−P (𝜌 (𝑘 + 1)) 0 0 0 0 0
∗ −𝑑𝑀Z 0 0 0 0
∗ ∗ −P (𝜌 (𝑘 + 1)) 0 0 0
∗ ∗ ∗ −𝑑 (𝑘)Z 0 0
∗ ∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ ∗ −I

]]]]]]]]]]]
]

,

𝑙 = √(1 + 𝑑𝑀) 𝛼 (1 − 𝛼), 𝛽 = √𝛼 (1 − 𝛼).

(8)

Proof. Construct the following parameter-dependent Lya-
punov function:

V (𝑘,𝜌 (𝑘)) = V1 + V2 + V3 + V4 (9)

where V1 = x𝑇(𝑘)P(𝜌(𝑘))x(𝑘),
V2 = ∑𝑘−1𝑖=𝑘−𝑑(𝑘) x𝑇(𝑖)Q(𝜌(𝑖))x(𝑖), V3 =
∑−𝑑𝑚+1
𝑗=−𝑑𝑀+2

∑𝑘−1𝑖=𝑘+𝑗−1 x𝑇(𝑖)Q(𝜌(𝑖))x(𝑖), V4 =
∑−1𝑖=−𝑑𝑀 ∑𝑘−1𝑚=𝑘+𝑖 𝛿𝑇(𝑚)Z𝛿(𝑚), 𝛿(𝑘) = x(𝑘 + 1) − x(𝑘).

Note that 𝐸{(𝛼−𝛿𝑘)2} = 𝛽2 and 𝐸{(𝛼−𝛿𝑘)} = 0; therefore
we have
𝐸 {V (𝑘 + 1,𝜌 (𝑘 + 1))} − V (𝑘,𝜌 (𝑘)) = 𝐸 {ΔV1}
+ 𝐸 {ΔV2} + 𝐸 {ΔV3} + 𝐸 {ΔV4}

ΔV1 = x𝑇 (𝑘 + 1)P (𝜌 (𝑘 + 1)) x (𝑘 + 1) − x𝑇 (𝑘)
⋅ P (𝜌 (𝑘)) x (𝑘) = [A (𝜌) x (𝑘) + A𝑑 (𝜌) x (𝑘
− 𝑑 (𝑘)) + B2 (𝜌)w (𝑘) + (𝛼 − 𝛿𝑘)B1 (𝜌)K (𝜌) x (𝑘)
− (𝛼 − 𝛿𝑘)B1 (𝜌)K (𝜌) x (𝑘 − 𝑑 (𝑘))]𝑇 ⋅ P (𝜌 (𝑘
+ 1)) ⋅ [A (𝜌) x (𝑘) + A𝑑 (𝜌) x (𝑘 − 𝑑 (𝑘)) + B2 (𝜌)
⋅ w (𝑘) + (𝛼 − 𝛿𝑘)B1 (𝜌)K (𝜌) x (𝑘) − (𝛼 − 𝛿𝑘)

⋅ B1 (𝜌)K (𝜌) x (𝑘 − 𝑑 (𝑘))] − x𝑇 (𝑘)P (𝜌 (𝑘)) x (𝑘)
ΔV2 = x𝑇 (𝑘)Q (𝜌 (𝑘)) x (𝑘) − x𝑇 (𝑘 − 𝑑 (𝑘))Q (𝜌 (𝑘
− 𝑑 (𝑘))) x (𝑘 − 𝑑 (𝑘)) + 𝑘−1∑

𝑖=𝑘−𝑑𝑚+1

x𝑇 (𝑖)Q (𝜌 (𝑖)) x (𝑖)

+ 𝑘−𝑑𝑚∑
𝑖=𝑘−𝑑(𝑘+1)+1

x𝑇 (𝑖)Q (𝜌 (𝑖)) x (𝑖) − 𝑘−1∑
𝑖=𝑘−𝑑(𝑘)+1

x𝑇 (𝑖)
⋅ Q (𝜌 (𝑖)) x (𝑖) ≤ x𝑇 (𝑘)Q (𝜌 (𝑘)) x (𝑘) − x𝑇 (𝑘
− 𝑑 (𝑘))Q (𝜌 (𝑘 − 𝑑 (𝑘))) x (𝑘 − 𝑑 (𝑘))
+ 𝑘−𝑑𝑚∑
𝑖=𝑘−𝑑𝑀+1

x𝑇 (𝑖)Q (𝜌 (𝑖)) x (𝑖)

