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This paper studies the problem of adaptive stabilization for a class of stochastic high-order nonholonomic systems. Under the
weaker assumptions, by constructing the appropriate Lyapunov function and combining sign function technique, an adaptive state
feedback controller is designed to guarantee global asymptotic stability in probability of the closed-loop system. The effectiveness
of the controller is demonstrated by a mechanical system.

1. Introduction

Ever since the stochastic stability theory was established by
[1, 2], the design and analysis of backstepping controller
for stochastic nonlinear systems has achieved remarkable
development in recent years; see [1, 3–12] and the references
therein. But these papers do not consider stochastic nonholo-
nomic systems.

In this paper, we consider stochastic high-order nonholo-
nomic systems

d𝑥0 = 𝑑0 (𝑡, 𝜃) 𝑢𝑝00 d𝑡 + 𝑓0 (𝑥0, 𝜃) d𝑡 + 𝑔⊤0 (𝑥0, 𝜃) d𝜔,
d𝑥𝑖 = 𝑑𝑖 (𝑡, 𝜃) 𝑢𝑞𝑖0 𝑥𝑝𝑖𝑖+1d𝑡 + 𝑓𝑖 (𝑥0, 𝑥, 𝜃) d𝑡

+ 𝑔⊤𝑖 (𝑥0, 𝑥, 𝜃) d𝜔,
d𝑥𝑛 = 𝑑𝑛 (𝑡, 𝜃) 𝑢𝑞𝑛0 𝑢𝑝𝑛d𝑡 + 𝑓𝑛 (𝑥0, 𝑥, 𝜃) d𝑡+ 𝑔⊤𝑛 (𝑥0, 𝑥, 𝜃) d𝜔,

(1)

where 𝑥0 ∈ 𝑅 and 𝑥 = (𝑥1, . . . , 𝑥𝑛)⊤ ∈ 𝑅𝑛 are
system states, 𝑢0 and 𝑢 are control inputs, 𝑝𝑖 ∈ 𝑅≥1𝑜𝑑𝑑 ≜{𝑝/𝑞|𝑝 and 𝑞 are positive odd integers, and𝑝 ≥ 𝑞} are odd
integers, and 𝑞𝑖 ≥ 0 are constants, 𝑖 = 1, . . . , 𝑛. 𝜃 ∈ 𝑅𝑚 is
an unknown constant vector. 𝜔 is a 𝑟-dimensional standard
Wiener process defined on a probability space (Ω,F, 𝑃)with

Ω being a sample space, F being a filtration, and 𝑃 being a
probability measure. 𝑓0(𝑥0, 𝜃) : 𝑅 × 𝑅𝑚 → 𝑅, 𝑔0(𝑥0, 𝜃) :𝑅 × 𝑅𝑚 → 𝑅𝑟, 𝑓𝑖(𝑥0, 𝑥, 𝜃) : 𝑅 × 𝑅𝑛 × 𝑅𝑟 → 𝑅, 𝑔𝑖(𝑥0, 𝑥, 𝜃) :𝑅×𝑅𝑛×𝑅𝑟 → 𝑅𝑟, 𝑖 = 1, . . . , 𝑛, are locally Lipschitz functions.𝑑𝑖(𝑡, 𝜃), 𝑖 = 0, . . . , 𝑛, are nonlinear control coefficients.

Since many mechanical systems can be modeled by sys-
tem (1), a series of theoretical results have been obtained. To
mention a few, [13–16] investigated the deterministic case of𝑔𝑖 = 0. Speciallywhen𝑑𝑖 = 𝑝𝑖 = 𝑞𝑖 = 1 and𝑓𝑖 = 0, the authors
designed a continuous controller by proposing a slidingmode
control approach in [13]. When systems contain nonlinear
drifts and unknown time-varying coefficients, [15] presented
an adaptive control approach to achieve sate-feedback sta-
bilization. High-order nonholonomic systems, that is, 𝑝𝑖 ≥1, were introduced in [16]. The design procedure in [16]
combined the idea of a discontinuous change of coordinate
and adding a power integrator. However, it did not consider
nonlinear parameterizations. Because many practical control
systems such as biochemical processes and machines with
friction often contain unknown parameters, [14] studied the
problem of adaptive stabilization control design for a class
of high-order nonholonomic systems with strong nonlinear
drifts. Since stochastic noise frequently arises and is inevitable
in practical control systems, how to extend these approaches
to stochastic high-order nonholonomic systems is a very
interesting problem.When𝑔𝑖 ̸= 0, [17] studied the problemof
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state feedback stabilization for a class of high-order stochastic
nonholonomic systems with disturbed control directions and
more general nonlinear drifts. However, nonlinear param-
eterization and nonlinear drift term in 𝑥0-subsystem were
not discussed in [17]. Unfortunately, all these mentioned
results require that the nonlinearities 𝑓𝑖(⋅) are dependent on(𝑥1, . . . , 𝑥𝑖). Naturally, an interesting problem is put forward:
For system (1), under weaker assumptions, can a stabilizable
state feedback controller be designed?

In this paper, we will provide a satisfactory answer to this
problem. By constructing the appropriate Lyapunov function,
skillfully combining parameter separation, sign function, and
backstepping design approach, an adaptive state feedback
controller is designed to guarantee global asymptotic stability
in probability of the closed-loop system. Finally, a simulation
example is used to demonstrate the effectiveness of this
approach.

The contributions and difficulties of this paper are high-
lighted from three aspects.

(i) The system under consideration is more general than
those investigated in [13–17]. System (1) has unknown con-
trol coefficients and permits unknown parameters to enter
nonlinear equations. Nonlinear functions𝑓𝑖(⋅) are dependent
on (𝑥1, . . . , 𝑥𝑖+1), which makes discontinuous change of
coordinates be inapplicable to the adaptive state feedback
control of systems (1). In this paper, we propose a novel design
approach to solve this obstacle.

(ii) The unknown growth rates of the upper bounds
of 𝑓𝑖(⋅) and 𝑔𝑖(⋅) are extended; see Remark 13. Therefore,
some new mathematical tools, such as sign function and
transformation technique, are introduced to simplify the
construction of Lyapunov function.

(iii) An practical example for mobile robot with small
angle measurement error is modeled and solved by the
proposed approach.

This paper is organized as follows. Section 2 gives some
preliminaries. Section 3 presents the design and analysis
of the adaptive controller, following a practical example in
Section 4. Section 5 concludes this paper. The proofs of
Propositions 16–19 are given in Appendix.

2. Mathematical Preliminaries

Some notations and definitions will be used throughout this
paper. 𝑅+ stands for the set of all nonnegative real numbers
and 𝑅𝑛 denotes real 𝑛-dimensional space. For vector 𝜒 =(𝜒1, . . . , 𝜒𝑛)⊤, 𝜒𝑖 represents (𝜒1, . . . , 𝜒𝑖)⊤. For a given vector or
matrix 𝑥, 𝑥⊤ denotes its transpose, |𝑥| is the Euclidean norm
of a vector 𝑥, and Tr{𝑥} denotes its trace when 𝑥 is square.
C𝑖 denotes the set of all functions with continuous 𝑖th partial
derivatives. K denotes the set of all functions: 𝑅+ → 𝑅+
that are continuous, strictly increasing, and vanishing at zero;
K∞ denotes the set of all functions that are of class K and
unbounded. For any 𝑦 ∈ 𝑅, sign function sgn(𝑦) is defined
as sgn(𝑦) = 1 if 𝑦 > 0; sgn(𝑦) = 0 if 𝑦 = 0 and sgn(𝑦) = −1
if 𝑦 < 0. For simplicity, we denote ⌈𝑦⌉𝑝 = |𝑦|𝑝sgn(𝑦). The
arguments of functions are sometimes omitted or simplified,
for example, a function 𝑓(𝑥(𝑡)) is denoted by 𝑓(𝑥) or𝑓.