ΔV3 =
−𝑑𝑚+1∑
𝑗=−𝑑𝑀+2

[x𝑇 (𝑘)Q (𝜌 (𝑘)) x (𝑘)
− x𝑇 (𝑘 + 𝑗 − 1)Q (𝜌 (𝑘 + 𝑗 − 1)) x (𝑘 + 𝑗 − 1)]
= (𝑑𝑀 − 𝑑𝑚) x𝑇 (𝑘)Q (𝜌 (𝑘)) x (𝑘) −

𝑘−𝑑𝑚∑
𝑖=𝑘−𝑑𝑀+1

x𝑇 (𝑖)



4 Mathematical Problems in Engineering

⋅Q (𝜌 (𝑖)) x (𝑖)
ΔV4 =

−1∑
𝑖=−𝑑𝑀

[𝛿𝑇 (𝑘)Z𝛿 (𝑘) − 𝛿𝑇 (𝑘 + 𝑖)Z𝛿 (𝑘 + 𝑖)]
≤ 𝑑𝑀 [x (𝑘 + 1) − x (𝑘)]𝑇 Z [x (𝑘 + 1) − x (𝑘)]
− 𝑘−1∑
𝑚=𝑘−𝑑(𝑘)

𝛿
𝑇 (𝑚)Z𝛿 (𝑚) = 𝑑𝑀 [(A (𝜌) − I) x (𝑘)

+ A𝑑 (𝜌) x (𝑘 − 𝑑 (𝑘)) + B2 (𝜌)w (𝑘) + (𝛼 − 𝛿𝑘)
⋅ B1 (𝜌)K (𝜌) x (𝑘) − (𝛼 − 𝛿𝑘)B1 (𝜌)K (𝜌) x (𝑘
− 𝑑 (𝑘))]𝑇 ⋅ Z ⋅ [(A (𝜌) − 𝐼) x (𝑘) + A𝑑 (𝜌) x (𝑘
− 𝑑 (𝑘)) + B2 (𝜌)w (𝑘) + (𝛼 − 𝛿𝑘)B1 (𝜌)K (𝜌) x (𝑘)
− (𝛼 − 𝛿𝑘)B1 (𝜌)K (𝜌) x (𝑘 − 𝑑 (𝑘))]
− 𝑘−1∑
𝑚=𝑘−𝑑(𝑘)

𝛿
𝑇 (𝑚)Z𝛿 (𝑚)

(10)

Then we have

ΔV (𝑘,𝜌 (𝑘)) = ΔV1 + ΔV2 + ΔV3 + ΔV4
≤ 1
𝑑 (𝑘)

𝑘−1∑
𝑚=𝑘−𝑑(𝑘)

Ξ (𝑚,𝜌 (𝑘)) (11)

where

Ξ (𝑚,𝜌 (𝑘)) = [A (𝜌) x (𝑘) + A𝑑 (𝜌) x (𝑘 − 𝑑 (𝑘))
+ B2 (𝜌)w (𝑘) + (𝛼 − 𝛿𝑘)B1 (𝜌)K (𝜌) x (𝑘)
− (𝛼 − 𝛿𝑘)B1 (𝜌)K (𝜌) x (𝑘 − 𝑑 (𝑘))]𝑇
⋅ P (𝜌 (𝑘 + 1)) ⋅ [A (𝜌) x (𝑘) + A𝑑 (𝜌) x (𝑘 − 𝑑 (𝑘))
+ B2 (𝜌)w (𝑘) + (𝛼 − 𝛿𝑘)B1 (𝜌)K (𝜌) x (𝑘)
− (𝛼 − 𝛿𝑘)B1 (𝜌)K (𝜌) x (𝑘 − 𝑑 (𝑘))] − x𝑇 (𝑘)
⋅ P (𝜌 (𝑘)) x (𝑘) + (𝑑𝑀 − 𝑑𝑚 + 1) x𝑇 (𝑘)Q (𝜌 (𝑘))
⋅ x (𝑘) − x𝑇 (𝑘 − 𝑑 (𝑘))Q (𝜌 (𝑘 − 𝑑 (𝑘))) x (𝑘
− 𝑑 (𝑘)) + 𝑑𝑀 ⋅ [(A (𝜌) − I) x (𝑘)
+ A𝑑 (𝜌) x (𝑘 − 𝑑 (𝑘)) + B2 (𝜌)w (𝑘)
+ (𝛼 − 𝛿𝑘)B1 (𝜌)K (𝜌) x (𝑘)
− (𝛼 − 𝛿𝑘)B1 (𝜌)K (𝜌) x (𝑘 − 𝑑 (𝑘))]𝑇 ⋅ Z
⋅ [(A (𝜌) − I) x (𝑘) + A𝑑 (𝜌) x (𝑘 − 𝑑 (𝑘))
+ B2 (𝜌)w (𝑘) + (𝛼 − 𝛿𝑘)B1 (𝜌)K (𝜌) x (𝑘)

− (𝛼 − 𝛿𝑘)B1 (𝜌)K (𝜌) x (𝑘 − 𝑑 (𝑘))] − 𝑑 (𝑘)
⋅ 𝛿𝑇 (𝑚)Z𝛿 (𝑚) .

(12)

Based on x(𝑘) − x(𝑘 − 𝑑(𝑘)) = ∑𝑘−1𝑚=𝑘−𝑑(𝑘) 𝛿(𝑚), for any
matrices Y1 and Y2,

Λ = 1
𝑑 (𝑘)

𝑘−1∑
𝑚=𝑘−𝑑(𝑘)

[ x (𝑘)
x (𝑘 − 𝑑 (𝑘))]

𝑇

[Y1
Y2
] [x (𝑘)

− x (𝑘 − 𝑑 (𝑘)) − 𝑑 (𝑘) 𝛿 (𝑚)] = 0
(13)

Then we have
𝐸 {ΔV (𝑘,𝜌 (𝑘))} = 𝐸 {ΔV (𝑘,𝜌 (𝑘)) + 2Λ}

≤ 1𝑑 (𝑘)
𝑘−1∑
𝑚=𝑘−𝑑(𝑘)

𝜂
𝑇 (𝑘,𝑚)𝜓𝜂 (𝑘,𝑚) (14)

where

𝜂 (𝑘, 𝑚) =
[[[[[
[

x (𝑘)
x (𝑘 − 𝑑 (𝑘))

w (𝑘)
𝛿 (𝑚)

]]]]]
]
,

𝜓 =
[[[[[
[

𝜓11 𝜓12 𝜓13 −𝑑 (𝑘)Y1
∗ 𝜓22 𝜓23 −𝑑 (𝑘)Y2
∗ ∗ 𝜓33 0
∗ ∗ ∗ −𝑑 (𝑘)Z

]]]]]
]
,

𝜓11

= A𝑇 (𝜌)P (𝜌 (𝑘 + 1))A (𝜌) − P (𝜌 (𝑘))
+ (𝑑𝑀 − 𝑑𝑚 + 1)Q (𝜌 (𝑘)) + Y1 + Y𝑇1

+ 𝑑𝑀 (A (𝜌) − I)𝑇 Z (A (𝜌) − I)
+ 𝑙2 (B1 (𝜌)K (𝜌))𝑇 P (𝜌 (𝑘 + 1))B1 (𝜌)K (𝜌)

𝜓12

= Y𝑇2 − Y1 + A𝑇 (𝜌)P (𝜌 (𝑘 + 1))A𝑑 (𝜌)
+ 𝑑𝑀 (A (𝜌) − I)𝑇 ZΑ𝑑 (𝜌)
− 𝑙2 (B1 (𝜌)K (𝜌))𝑇 P (𝜌 (𝑘 + 1))B1 (𝜌)K (𝜌)

𝜓22

= A𝑇𝑑 (𝜌)P (𝜌 (𝑘 + 1))A𝑑 (𝜌)
+ 𝑑𝑀A𝑇𝑑 (𝜌)ZA𝑑 (𝜌) −Q (𝜌 (𝑘 − 𝑑 (𝑘))) − Y2

− Y𝑇2

+ 𝑙2 (B1 (𝜌)K (𝜌))𝑇 P (𝜌 (𝑘 + 1))B1 (𝜌)K (𝜌)
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𝜓13