In what follows, we present some definitions and lemmas
which will be frequently used in the design and analysis of
controller. Consider stochastic nonlinear system

d𝑥 = 𝑓 (𝑥, 𝜃) d𝑡 + 𝑔 (𝑥, 𝜃) d𝜔,𝑥 (𝑡0) = 𝑥0 ∈ 𝑅𝑛, (2)

where 𝜔 is a 𝑟-dimensional standard Wiener process defined
on a probability space (Ω,F, 𝑃), 𝑥 ∈ 𝑅𝑛 is system state, 𝜃 ∈𝑅𝑚 is an unknown constant vector and the functions 𝑓 : 𝑅𝑛 ×𝑅𝑚 → 𝑅𝑛, and 𝑔 : 𝑅𝑛 × 𝑅𝑚 → 𝑅𝑛×𝑟 are locally bounded
and locally Lipschitz with respect to 𝑥.
Definition 1 (see [1]). The equilibrium 𝑥(𝑡) = 0 of system (2)
with 𝑓(0, 𝜃) = 0, 𝑔(0, 𝜃) = 0 is

(i) globally stable in probability if for any 𝜀 > 0, there
exists a class K function 𝑟(⋅) such that 𝑃{|𝑥(𝑡)| < 𝑟(𝑥0)} ≥1 − 𝜀, for any 𝑡 ≥ 0, 𝑥0 ∈ 𝑅𝑛 \ {0}

(ii) globally asymptotically stable in probability if it is
globally stable in probability and 𝑃{lim𝑡→∞|𝑥(𝑡) = 0|} = 1,
for any 𝑥0 ∈ 𝑅𝑛
Lemma 2 (see [1]). For system (2), if there exists aC2 function𝑉(𝑥) : 𝑅𝑛 → 𝑅+ and classK∞ functions 𝛼1(⋅) and 𝛼2(⋅), such
that 𝛼1 (|𝑥|) ≤ 𝑉 (𝑥) ≤ 𝛼2 (|𝑥|) ,

L𝑉 (𝑥) = 𝜕𝑉 (𝑥)𝜕𝑥 𝑓 (𝑥, 𝜃)
+ 12Tr{𝑔𝑇 (𝑥, 𝜃) 𝜕2𝑉 (𝑥)𝜕𝑥2 𝑔 (𝑥, 𝜃)}

≤ −𝑊(𝑥) ,
(3)

where𝑊(𝑥) is a nonnegative continuous function, then, for any𝑥(𝑡0) ∈ 𝑅𝑛,
(i) there exists an almost surely unique solution on [𝑡0,∞)
(ii) the equilibrium 𝑥 = 0 is globally stable in probability,

and the solution 𝑥(𝑡) satisfies 𝑃{lim𝑡→∞𝑊(𝑥(𝑡)) = 0} = 1
Lemma 3 (see [18]). For any real-valued continuous functionℎ(𝑥, 𝑦), where 𝑥 ∈ 𝑅𝑚, 𝑦 ∈ 𝑅𝑛, there are smooth scalar
functions 𝑐(𝑥) ≥ 1 and 𝑑(𝑦) ≥ 1, such that |ℎ(𝑥, 𝑦)| ≤𝑐(𝑥)𝑑(𝑦).
Lemma 4 (see [19]). Let 𝑥, 𝑦 be real variables, then for
any positive real numbers 𝑏, 𝑐, 𝑑 and continuous function𝑎(⋅) ≥ 0, one has 𝑎(⋅)|𝑥|𝑐|𝑦|𝑑 ≤ 𝑏|𝑥|𝑐+𝑑 + (𝑑/(𝑐 + 𝑑))((𝑐 +𝑑)/𝑐)−𝑐/𝑑𝑎(⋅)(𝑐+𝑑)/𝑑𝑏−𝑐/𝑑|𝑦|𝑐+𝑑.
Lemma 5 (see [20]). 𝑓(𝑥) = ⌈𝑥⌉𝑎 is continuously differen-
tiable and ̇𝑓(𝑥) = 𝑎|𝑥|𝑎−1, where 𝑎 ≥ 1, 𝑥 ∈ 𝑅. Moreover,𝑑𝑓(𝑥(𝑡))/𝑑𝑡 = 𝑎|𝑥(𝑡)|𝑎−1�̇�(𝑡).
Lemma6 (see [20]). If𝑝 = 𝑎/𝑏 ∈ 𝑅≥1𝑜𝑑𝑑, 𝑏 ≥ 1, then |𝑥𝑝−𝑦𝑝| ≤21−1/𝑏|⌈𝑥⌉𝑎 − ⌈𝑦⌉𝑎|1/𝑏 for any 𝑥, 𝑦 ∈ 𝑅.
Lemma 7 (see [20]). For given 𝑟 ≥ 0 and every 𝑥 ∈ 𝑅, 𝑦 ∈ 𝑅,|𝑥 + 𝑦|𝑟 ≤ 𝐶𝑟(|𝑥|𝑟 + |𝑦|𝑟) holds, where 𝐶𝑟 = 2𝑟−1 if 𝑟 ≥ 1 and𝐶𝑟 = 1 if 0 ≤ 𝑟 < 1.
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Lemma 8 (see [20]). Let 𝑓 : [𝑎, 𝑏] → 𝑅 be a continuous
monotone function with 𝑓(𝑎) = 0; then | ∫𝑏

𝑎
𝑓(𝑥)𝑑𝑥| ≤|𝑓(𝑏)||𝑏 − 𝑎|.

3. Design and Analysis of Adaptive Controller

3.1. Problem Formulation and Assumptions. The aim of this
paper is to design an adaptive state feedback controller
for system (1) to guarantee global asymptotic stability in
probability of the closed-loop system. We need the following
assumptions to achieve this aim.

Assumption 9. The sign of 𝑑𝑖(𝑡, 𝜃), 𝑖 = 0, . . . , 𝑛, is assumed to
be positive, and there exist smooth functions 0 < 𝜆𝑖,1(𝑡) ≤𝜆𝑖,2(𝑡, 𝜃), such that

0 < 𝜆𝑖,1 (𝑡) ≤ 𝑑𝑖 (𝑡, 𝜃) ≤ 𝜆𝑖,2 (𝑡, 𝜃) . (4)

Assumption 10. For smooth functions𝑓0(𝑥0, 𝜃) and 𝑔0(𝑥0, 𝜃),
there exist bounded smooth functions 𝛼0(𝑥0, 𝜃), 𝛽0(𝑥0, 𝜃)
such that 𝑓0 (𝑥0, 𝜃) = 𝑥0𝛼0 (𝑥0, 𝜃) ,𝑔0 (𝑥0, 𝜃) = 𝑥0𝛽0 (𝑥0, 𝜃) . (5)

Assumption 11. For 𝑖 = 1, . . . , 𝑛, there exist nonnegative
continuous functions 𝛼𝑖(𝑥0, 𝑥𝑖, 𝜃), 𝛽𝑖(𝑥0, 𝑥𝑖, 𝜃) and a constant𝜏 satisfying −𝑟𝑛 < 𝜏 < 0 such that𝑓𝑖 (𝑥0, 𝑥, 𝜃)

≤ (𝑥1(𝑟𝑖+𝜏)/𝑟1 + ⋅ ⋅ ⋅ + 𝑥𝑖(𝑟𝑖+𝜏)/𝑟𝑖) 𝛼𝑖 (𝑥0, 𝑥𝑖, 𝜃)
+ 𝑐𝑖𝑢𝑞𝑖0 𝑑𝑖 (𝑡, 𝜃) 𝑥𝑖+1(𝑟𝑖+𝜏)/𝑟𝑖+1 ,𝑔𝑖 (𝑥0, 𝑥, 𝜃)

≤ (𝑥1(2𝑟𝑖+𝜏)/2𝑟1 + ⋅ ⋅ ⋅ + 𝑥𝑖(2𝑟𝑖+𝜏)/2𝑟𝑖) 𝛽𝑖 (𝑥0, 𝑥𝑖, 𝜃) ,
(6)

where 𝑟𝑛+1 is a given positive constant and 𝑟1,⋅ ⋅ ⋅ , 𝑟𝑛 are
recursively defined by 𝑟𝑖 = 𝑝𝑖𝑟𝑖+1 − 𝜏 and nonnegative
constants 𝑐𝑖 < 1/2𝑝𝑖−1.
Remark 12. Assumptions 10-11 imply that 𝑓0(0, 𝜃) = 0,𝑔0(0, 𝜃) = 0, 𝑓𝑖(0, 0, 𝜃) = 0, 𝑔𝑖(0, 0, 𝜃) = 0, 𝑖 = 1, . . . , 𝑛; that is,
origin is the equilibrium of system (1).

Remark 13. Assumption 11 enlarges the scope of nonholo-
nomic systems. Specifically, if state 𝑥𝑖+1 does not appear in the
nonlinear function 𝑓𝑖(⋅), Assumption 11 is degenerated into
the following form:𝑓𝑖 (𝑥0, 𝑥, 𝜃)

≤ (𝑥1(𝑟𝑖+𝜏)/𝑟1 + ⋅ ⋅ ⋅ + 𝑥𝑖(𝑟𝑖+𝜏)/𝑟𝑖) 𝛼𝑖 (𝑥0, 𝑥𝑖, 𝜃) ,𝑔𝑖 (𝑥0, 𝑥, 𝜃)
≤ (𝑥1(2𝑟𝑖+𝜏)/2𝑟1 + ⋅ ⋅ ⋅ + 𝑥𝑖(2𝑟𝑖+𝜏)/2𝑟𝑖) 𝛽𝑖 (𝑥0, 𝑥𝑖, 𝜃) ,

(7)

where 𝑟1 = 1, 𝑟𝑖 = 1 + (𝑖 − 1)𝜏 with 𝜏 being a constant for
each 𝑖 = 1, . . . , 𝑛. Particularly, when 𝜏 = 0, (7) becomes the
following growth condition:𝑓𝑖 (𝑥0, 𝑥, 𝜃) ≤ (𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑖) 𝛼𝑖 (𝑥0, 𝑥𝑖, 𝜃) ,𝑔𝑖 (𝑥0, 𝑥, 𝜃) ≤ (𝑥1 + ⋅ ⋅ ⋅ + 𝑥𝑖) 𝛽𝑖 (𝑥0, 𝑥𝑖, 𝜃) . (8)

If 𝛼𝑖(𝑥0, 𝑥𝑖, 𝜃) and 𝛽𝑖(𝑥0, 𝑥𝑖, 𝜃) are constants, (8) becomes the
linear growth condition in [21]. If 𝛼𝑖(𝑥0, 𝑥𝑖, 𝜃) and𝛽𝑖(𝑥0, 𝑥𝑖, 𝜃)
are smooth nonnegative functions, (8) becomes the linear
growth condition in [22, 23]. When 𝜏 = −𝑝/𝑞 ∈ (−2/(4𝑛 +1), 0)with𝑝 being an even integer and 𝑞 being an odd integer,
condition (7) becomes the low-order growth condition in
[24, 25]. Assumption 11 extends the value of 𝜏 to an explicit
interval rather than a ratio of an even integer over an odd
integer.

Remark 14. By Lemma 3, there are smooth scalar functions�̃�𝑖,2(𝑡) ≥ 1, 𝛼𝑖(𝑥0, 𝑥𝑖) ≥ 1, 𝛽𝑖(𝑥0, 𝑥𝑖) ≥ 1, 𝑖 = 0, . . . , 𝑛, andΘ(𝜃) ≥ 1 such that𝜆𝑖,1 (𝑡) ≤ 𝑑𝑖 (𝑡, 𝜃) ≤ �̃�𝑖,2 (𝑡) Θ,𝑓0 (𝑥0, 𝜃) ≤ 𝑥0 𝛼0 (𝑥0)Θ,𝑔0 (𝑥0, 𝜃) ≤ 𝑥0 𝛽0 (𝑥0)Θ,𝑓𝑖 (𝑥0, 𝑥, 𝜃)≤ (𝑥1(𝑟𝑖+𝜏)/𝑟1 + ⋅ ⋅ ⋅ + 𝑥𝑖(𝑟𝑖+𝜏)/𝑟𝑖) 𝛼𝑖 (𝑥0, 𝑥𝑖)Θ
+ 𝑐𝑖𝑢𝑞𝑖0 𝑑𝑖 (𝑡, 𝜃) 𝑥𝑖+1(𝑟𝑖+𝜏)/𝑟𝑖+1 ,𝑔𝑖 (𝑥0, 𝑥, 𝜃)≤ (𝑥1(2𝑟𝑖+𝜏)/2𝑟1 + ⋅ ⋅ ⋅ + 𝑥𝑖(2𝑟𝑖+𝜏)/2𝑟𝑖) 𝛽𝑖 (𝑥0, 𝑥𝑖)Θ.

(9)

3.2. Stability and Convergence Analysis. We state the main
result in this paper.

Theorem 15. If Assumptions 9–11 hold for system (1), under
an appropriate controller, the origin of the closed-loop system
is globally asymptotically stable in probability for any initial
condition.

Proof. The proof is based on inductive argument. Firstly,
we design an adaptive controller by considering two cases:𝑥0(𝑡0) ̸= 0 and 𝑥0(𝑡0) = 0.
Case I (𝑥0(𝑡0) ̸= 0).The structure of system (1) means that the
design procedure is divided into two separate parts.

Part I (design of controller 𝑢0). Let us consider 𝑥0-subsystem
in system (1), define Θ0 = 𝜆−10,1max{𝜆−10,1, Θ, Θ2}, and choose𝑉0 = 𝑥40/4+(𝜆0,1/2)Θ̃20, where Θ̃0 = Θ0−Θ̂0. FromRemark 14,
it follows that

L𝑉0 = 𝑥30 (𝑑0𝑢𝑝00 + 𝑓0) + 32Tr {𝑔0𝑥20𝑔⊤0 } − 𝜆0,1Θ̃0 ̇̂Θ0≤ − 𝑎𝜆0,1 𝑥40 + 𝑎𝜆0,1 𝑥40 + 𝑥30𝑑0𝑢𝑝00 + Θ𝛼0 (𝑥0) 𝑥40
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+ 32Θ2𝛽20 (𝑥0) 𝑥40 − 𝜆0,1Θ̃0 ̇̂Θ0
≤ − 𝑎𝜆0,1 𝑥40 + 𝜆0,1𝑥30 ( 𝑑0𝜆0,1 𝑢𝑝00 + ℎ (𝑥0) Θ̂0𝑥0)
− 𝜆0,1Θ̃0 ( ̇̂Θ0 − 𝑥40ℎ (𝑥0)) ,

(10)

where 𝑎 is a positive constant and ℎ(𝑥0) = 𝑎 + 𝛼0(𝑥0) +(3/2)𝛽20(𝑥0) is a positive smooth function. Substituting the
adaptive controller

𝑢0 = −(𝑥0ℎ (𝑥0)√Θ̂20 + 1)1/𝑝0 ,
̇̂Θ0 = 𝑥40ℎ (𝑥0)

(11)

into (10) leads to

L𝑉0 ≤ − 𝑎𝜆0,1 𝑥40. (12)

The succeeding proposition characterizes the features of 𝑥0-
subsystem.

Proposition 16. If Assumptions 9-10 hold for 𝑥0-subsystem,
controller (11) guarantees that

(i) 𝑥0-subsystem has an almost surely unique solution on[𝑡0,∞) for any 𝑥0(𝑡0) ̸= 0
(ii) the equilibrium 𝑥0 = 0 of 𝑥0-subsystem is globally

asymptotically stable in probability
(iii) the solution of 𝑥0-subsystem and 𝑢0 does not cross zero

for any 𝑥0(𝑡0) ̸= 0
Proof. See Appendix.

Part II (design of controller 𝑢). In this part, we need
to consider 𝑥𝑖-subsystem in system (1). With the help of
Proposition 16, controller 𝑢will be recursively constructed by
applying the adding a power integrator approach. Before the
beginning of recursive design, we define Θ1 = max{1, Θ,Θ2}
and state transformation

𝜉1 = ⌈𝑥1⌉𝜎/𝑟1 − ⌈𝑥∗1 ⌉𝜎/𝑟1 , 𝑥∗1 = 0,
𝜉2 = ⌈𝑥2⌉𝜎/𝑟2 − ⌈𝑥∗2 ⌉𝜎/𝑟2 ,

𝑥∗2 = −𝜙1 (𝑥0, 𝑥1, Θ̂1) ⌈𝜉1⌉𝑟2/𝜎 ,...
𝜉𝑘 = ⌈𝑥𝑘⌉𝜎/𝑟𝑘 − ⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘 ,

𝑥∗𝑘 = −𝜙𝑘−1 (𝑥0, 𝑥𝑘−1, Θ̂1) ⌈𝜉𝑘−1⌉𝑟𝑘/𝜎 ,

(13)

where 𝜎 is a positive constant satisfying the relationship 𝜎 ≥
max{𝑝1𝑟2, . . . , 𝑝𝑛𝑟𝑛+1}, Θ̂1 is the estimate ofΘ1, and functions𝜙𝑘(⋅) satisfying sgn(𝜙𝑘) = sgn(𝑢𝑞𝑘0 ) will be determined later.

To solve the problem caused by sign function, the definition
of𝑊𝑘(𝑥0, 𝑥𝑘, Θ̂1) is given by

𝑊𝑘 (𝑥0, 𝑥𝑘, Θ̂1)
= ∫𝑥𝑘
𝑥∗
𝑘

⌈⌈𝑠⌉𝜎/𝑟𝑘 − ⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘⌉(4𝑙𝜎−𝜏−𝑟𝑘)/𝜎 d𝑠, (14)

where 𝑘 = 1, . . . , 𝑛 and 4𝑙 is an even number and satisfies(4𝑙 − 2)𝜎 ≥ 𝜏 + 𝑟𝑘.
Proposition 17. 𝑊𝑘 is C2 function and satisfies 𝐶𝑘1|𝑥𝑘 −𝑥∗𝑘 |(4𝑙𝜎−𝜏)/𝑟𝑘 ≤ 𝑊𝑘 ≤ 𝐶𝑘2|𝜉𝑘|(4𝑙𝜎−𝜏)/𝜎, where 𝐶𝑘1 =2(𝜎−𝑟𝑘)(4𝑙𝜎−𝜏−𝑟𝑘)/𝜎𝑟𝑘(𝑟𝑘/(4𝑙𝜎 − 𝜏)), 𝐶𝑘2 = 21−𝑟𝑘/𝜎, 𝑘 = 1, . . . , 𝑛.
Proof. See Appendix.