= A𝑇 (𝜌)P (𝜌 (𝑘 + 1))B2 (𝜌)
+ 𝑑𝑀 (A (𝜌) − I)𝑇 ZB2 (𝜌) ,

𝜓23

= A𝑇𝑑 (𝜌)P (𝜌 (𝑘 + 1))B2 (𝜌) + 𝑑𝑀A𝑇𝑑 (𝜌)ZB2 (𝜌)
𝜓33

= B𝑇2 (𝜌)P (𝜌 (𝑘 + 1))B2 (𝜌) + 𝑑𝑀B𝑇2 (𝜌)ZB2 (𝜌)
(15)

Further, the norm of LPV system output is

‖z (𝑘)‖2 = [C (𝜌) x (𝑘) + D (𝜌) x (𝑘 − 𝑑 (𝑘))
+ (𝛼 − 𝛿𝑘)D (𝜌)K (𝜌) x (𝑘)
− (𝛼 − 𝛿𝑘)D (𝜌)K (𝜌) x (𝑘 − 𝑑 (𝑘))]𝑇
⋅ [C (𝜌) x (𝑘) +D (𝜌) x (𝑘 − 𝑑 (𝑘))
+ (𝛼 − 𝛿𝑘)D (𝜌)K (𝜌) x (𝑘)
− (𝛼 − 𝛿𝑘)D (𝜌)K (𝜌) x (𝑘 − 𝑑 (𝑘))]

(16)

Combining (14) and (16), we have

𝐸 {ΔV (𝑘,𝜌 (𝑘))} + 𝐸 {‖z (𝑘)‖2} − 𝛾2 ‖w (𝑘)‖2
≤ 𝜂𝑇 (𝑘)𝜓𝜂 (𝑘) − 𝛾2w (𝑘)𝑇w (𝑘) + 𝜂𝑇 (𝑘)

⋅
[[[[[[
[

C𝑇 (𝜌)
D𝑇 (𝜌)

0
0

]]]]]]
]

[[[[[[
[

C𝑇 (𝜌)
D𝑇 (𝜌)

0
0

]]]]]]
]

𝑇

𝜂 (𝑘) + 𝜂𝑇 (𝑘)

⋅
[[[[[[
[

𝛽 ⋅ (D (𝜌)K (𝜌))𝑇
−𝛽 ⋅ (D (𝜌)K (𝜌))𝑇

0
0

]]]]]]
]

[[[[[[
[

𝛽 ⋅ (D (𝜌)K (𝜌))𝑇
−𝛽 ⋅ (D (𝜌)K (𝜌))𝑇

0
0

]]]]]]
]

𝑇

⋅ 𝜂 (𝑘)
(17)

According to Schur complement theory, (7) can keep that𝐸{ΔV(𝑘,𝜌(𝑘))} + 𝐸{‖z(𝑘)‖2} − 𝛾2‖w(𝑘)‖2 < 0; i.e., the closed-
loop LPV system is exponentialmean square stable andmeets
the predefined 𝐻∞ performance metrics. This completes the
proof.

We can conclude from Theorem 2 that there exists a
product term concerning with the Lyapunov function matrix
and the closed-loop system matrix, which makes (7) change
into bilinear matrix inequalities. To solve this problem, an
additional matrix is introduced to eliminate the coupling
between the system matrix and the parameter-dependent
Lyapunov function [27]. A new 𝐻∞ performance metric
is obtained for further design of gain scheduling feedback
controller.

Theorem 3. Given the probability of communication time
delay occurrence 0 < 𝛼 ≤ 1 and the performance metric 𝛾 > 0,
if there are symmetric positive definite matrices P, Q(𝜌), Z,
and matrices K(𝜌), Y1,and Y2, such that the following linear
matrix inequality equation holds for all parameters changing
trajectories, then (5) is asymptotically stable and meets the
predefined𝐻∞ performance metrics.