To obtain the expression of 𝑢, we determine 𝜙1,⋅ ⋅ ⋅ , 𝜙𝑛 by
induction, the design procedure is implemented as follows.

Step 1. Let𝑉1 = 𝑊1 + (1/2)Θ̃21, where Θ̃1 = Θ1 − Θ̂1. By using
(13), (A.3), (A.7), and Lemma 7, we get

L𝑉1 ≤ ⌈𝜉1⌉(4𝑙𝜎−𝜏−𝑟1)/𝜎 (𝑑1𝑢𝑞10 𝑥𝑝12 + 𝑓1)
+ 4𝑙𝜎 − 𝜏 − 𝑟12𝑟1 𝜉1((4𝑙−1)𝜎−𝜏−𝑟1)/𝜎 𝑥1(𝜎−𝑟1)/𝑟1 𝑔12
− Θ̃1 ̇̂Θ1 ≤ −𝑛𝜉4𝑙1 + 𝑛𝜉4𝑙1
+ ⌈𝜉1⌉(4𝑙𝜎−𝜏−𝑟1)/𝜎 𝑑1𝑢𝑞10 (𝑥𝑝12 − 𝑥∗2 𝑝1)
+ ⌈𝜉1⌉(4𝑙𝜎−𝜏−𝑟1)/𝜎 𝑑1𝑢𝑞10 𝑥∗2 𝑝1 − Θ̃1 ̇̂Θ1
+ 4𝑙𝜎 − 𝜏 − 𝑟12𝑟1 𝜉1((4𝑙−1)𝜎−𝜏−𝑟1)/𝜎 𝑥1(𝜎+𝑟1+𝜏)/𝑟1 𝛽21Θ2
+ ⌈𝜉1⌉(4𝑙𝜎−𝜏−𝑟1)/𝜎
⋅ (𝑥1(𝑟1+𝜏)/𝑟1 𝛼1Θ + 𝑐1𝑑1𝑢𝑞10 𝑥2𝑝1) .

(15)

Clearly, the application of the fact ⌈𝜉1⌉(4𝑙𝜎−𝜏−𝑟1)/𝜎𝑑1𝑢𝑞10 𝑥∗𝑝12 ≤0 implies

⌈𝜉1⌉(4𝑙𝜎−𝜏−𝑟1)/𝜎 𝑢𝑞10 𝑑1𝑥∗𝑝12
+ ⌈𝜉1⌉(4𝑙𝜎−𝜏−𝑟1)/𝜎 𝑐1𝑑1𝑢𝑞10 𝑥2𝑝1
≤ ⌈𝜉1⌉(4𝑙𝜎−𝜏−𝑟1)/𝜎 𝑢𝑞10 𝑑1𝑥∗𝑝12
+ 𝜉1(4𝑙𝜎−𝜏−𝑟1)/𝜎 𝑐1𝑑1 𝑢0𝑞1 𝑥∗2 𝑝1
+ 𝜉1(4𝑙𝜎−𝜏−𝑟1)/𝜎 𝑐1𝑑1 𝑢0𝑞1 𝜉2(𝑟1+𝜏)/𝜎
≤ ⌈𝜉1⌉(4𝑙𝜎−𝜏−𝑟1)/𝜎 𝑑1𝑢𝑞10 (1 − 𝑐1) 𝑥∗𝑝12
+ 𝜉1(4𝑙𝜎−𝜏−𝑟1)/𝜎 𝑐1𝑑1 𝑢0𝑞1 𝜉2(𝑟1+𝜏)/𝜎 ,

(16)
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where 𝑐1 = 2𝑝1−1𝑐1 is a positive constant. Substituting (16) into
(15) and choosing

𝑥∗2 = −( 1𝜆1,1𝑢𝑞10 (1 − 𝑐1)
⋅ Θ̂1 (𝛼1 + 𝑛 + 4𝑙𝜎 − 𝜏 − 𝑟12𝑟1 𝛽21))1/𝑝1 ⌈𝜉1⌉𝑟2/𝜎
≜ −𝜙1 (𝑥0, 𝑥1, Θ̂1) ⌈𝜉1⌉𝑟2/𝜎 ,

(17)

one has

L𝑉1 ≤ −𝑛𝜉4𝑙1 + ⌈𝜉1⌉(4𝑙𝜎−𝜏−𝑟1)/𝜎 𝑑1𝑢𝑞10 (𝑥𝑝12 − 𝑥∗2 𝑝1)
+ (Ψ1 − ̇̂Θ1) (Θ̃1 + 𝜂1)
+ 𝑐1𝑑1 𝑢0𝑞1 𝜉1(4𝑙𝜎−𝜏−𝑟1)/𝜎 𝜉2(𝑟1+𝜏)/𝜎 ,

(18)

whereΨ1 = 𝜉4𝑙1 (𝛼1+𝑛+((4𝑙𝜎−𝜏−𝑟1)/2𝑟1)𝛽21) ≥ 0 and 𝜂1 = 0.
Step k (𝑘 = 2, . . . , 𝑛). At Step 𝑘 − 1, assume that there exists a
C2 function 𝑉𝑘−1 and virtual controllers 𝑥∗2 ,⋅ ⋅ ⋅ , 𝑥∗𝑘 such that

L𝑉𝑘−1
≤ − (𝑛 − 𝑘 + 2) 𝑘−1∑

𝑖=1

𝜉4𝑙𝑖
+ ⌈𝜉𝑘−1⌉(4𝑙𝜎−𝜏−𝑟𝑘−1)/𝜎 𝑑𝑘−1𝑢𝑞𝑘−10 (𝑥𝑝𝑘−1

𝑘
− 𝑥∗𝑘 𝑝𝑘−1)

+ (Ψ𝑘−1 − ̇̂Θ1) (Θ̃1 + 𝜂𝑘−1)
+ 𝑐𝑘−1𝑑𝑘−1 𝑢0𝑞𝑘−1 𝜉𝑘−1(4𝑙𝜎−𝜏−𝑟𝑘−1)/𝜎 𝜉𝑘(𝑟𝑘−1+𝜏)/𝜎 ,

(19)

where 𝑐𝑘−1 = 2𝑝𝑘−1−1𝑐𝑘−1 is a nonnegative constant and
0 ≤ Ψ𝑘−1 ≤ (𝜉4𝑙1 + ⋅ ⋅ ⋅ + 𝜉4𝑙𝑘−1) 𝜑𝑘−1, (20)

for a C∞ function 𝜑𝑘−1 ≥ 0. In what follows, we prove that
(19) also holds at Step 𝑘. To prove this point, considering𝑉𝑘 =𝑉𝑘−1 +𝑊𝑘, we deduce from (19) and (A.3)-(A.13) that

L𝑉𝑘
≤ − (𝑛 − 𝑘 + 2) 𝑘−1∑

𝑖=1

𝜉4𝑙𝑖
+ ⌈𝜉𝑘−1⌉(4𝑙𝜎−𝜏−𝑟𝑘−1)/𝜎 𝑑𝑘−1𝑢𝑞𝑘−10 (𝑥𝑝𝑘−1

𝑘
− 𝑥∗𝑘 𝑝𝑘−1)

+ 𝜕𝑊𝑘𝜕Θ̂1 ̇̂Θ1 + (Ψ𝑘−1 − ̇̂Θ1) (Θ̃1 + 𝜂𝑘−1)
+ 𝑐𝑘−1𝑑𝑘−1 𝑢0𝑞𝑘−1 𝜉𝑘−1(4𝑙𝜎−𝜏−𝑟𝑘−1)/𝜎 𝜉𝑘(𝑟𝑘−1+𝜏)/𝜎
+ 𝜕𝑊𝑘𝜕𝑥0 (𝑑0𝑢𝑝00 + 𝑓0) + 𝜕𝑊𝑘𝜕𝑥𝑘 (𝑑𝑘𝑢𝑞𝑘0 𝑥𝑝𝑘𝑘+1 + 𝑓𝑘)

+ 12  𝜕
2𝑊𝑘𝜕𝑥20

 𝑔02 +
𝑘−1∑
𝑖=1

𝜕𝑊𝑘𝜕𝑥𝑖 (𝑑𝑖𝑢𝑞𝑖0 𝑥𝑝𝑖𝑖+1 + 𝑓𝑖)
+ 12  𝜕

2𝑊𝑘𝜕𝑥2
𝑘

 𝑔𝑘2 + 12
𝑘−1∑
𝑖=1

 𝜕
2𝑊𝑘𝜕𝑥2𝑖

 𝑔𝑖2
+ 12  𝜕

2𝑊𝑘𝜕𝑥𝑘𝜕𝑥0
 𝑔𝑘 𝑔⊤0  + 12

𝑘−1∑
𝑖=1

 𝜕
2𝑊𝑘𝜕𝑥𝑖𝜕𝑥0

 𝑔𝑖 𝑔⊤0 
+ 12 𝑘−1∑
𝑖=1

 𝜕
2𝑊𝑘𝜕𝑥𝑖𝜕𝑥𝑘

 𝑔𝑖 𝑔⊤𝑘 
+ 12 𝑘−1∑
𝑖,𝑗=1,𝑖 ̸=𝑗

 𝜕
2𝑊𝑘𝜕𝑥𝑖𝜕𝑥𝑗

 𝑔𝑖 𝑔⊤𝑗  .
(21)

We give the following proposition, whose proof is placed in
the Appendix.

Proposition 18. There is a smooth function 𝜎𝑘 such that⌈𝜉𝑘−1⌉(4𝑙𝜎−𝜏−𝑟𝑘−1)/𝜎 𝑑𝑘−1𝑢𝑞𝑘−10 (𝑥𝑝𝑘−1
𝑘

− 𝑥∗𝑘 𝑝𝑘−1)
+ 𝜕𝑊𝑘𝜕𝑥0 (𝑑0𝑢𝑞00 + 𝑓0) +

𝑘−1∑
𝑖=1

𝜕𝑊𝑘𝜕𝑥𝑖 (𝑑𝑖𝑢𝑞𝑖0 𝑥𝑝𝑖𝑖+1 + 𝑓𝑖)
+ 𝜕𝑊𝑘𝜕𝑥𝑘 𝑓𝑘 + 12

 𝜕
2𝑊𝑘𝜕𝑥20

 𝑔02 + 12
 𝜕
2𝑊𝑘𝜕𝑥2
𝑘

 𝑔𝑘2
+ 12 𝑘−1∑
𝑖=1

 𝜕
2𝑊𝑘𝜕𝑥𝑖𝜕𝑥𝑘

 𝑔𝑖 𝑔⊤𝑘  + 12
𝑘−1∑
𝑖=1

 𝜕
2𝑊𝑘𝜕𝑥2𝑖

 𝑔𝑖2
+ 12  𝜕

2𝑊𝑘𝜕𝑥𝑘𝜕𝑥0
 𝑔𝑘 𝑔⊤0  + 12

𝑘−1∑
𝑖=1

 𝜕
2𝑊𝑘𝜕𝑥𝑖𝜕𝑥0

 𝑔𝑖 𝑔⊤0 
+ 12 𝑘−1∑
𝑖,𝑗=1,𝑖 ̸=𝑗

 𝜕
2𝑊𝑘𝜕𝑥𝑖𝜕𝑥𝑗

 𝑔𝑖 𝑔⊤𝑗 
+ 𝑐𝑘−1𝑑𝑘−1 𝑢0𝑞𝑘−1 𝜉𝑘−1(4𝑙𝜎−𝜏−𝑟𝑘−1)/𝜎 𝜉𝑘(𝑟𝑘−1+𝜏)/𝜎

≤ 1213 𝑘−1∑
𝑖=1

𝜉4𝑙𝑖 + 𝜎𝑘Θ1𝜉4𝑙𝑘
+ 𝑐𝑘𝑑𝑘 𝑢0𝑞𝑘 𝜉𝑘(4𝑙𝜎−𝜏−𝑟𝑘)/𝜎 𝜉𝑘+1(𝑟𝑘+𝜏)/𝜎
+ 𝜉𝑘(4𝑙𝜎−𝜏−𝑟𝑘)/𝜎 𝑑𝑘𝑐𝑘 𝑢0𝑞𝑘 𝑥∗𝑘+1𝑝𝑘 ,

(22)

where 𝑐𝑘 = 2𝑝𝑘−1𝑐𝑘 is a nonnegative constant. Substituting (22)
into (21), we arrive at

L𝑉𝑘 ≤ −(𝑛 − 𝑘 + 1413) 𝑘−1∑
𝑖=1

𝜉4𝑙𝑖
+ (Ψ𝑘−1 − ̇̂Θ1) (Θ̃1 + 𝜂𝑘−1) + 𝜕𝑊𝑘𝜕𝑥𝑘 𝑑𝑘𝑢𝑞𝑘0 𝑥𝑝𝑘𝑘+1
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+ 𝜎𝑘𝜉4𝑙𝑘 Θ1 + 𝜕𝑊𝑘𝜕Θ̂1 ̇̂Θ1+ 𝑐𝑘𝑑𝑘 𝑢0𝑞𝑘 𝜉𝑘(4𝑙𝜎−𝜏−𝑟𝑘)/𝜎 𝜉𝑘+1(𝑟𝑘+𝜏)/𝜎+ 𝜉𝑘(4𝑙𝜎−𝜏−𝑟𝑘)/𝜎 𝑑𝑘𝑐𝑘 𝑢0𝑞𝑘 𝑥∗𝑘+1𝑝𝑘 .
(23)

Obviously, defining Ψ𝑘 = Ψ𝑘−1 + 𝜉4𝑙𝑘 (𝜎𝑘 + 𝑛 − 𝑘 + 14/13) and𝜂𝑘 = 𝜂𝑘−1 − 𝜕𝑊𝑘/𝜕Θ̂1, it follows from (20) that 0 ≤ Ψ𝑘 ≤(𝜉4𝑙1 + ⋅ ⋅ ⋅ + 𝜉4𝑙𝑘 )𝜑𝑘, where 𝜑𝑘 = max{𝜑𝑘−1, 𝜎𝑘 + 𝑛 − 𝑘 + 14/13} is
a nonnegative smooth function. With this in mind, (23) can be
rewritten as

L𝑉𝑘 ≤ −(𝑛 − 𝑘 + 1413) 𝑘∑
𝑖=1

𝜉4𝑙𝑖 + (Ψ𝑘 − ̇̂Θ1) (Θ̃1 + 𝜂𝑘)
+ 𝜕𝑊𝑘𝜕𝑥𝑘 𝑑𝑘𝑢𝑞𝑘0 𝑥𝑝𝑘𝑘+1+ 𝑐𝑘𝑑𝑘 𝑢0𝑞𝑘 𝜉𝑘(4𝑙𝜎−𝜏−𝑟𝑘)/𝜎 𝜉𝑘+1(𝑟𝑘+𝜏)/𝜎+ 𝜉𝑘(4𝑙𝜎−𝜏−𝑟𝑘)/𝜎 𝑑𝑘𝑐𝑘 𝑢0𝑞𝑘 𝑥∗𝑘+1𝑝𝑘
+ 𝜉4𝑙𝑘 Θ̂1 (𝜎𝑘 + 𝑛 − 𝑘 + 1413) + 𝜂𝑘−1Ψ𝑘−1− 𝜂𝑘Ψ𝑘.

(24)

With the help of Lemma 4, one has

𝜂𝑘−1Ψ𝑘−1 − 𝜂𝑘Ψ𝑘 ≤ 𝜂𝑘−1𝜉4𝑙𝑘 Θ̂1 (𝜎𝑘 + 𝑛 − 𝑘 + 1413)
+  𝜕𝑊𝑘𝜕Θ̂1 Ψ𝑘


≤ 113 𝑘∑
𝑖=1

𝜉4𝑙𝑖 + 𝜑𝑘Θ̂1𝜉4𝑙𝑘 ,
(25)

which, together with (24), implies that

L𝑉𝑘 ≤ − (𝑛 − 𝑘 + 1) 𝑘∑
𝑖=1

𝜉4𝑙𝑖 + (Ψ𝑘 − ̇̂Θ1) (Θ̃1 + 𝜂𝑘)
+ ⌈𝜉𝑘⌉(4𝑙𝜎−𝜏−𝑟𝑘)/𝜎 𝑑𝑘𝑢𝑞𝑘0 (𝑥𝑝𝑘𝑘+1 − 𝑥∗𝑝𝑘𝑘+1)
+ ⌈𝜉𝑘⌉(4𝑙𝜎−𝜏−𝑟𝑘)/𝜎 (𝑑𝑘𝑢𝑞𝑘0 (1 − 𝑐𝑘) 𝑥∗𝑝𝑘𝑘+1 + ⌈𝜉𝑘⌉(𝑟𝑘+𝜏)/𝜎
⋅ Θ̂1 (𝜑𝑘 + 𝜎𝑘 + 𝑛 − 𝑘 + 1413)) + 𝑐𝑘𝑑𝑘 𝑢0𝑞𝑘⋅ 𝜉𝑘(4𝑙𝜎−𝜏−𝑟𝑘)/𝜎 𝜉𝑘+1(𝑟𝑘+𝜏)/𝜎 ,

(26)

where 𝜑𝑘 ≥ 0 is a smooth function. It is easy to see that the
virtual controller

𝑥∗𝑘+1 = −( 1𝜆𝑘,1𝑢𝑞𝑘0 (1 − 𝑐𝑘)