[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[

Θ11 Y𝑇2 − Y1 0 Θ14 𝑑𝑀Θ15 𝑙M −𝑑 (𝑘)Y1 Θ18 𝛽N
∗ Θ22 0 PA𝑇𝑑 (𝜌) 𝑑𝑀PA𝑇𝑑 (𝜌) −𝑙M −𝑑 (𝑘)Y2 PD𝑇 (𝜌) −𝛽N
∗ ∗ −𝛾2I B𝑇2 (𝜌) 𝑑𝑀B𝑇2 (𝜌) 0 0 0 0

∗ ∗ ∗ −P 0 0 0 0 0

∗ ∗ ∗ ∗ 𝑑𝑀Z−1 0 0 0 0

∗ ∗ ∗ ∗ ∗ −P 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −𝑑 (𝑘)PZP 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I

]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]

< 0 (18)
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where

Θ11 = −P + (𝑑𝑀 − 𝑑𝑚 + 1)Q (𝜌 (𝑘)) + Y1 + Y𝑇1 ,
Θ14 = PA𝑇 (𝜌) + (1 − 𝛼) (B1 (𝜌)K (𝜌))𝑇 ,
Θ15 = P (A𝑇 (𝜌) − I) + (1 − 𝛼) (B1 (𝜌)K (𝜌))𝑇 ,
Θ18 = PC𝑇 (𝜌) + (1 − 𝛼) (D (𝜌)K (𝜌))𝑇 ,
Θ22 = −Q (𝜌 (𝑘 − 𝑑 (𝑘))) − Y2 − Y𝑇2 ,

A𝑑 (𝜌) = 𝛼B1 (𝜌)K (𝜌) ,
D (𝜌) = 𝛼D (𝜌)K (𝜌) ,

M = P (B1 (𝜌)K (𝜌))𝑇 ,
N = P (D (𝜌)K (𝜌))𝑇 ,

(19)

If (18) has a solution, then the gain matrix of controller is

K (𝜌 (𝑘)) = K (𝜌 (𝑘))P−1 (20)

Proof. Suppose there are symmetric positive definitematrices
P > 0, Q(𝜌) > 0, Z > 0, and matrices K(𝜌), Y1, and Y2
meet (18). We do the equal transformation on (18) based on
reversiblematrix diag{P−1,P−1, I,P−1,Z,P−1,P−1, I, I}.More-
over, letting P = P−1, Q(𝜌(𝑘)) = P−1Q(𝜌(𝑘))P−1, Y1 =
P−1Y1 P

−1
, Y2 = P−1Y2 P

−1
, P(𝜌(𝑘)) ≡ P, we can draw the

conclusion that (18) is equivalent to (7).Therefore, the gain of
controller designed by (18) can keep the closed-loop system
stable, and system can meet the predefined performance
metrics. This completes the proof.

4. Numerical Simulations

In this section, we will provide numerical simulation to show
the effectiveness of the proposed method. The system matrix
is originated from literature [22]. We consider the following
polytypic LPV control system:

x (𝑘 + 1) = [ 0.1 1 + 0.2𝜌1
−1.2 −1 + 0.1𝜌2] x (𝑘) + [

0.2
0.3]u (𝑘)

+ [0.20.2]𝜔 (𝑘)

z (𝑘) = [0 1
0 0] x (𝑘) + [

0
1]u (𝑘)

(21)

where 𝜌1 and 𝜌2 are online measurable time-varying parame-
ters, and they are in the intervals 𝜌1 ∈ [−1, 1] and 𝜌2 ∈ [1, 2],
respectively.

The vertex of polytypic Θ is {𝜗1, 𝜗2, 𝜗3, 𝜗4} ={[−1, 1], [−1, 2], [1, 1], [1, 2]}. Let A(𝜌) = ∑𝑟𝑖=1 𝛼𝑖A𝑖 and
the initial state of the system is 𝑥0 = [1, −0.5], 𝛼1 = 0.1,
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Figure 1: The state response of open-loop system.

𝛼2 = 0.2, 𝛼3 = 0.3, 𝛼4 = 0.4. The disturbance is defined as
follows:

𝜔 (𝑘) = 1
(0.1 + 𝑘2) . (22)

The state response of (21) is shown in Figure 1. As can
be seen in Figure 1, the state response is divergent within
the range of vector 𝜌(𝑘), and the final state response will
approximate infinity. Therefore, the original polytypic LPV
system described by (21) is unstable.