⋅ Θ̂1 (𝜑𝑘 + 𝜎𝑘 + 𝑛 − 𝑘 + 1413))
1/𝑝𝑘 ⌈𝜉𝑘⌉𝑟𝑘+1/𝜎

≜ −𝜙𝑘 (𝑥0, 𝑥𝑘, Θ̂1) ⌈𝜉𝑘⌉𝑟𝑘+1/𝜎 ,
(27)

renders

L𝑉𝑘 ≤ − (𝑛 − 𝑘 + 1) 𝑘∑
𝑖=1

𝜉4𝑙𝑖
+ ⌈𝜉𝑘⌉(4𝑙𝜎−𝜏−𝑟𝑘)/𝜎 𝑑𝑘𝑢𝑞𝑘0 (𝑥𝑝𝑘𝑘+1 − 𝑥∗𝑝𝑘𝑘+1)+ (Ψ𝑘 − ̇̂Θ1) (Θ̃1 + 𝜂𝑘)
+ 𝑐𝑘𝑑𝑘 𝑢0𝑞𝑘 𝜉𝑘(4𝑙𝜎−𝜏−𝑟𝑘)/𝜎 𝜉𝑘+1(𝑟𝑘+𝜏)/𝜎 ,

(28)

which still holds for 𝑘 = 𝑛. Hence at last step, we can explicitly
construct a positive-definite and proper Lyapunov function𝑉𝑛 = 𝑉𝑛−1 + 𝑊𝑛 and a smooth controller 𝑥∗𝑛+1 with form (27)
such that

L𝑉𝑛 ≤ − 𝑛∑
𝑖=1

𝜉4𝑙𝑖 + (Ψ𝑛 − ̇̂Θ1) (Θ̃1 + 𝜂𝑛)
+ ⌈𝜉𝑛⌉(4𝑙𝜎−𝜏−𝑟𝑛)/𝜎 𝑑𝑛𝑢𝑞𝑛0 (𝑢𝑝𝑛 − 𝑥∗𝑝𝑛𝑛+1)
+ 𝑐𝑛𝑑𝑛 𝑢0𝑞𝑛 𝜉𝑛(4𝑙𝜎−𝜏−𝑟𝑛)/𝜎 𝜉𝑛+1(𝑟𝑛+𝜏)/𝜎 .

(29)

Noting 𝜉𝑛+1 = 0, by choosing the smooth actual controller 𝑢 and
the adaptive law for Θ̂1,

𝑢 = 𝑥∗𝑛+1 = −𝜙𝑛 (𝑥0, 𝑥𝑛, Θ̂1) ⌈𝜉𝑛⌉𝑟𝑛+1/𝜎 , ̇̂Θ1 = Ψ𝑛, (30)

we get

L𝑉𝑛 ≤ − 𝑛∑
𝑖=1

𝜉4𝑙𝑖 . (31)

The succeeding proposition characterizes the features of 𝑥𝑖-
subsystem.

Proposition 19. If Assumptions 9–11 hold for system (1),
controllers (11) and (30) guarantee that

(i) the closed-loop system has an almost surely unique
solution on [𝑡0,∞) for each (𝑥1(𝑡0), . . ., 𝑥𝑛(𝑡0), Θ̂1(𝑡0))

(ii) the equilibrium of the closed-loop system is glob-
ally asymptotically stable in probability, 𝑃{lim𝑡→∞|𝑥(𝑡)| =0} = 1, 𝑃{lim𝑡→∞Θ̂1(𝑡) exist and is finite} = 1 for each(𝑥1(𝑡0), . . . , 𝑥𝑛(𝑡0), Θ̂1(𝑡0))
Proof. See Appendix.

Case II (𝑥0(𝑡0) = 0). When 𝑥0(𝑡0) = 0, how to select the
controllers 𝑢0 and 𝑢 is an interesting topic. If the initial state
is zero, one chooses an open loop controller 𝑢0 = 𝑢∗0 ̸= 0
to drive the state 𝑥0 away from zero; a novel controller 𝑢 =𝑢∗ can be obtained by the above procedure of original 𝑥𝑖-
subsystem in (1). So there exists 𝑡𝑠 > 0 such that 𝑥0(𝑡𝑠) ̸= 0;
after that, controllers 𝑢0 in (11) and 𝑢 in (30) can be used.
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In view of the argument above, there exists an adaptive
controller, such that the equilibrium of the closed-loop
system is globally asymptotically stable in probability for any
initial condition. The proof of Theorem 15 is completed.

4. Simulation Example

Consider the bilinear model of a mobile robot with small
angle measurement error [26], which is described by

̇𝑥𝑐 = (1 − 𝜀22 ) ],
̇𝑦𝑐 = 𝜃] + 𝜀],̇𝜃 = 𝜔,

(32)

where 𝜀 is a small bias in orientation. ] and 𝜔 are two control
inputs to denote the linear velocity and angular velocity,
respectively. Since stochastic disturbance frequently arises
in practical control systems, when the angular velocity 𝜔 is
subject to some stochastic disturbances, 𝜔 can be expressed
as 𝜔(𝑥𝑐, 𝑦𝑐, 𝜃) = 𝜔1(𝑥𝑐, 𝑦𝑐, 𝜃) +𝜔2(𝑥𝑐, 𝑦𝑐, 𝜃)�̇�(𝑡), where 𝐵(𝑡) is
the so-called white noise [2].Then system (32) is transformed
into

d𝑥𝑐 = (1 − 𝜀22 ) ]d𝑡,
d𝑦𝑐 = (𝜃] + 𝜀]) d𝑡,
d𝜃 = 𝜔1d𝑡 + 𝜔2d𝐵.

(33)

For system (33), by taking the state and input transformation𝑥0 = 𝑥𝑐, 𝑥1 = 𝑦𝑐, 𝑥2 = 𝜃 + 𝜀, 𝑢0 = ], 𝑢1 = 𝜔1, one has
d𝑥0 = (1 − 𝜀22 ) 𝑢0d𝑡,
d𝑥1 = 𝑥2𝑢0d𝑡,
d𝑥2 = 𝑢1d𝑡 + 𝜔2d𝐵.

(34)

System (34) is a special case of system (1). For simplicity,
we assume 1 − 𝜀2/2 > 0, 𝜔2 = 𝑥2 sin𝑥1, and 𝑥0(0) ̸= 0.

Following the above design process, an adaptive controller
can be explicitly given

𝑢0 = −𝑥0,
𝑢1 = −Θ̂1 (𝜑2 + 𝜎 + 1413) ⌈𝜉1⌉ ,̇̂Θ1 = 2𝜉41 + 𝜉42 (𝜎 + 1413) ,

(35)

where 𝜉1 = ⌈𝑥1⌉, 𝜉2 = ⌈𝑥2⌉ − 2Θ̂1𝑢−10 ⌈𝜉1⌉, 𝜑2 =12|𝑢0|−4/3(𝜎 + 14/13)−4/3(𝜉41 + 𝜉42), 𝜎 = 231.7𝑢40Θ̂31 +6Θ̂1 + 12Θ̂4/31 + 231.7. By choosing 𝜀 = 1 and initial
values (𝑥0(0), 𝑥1(0), 𝑥2(0), Θ̂1(0)) = (2, −0.25, 2, 1), Figure 1
demonstrates the effectiveness of the control scheme.

5. Conclusions

This paper investigates adaptive state feedback stabilization
for more general stochastic high-order nonholonomic sys-
tems. There still exist some problems to be investigated; for
instance, we have the following. (1)The result in this paper
can be applied to the case of 𝑝𝑖 ∈ 𝑅≥1𝑜𝑑𝑑. However, if 𝑝𝑖 is an
even number or a ratio of odd integer and even integer, it is
unclear whether the control strategy can be applied or not. (2)
Recently, some results on stochastic nonlinear systems with
SiISS dynamic uncertainty have been obtained [27–35]. An
important problem is how to solve adaptive feedback control
for stochastic nonholonomic nonlinear systems with SiISS
dynamic and parametric uncertainties.

Appendix

Proof of Proposition 16 . It is not hard to prove that Θ̃0
is bounded. By using (12) and Lemma 2, the equilibrium𝑥0(𝑡) = 0 of 𝑥0-subsystem is globally stable in probability
and 𝑃{lim𝑡→∞|𝑥0(𝑡) = 0|} = 1 for any 𝑥0(𝑡0) ̸= 0. By
Definition 1, the equilibrium 𝑥0(𝑡) = 0 of 𝑥0-subsystem is
globally asymptotically stable in probability. Substituting (11)
into (1), it is easy to obtain

d𝑥0 = (−𝑑0ℎ (𝑥0)√Θ̂20 + 1 + 𝛼0 (𝑥0, 𝜃)) 𝑥0d𝑡
+ 𝛽⊤0 (𝑥0, 𝜃) 𝑥0d𝜔, (A.1)

whose solution is

𝑥0 (𝑡) = 𝑥0 (𝑡0) exp(∫𝑡
𝑡0

(−𝑑0 (𝑠, 𝜃) ℎ (𝑥0 (𝑠))√Θ̂20 + 1 + 𝛼0 (𝑥0 (𝑠) , 𝜃) − 12𝛽⊤0 (𝑥0 (𝑠) , 𝜃) 𝛽0 (𝑥0 (𝑠) , 𝜃)) d𝑠
+ ∫𝑡
𝑡0

𝛽⊤0 (𝑥0 (𝑠) , 𝜃) d𝜔) . (A.2)

By using Lemma 2.3 in [2], for any 𝑥0(𝑡0) ̸= 0, there
holds 𝑥0(𝑡) ̸= 0 for any 𝑡 ≥ 𝑡0, which implies that

𝑢0 does not cross zero. The proof of Proposition 16 is
completed.
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Figure 1: Trajectories of 𝑥0, 𝑥1, 𝑥2, Θ̂1, 𝑢0 𝑢1.
Proof of Proposition 17 . From (14) and Lemma 5, we obtain𝜕𝑊𝑘𝜕𝑥𝑘 = ⌈𝜉𝑘⌉(4𝑙𝜎−𝜏−𝑟𝑘)/𝜎 , (A.3)

𝜕𝑊𝑘𝜕𝑥𝑖 = −4𝑙𝜎 − 𝜏 − 𝑟𝑘𝜎 𝜕 (⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘)𝜕𝑥𝑖
⋅ ∫𝑥𝑘
𝑥∗
𝑘

⌈𝑠⌉𝜎/𝑟𝑘 − ⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘 ((4𝑙−1)𝜎−𝜏−𝑟𝑘)/𝜎 d𝑠,
(A.4)

where 𝑖 = 1, . . . , 𝑘 − 1. Exactly following the same procedure
as in the proof of (A.4), we get

𝜕𝑊𝑘𝜕Θ̂1 = −4𝑙𝜎 − 𝜏 − 𝑟𝑘𝜎 𝜕 (⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘)𝜕Θ̂1
⋅ ∫𝑥𝑘
𝑥∗
𝑘

⌈𝑠⌉𝜎/𝑟𝑘 − ⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘 ((4𝑙−1)𝜎−𝜏−𝑟𝑘)/𝜎 d𝑠,
(A.5)

𝜕𝑊𝑘𝜕𝑥0 = −4𝑙𝜎 − 𝜏 − 𝑟𝑘𝜎 𝜕 (⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘)𝜕𝑥0
⋅ ∫𝑥𝑘
𝑥∗
𝑘

⌈𝑠⌉𝜎/𝑟𝑘 − ⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘 ((4𝑙−1)𝜎−𝜏−𝑟𝑘)/𝜎 d𝑠.
(A.6)

By using (A.3), (A.4), and Lemma 5,

𝜕2𝑊𝑘𝜕𝑥2
𝑘

= 4𝑙𝜎 − 𝜏 − 𝑟𝑘𝑟𝑘 𝜉𝑘((4𝑙−1)𝜎−𝜏−𝑟𝑘)/𝜎 𝑥𝑘(𝜎−𝑟𝑘)/𝑟𝑘 , (A.7)

𝜕2𝑊𝑘𝜕𝑥2𝑖 = ((4𝑙 − 1) 𝜎 − 𝜏 − 𝑟𝑘𝜎
⋅ ∫𝑥𝑘
𝑥∗
𝑘

⌈𝑠⌉𝜎/𝑟𝑘 − ⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘 ((4𝑙−2)𝜎−𝜏−𝑟𝑘)/𝜎 d𝑠(𝜕 (⌈𝑥
∗
𝑘 ⌉𝜎/𝑟𝑘)𝜕𝑥𝑖 )2

− ∫𝑥𝑘
𝑥∗
𝑘

⌈𝑠⌉𝜎/𝑟𝑘 − ⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘 ((4𝑙−1)𝜎−𝜏−𝑟𝑘)/𝜎 d𝑠𝜕
2 (⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘)𝜕𝑥2𝑖 )

⋅ 4𝑙𝜎 − 𝜏 − 𝑟𝑘𝜎 .

(A.8)

Similar to (A.8), it follows that

𝜕2𝑊𝑘𝜕𝑥20 = ((4𝑙 − 1) 𝜎 − 𝜏 − 𝑟𝑘𝜎
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⋅ ∫𝑥𝑘
𝑥∗
𝑘

⌈𝑠⌉𝜎/𝑟𝑘 − ⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘 ((4𝑙−2)𝜎−𝜏−𝑟𝑘)/𝜎 d𝑠(𝜕 (⌈𝑥
∗
𝑘 ⌉𝜎/𝑟𝑘)𝜕𝑥0 )2

− ∫𝑥𝑘
𝑥∗
𝑘

⌈𝑠⌉𝜎/𝑟𝑘 − ⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘 ((4𝑙−1)𝜎−𝜏−𝑟𝑘)/𝜎 d𝑠𝜕
2 (⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘)𝜕𝑥20 )

⋅ 4𝑙𝜎 − 𝜏 − 𝑟𝑘𝜎 .
(A.9)

Moreover, it is clear that

𝜕2𝑊𝑘𝜕𝑥𝑖𝜕𝑥𝑘 = 𝜕2𝑊𝑘𝜕𝑥𝑘𝜕𝑥𝑖 = −4𝑙𝜎 − 𝜏 − 𝑟𝑘𝜎 𝜉𝑘 (4𝑙 − 1)𝜎 − 𝜏 − 𝑟𝑘𝜎 𝜕 (⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘)𝜕𝑥𝑖 , (A.10)

𝜕2𝑊𝑘𝜕𝑥0𝜕𝑥𝑘 = 𝜕2𝑊𝑘𝜕𝑥𝑘𝜕𝑥0 = −4𝑙𝜎 − 𝜏 − 𝑟𝑘𝜎 𝜉𝑘((4𝑙−1)𝜎−𝜏−𝑟𝑘)/𝜎 𝜕 (⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘)𝜕𝑥0 , (A.11)

𝜕2𝑊𝑘𝜕𝑥𝑖𝜕𝑥0 = 𝜕2𝑊𝑘𝜕𝑥0𝜕𝑥𝑖 = ((4𝑙 − 1) 𝜎 − 𝜏 − 𝑟𝑘𝜎 ∫𝑥𝑘
𝑥∗k

⌈𝑠⌉𝜎/𝑟𝑘 − ⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘 ((4𝑙−2)𝜎−𝜏−𝑟𝑘)/𝜎 d𝑠𝜕 (⌈𝑥
∗
𝑘 ⌉𝜎/𝑟𝑘)𝜕𝑥𝑖 𝜕 (⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘)𝜕𝑥0

− ∫𝑥𝑘
𝑥∗
𝑘

⌈𝑠⌉𝜎/𝑟𝑘 − ⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘 ((4𝑙−1)𝜎−𝜏−𝑟𝑘)/𝜎 d𝑠𝜕
2 (⌈𝑥∗𝑘 ⌉(𝜎/𝑟𝑘))𝜕𝑥𝑖𝜕𝑥0 ) 4𝑙𝜎 − 𝜏 − 𝑟𝑘𝜎 ,

(A.12)

𝜕2𝑊𝑘𝜕𝑥𝑖𝜕𝑥𝑗 = 𝜕2𝑊𝑘𝜕𝑥𝑗𝜕𝑥𝑖 = ((4𝑙 − 1) 𝜎 − 𝜏 − 𝑟𝑘𝜎 ∫𝑥𝑘
𝑥∗
𝑘

⌈𝑠⌉𝜎/𝑟𝑘 − ⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘 ((4𝑙−2)𝜎−𝜏−𝑟𝑘)/𝜎 d𝑠𝜕 (⌈𝑥
∗
𝑘 ⌉𝜎/𝑟𝑘)𝜕𝑥𝑖 𝜕 (⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘)𝜕𝑥𝑗

− ∫𝑥𝑘
𝑥∗
𝑘

⌈𝑠⌉𝜎/𝑟𝑘 − ⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘 ((4𝑙−1)𝜎−𝜏−𝑟𝑘)/𝜎 d𝑠𝜕
2 (⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘)𝜕𝑥𝑖𝜕𝑥𝑗 ) 4𝑙𝜎 − 𝜏 − 𝑟𝑘𝜎 ,

(A.13)

where 𝑗 = 1, . . . , 𝑘 − 1 and 𝑗 ̸= 𝑖. From the expression
of 𝑥∗𝑘 , we know that 𝜕(⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘)/𝜕𝑥𝑖, 𝜕2(⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘)/𝜕𝑥2𝑖 ,𝜕2(⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘)/𝜕𝑥𝑖𝜕𝑥𝑗, 𝜕2(⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘)/𝜕𝑥𝑖𝜕𝑥0, 𝜕(⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘)/𝜕𝑥0,𝜕(⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘)/𝜕Θ̂1 are continuous functions. It is straight-
forward to deduce the conclusion that 𝑊𝑘(𝑥0, 𝑥𝑘, Θ̂1) is C2
function.