Consider the 𝐻∞ control, letting 1 ≤ 𝑑(𝑘) ≤ 3, 𝑑𝑚 = 1,𝑑𝑀 = 3, K(𝜌) = ∑𝑟𝑖=1 𝛼𝑖K𝑖, we substitute Θ into the system
matrix.When𝑑(𝑘) = 1 and𝛼 changes in the interval [0, 1], we
can obtain optimal performance metric under different time
delay probabilities by solving (18), as shown in Table 1. The
corresponding state responses are shown in Figures 2–4.

Table 1 implies that 𝛾 will gradually increase with the
increase of 𝛼. This means the anti-interference ability will
gradually deteriorate. As can be seen in Figures 2–4, the
system is stable if 𝑑(𝑘) = 1 is fixed and 𝛼 is less than or equal
to 0.5; the systemwill become unstable gradually if 𝑑(𝑘) = 1 is
fixed and 𝛼 is greater than 0.6. In most cases, 𝛼 is less than or
equal to 0.5. Therefore, the controller designed in this paper
can keep the closed-loop system stable andmake systemmeet
the predefined𝐻∞ performance metric.

When 𝛼 = 0.5 is fixed, the performance metric of the
system will also change with the time delay, as shown in
Table 2, and its corresponding state response is shown in
Figure 5.

Table 2 implies that 𝛾 will gradually increase with the
increase of 𝑑(𝑘). This means the anti-interference ability will
gradually deteriorate. As can be seen in Figures 3 and 5,
system stability and performance metric will be affected with
the increase of 𝑑(𝑘)when 𝛼 = 0.5 is fixed; the system is stable
with good performance when 𝑑(𝑘) is less than or equal to
2; the system is divergent, and it will gradually change into
unstable system when 𝑑(𝑘) is greater than or equal to 3.
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Table 1: Performance metric 𝛾 under different time delay probabilities 𝛼.
time delay probability 𝛼 performance metric 𝛾
0 0.2079
0.2 0.2151
0.5 0.2271
0.6 0.2317
0.8 0.2429
1.0 0.2587

Table 2: Performance metric 𝛾 under different time delay scale 𝑑(𝑘).
time delay scale 𝑑(𝑘) performance metric 𝛾
1 0.2271
2 0.2551
3 0.2764
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Figure 2: The state response of closed-loop system when 𝛼 = 0.2
and 𝑑(𝑘) = 1.
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Figure 3: The state response of closed-loop system when 𝛼 = 0.5
and 𝑑(𝑘) = 1.
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Figure 4: The state response of closed-loop system when 𝛼 = 0.6
and 𝑑(𝑘) = 1.
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Figure 5:The state response of the closed-loop systemwhen𝛼 = 0.5
and 𝑑(𝑘) = 2.
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In summary, the stability and performance of the system
are both affected by time delay probability and scale. The
stability and performance of the system will deteriorate with
the increasing of time delay probability 𝛼 or time delay scale𝑑(𝑘). The controller designed in this paper can keep the
closed-loop system asymptotically stable and meet prede-
fined performance metric under given delay and probability.

5. Conclusion

In this paper, we investigate 𝐻∞ control of LPV polytypic
system with random time-varying network delay. A method
for the robust 𝐻∞ controller of gain scheduling LPV with
random time-varying network delay is proposed based on
the gain scheduling and 𝐻∞ theory. Utilizing LPV convex
decomposition technique, each vertex of the polytypic LPV
system is used to design the feedback gain so as to meet
the 𝐻∞ performance metric and dynamic characteristics,
respectively. Firstly, the feedback controller should be expo-
nentiallymean square stable under randomdelay distribution
sequence conditions. Secondly, the designed system should
meet predefined performance metric when taking anti-
interference ability into account. Compared with the time
delay in existing literature, we consider network-induced
time delay; it will change stochastically, and it is a sequence
under certain distribution. We can give the conclusion from
equation derivations and numerical simulations that time
delay is a key element for system stability. The stability
and performance of the system will deteriorate if the time
delay probability or the time delay scale is increasing. The
proposed controller in this paper can keep closed-loop
system asymptotically stable andmeet expected performance
under given delay and probability.
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