The rest of proof is divided into two steps. Firstly, we
prove the right side of inequality in Proposition 17. In view
of Lemmas 6 and 8, one concludes that𝑊𝑘 (𝑥0, 𝑥𝑘, Θ̂1)

≤ 𝜉𝑘(4𝑙𝜎−𝜏−𝑟𝑘)/𝜎 21−𝑟𝑘/𝜎 ⌈𝑥𝑘⌉𝜎/𝑟𝑘 − ⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘 𝑟𝑘/𝜎= 21−𝑟𝑘/𝜎 𝜉𝑘(4𝑙𝜎−𝜏)/𝜎 .
(A.14)

The next work is to prove the left side of inequality. The issue
can be solved by considering two different cases. If 𝑥𝑘 ≥ 𝑥∗𝑘 ,
then ⌈𝑠⌉𝜎/𝑟𝑘 − ⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘 ≥ 0, where 𝑥𝑘 ≥ 𝑠 ≥ 𝑥∗𝑘 . By Lemma 6,
we obtain𝑊𝑘 (𝑥0, 𝑥𝑘, Θ̂1)

≥ ∫𝑥𝑘
𝑥∗
𝑘

(2𝑟𝑘/𝜎−1 (𝑠 − 𝑥∗𝑘 ))(4𝑙𝜎−𝜏−𝑟𝑘)/𝑟𝑘 d𝑠
= 2(𝑟𝑘−𝜎)(4𝑙𝜎−𝜏−𝑟𝑘)/𝜎𝑟𝑘 𝑟𝑘4𝑙𝜎 + 𝑞𝑘 (𝑥𝑘 − 𝑥∗𝑘 )(4𝑙𝜎−𝜏)/𝑟𝑘 .

(A.15)

If 𝑥𝑘 < 𝑥∗𝑘 , in a similar way,

𝑊𝑘 (𝑥0, 𝑥𝑘, Θ̂1)
≥ 2(𝑟𝑘−𝜎)(4𝑙𝜎−𝜏−𝑟𝑘)/𝜎𝑟𝑘 𝑟𝑘4𝑙𝜎 − 𝜏 (𝑥∗𝑘 − 𝑥𝑘)(4𝑙𝜎−𝜏)/𝑟𝑘 . (A.16)

Combining (A.15) with (A.16), the proof of Proposition 17 is
completed.

Proof of Proposition 18 . Since 𝑝𝑘−1, 𝑘 = 2, 3, . . . , 𝑛 + 1 are odd
integers, by using Lemma 6,𝑥𝑝𝑘−1𝑘 − 𝑥∗𝑘 𝑝𝑘−1  ≤ 21−𝑟𝑘𝑝𝑘−1/𝜎 𝜉𝑘𝑟𝑘𝑝𝑘−1/𝜎 . (A.17)

According to (A.17), Remark 14, and Lemma 4, it follows that

⌈𝜉𝑘−1⌉(4𝑙𝜎−𝜏−𝑟𝑘−1)/𝜎 𝑑𝑘−1𝑢𝑞𝑘−10 (𝑥𝑝𝑘−1
𝑘

− 𝑥∗𝑘 𝑝𝑘−1)
≤ 113𝜉4𝑙𝑘−1 + 𝜎𝑘1Θ1𝜉4𝑙𝑘 , (A.18)

where 𝜎𝑘1 is a positive constant. It is easy to deduce from (13)
that 

𝜕 (⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘)𝜕𝑥0
 ≤
𝜉𝑘−1 

𝜕𝜙𝜎/𝑟𝑘
𝑘−1𝜕𝑥0
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+ 𝜙𝑘−1𝜎/𝑟𝑘

𝜕 (− ⌈𝑥∗𝑘−1⌉𝜎/𝑟𝑘−1)𝜕𝑥0

...
≤ 𝑘−2∑
𝑗=1

𝑘−1∏
𝑙=𝑗+1

𝜙𝑙𝜎/𝑟𝑙+1 
𝜕𝜙𝜎/𝑟𝑗+1𝑗𝜕𝑥0


𝜉𝑗 + 𝜉𝑘−1 

𝜕𝜙𝜎/𝑟𝑘
𝑘−1𝜕𝑥0


≤ 𝑘−1∑
𝑗=1

𝜓𝑗,1 𝜉𝑗 ,
(A.19)

where𝜓𝑗,1 = max{(∏𝑘−1𝑙=𝑗 |𝜙𝑙|𝜎/𝑟𝑙+1)|𝜕𝜙𝜎/𝑟𝑗+1𝑗 /𝜕𝑥0|, |𝜕𝜙𝜎/𝑟𝑘𝑘−1 /𝜕𝑥0|},𝑗 = 1, . . . , 𝑘 − 1, are continuous functions. It follows from
(A.6), (A.19), Remark 14, and Lemmas 4 and 8 that𝜕𝑊𝑘𝜕𝑥0 (𝑑0𝑢𝑝00 + 𝑓0) ≤ (𝑑0𝑢𝑝00  + 𝑓0) 𝜉𝑘−𝜏/𝜎 21−𝑟𝑘/𝜎

⋅ 4l𝜎 − 𝜏 − 𝑟𝑘𝜎 𝜉𝑘(4𝑙−1)𝜎/𝜎 𝑘−1∑
𝑗=1

𝜓𝑗,1 𝜉𝑗 ≤ 113𝜉4𝑙𝑘−1
+ 𝜎𝑘2Θ1𝜉4𝑙𝑘 ,

(A.20)

where 𝜎𝑘2 ≥ 0 is a smooth function. According to (13) and
(A.19), we arrive at

𝜕2 (⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘)𝜕𝑥20


≤ 
𝜕2𝜙𝜎/𝑟𝑘
𝑘−1𝜕𝑥20

 𝜉𝑘−1 +

𝜕𝜙𝜎/𝑟𝑘
𝑘−1𝜕𝑥0



𝜕 (⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘)𝜕𝑥0


+ 𝑘−2∑
𝑗=1

𝜕 (∏𝑘−1𝑙=𝑗+1 𝜙𝑙𝜎/𝑟𝑙+1 𝜕𝜙𝜎/𝑟𝑗+1𝑗 /𝜕𝑥0)𝜕𝑥0 𝜉𝑗
+ 𝑘−2∑
𝑗=1

𝑘−1∏
𝑙=𝑗+1

𝜙𝑙𝜎/𝑟𝑙+1 
𝜕𝜙𝜎/𝑟𝑗+1𝑗𝜕𝑥0



𝜕 (⌈𝑥∗𝑗 ⌉𝜎/𝑟𝑗)𝜕𝑥0


≤ 𝑘−1∑

j=1
𝜓𝑗,2 𝜉𝑗 ,

(A.21)

where 𝜓𝑗,2 ≥ 0, 𝑗 = 1, . . . , 𝑘 − 1, are continuous functions. By
using (A.9), (A.19), (A.21), Remark 14, and Lemmas 4 and 8,
one has12  𝜕

2𝑊𝑘𝜕𝑥20
 𝑔02 ≤ 2−𝑟𝑘/𝜎 4𝑙𝜎 − 𝜏 − 𝑟𝑘𝜎

⋅ 𝛽20Θ1𝑥20(𝜉𝑘−𝜏/𝜎 (4𝑙 − 1) 𝜎 − 𝜏 − 𝑟𝑘𝜎 𝜉𝑘(4𝑙−2)𝜎/𝜎

⋅ (𝑘−1∑
𝑗=1

𝜓𝑗,1 𝜉𝑗)
2 + 𝜉𝑘−𝜏/𝜎 𝜉𝑘(4𝑙−1)𝜎/𝜎

⋅ 𝑘−1∑
𝑗=1

𝜓𝑗,3 𝜉𝑗) ≤ 113𝜉4𝑙𝑘−1 + 𝜎𝑘3Θ1𝜉4𝑙𝑘 ,
(A.22)

where 𝜎𝑘3 ≥ 0 is a smooth function. From (13) and Lemma 7,
one arrives at

𝑘∑
𝑖=1

𝑥𝑖(𝑟𝑘+𝜏)/𝑟𝑖
≤ 𝑘∑
𝑖=1

(𝜉𝑖(𝑟𝑘+𝜏)/𝜎 + 𝜙(𝑟𝑘+𝜏)/𝑟𝑖𝑖−1
𝜉𝑖−1(𝑟𝑘+𝜏)/𝜎) ,

(A.23)

𝑘∑
𝑖=1

𝑥𝑖(2𝑟𝑘+𝜏)/2𝑟𝑖
≤ 𝑘∑
𝑖=1

(𝜉𝑖(2𝑟𝑘+𝜏)/2𝜎 + 𝜙(2𝑟𝑘+𝜏)/2𝑟𝑖𝑖−1
𝜉𝑖−1(2𝑟𝑘+𝜏)/2𝜎) ,

(A.24)

where 𝜙0 = 0 and 𝜉0 = 0. By (A.3), (A.23) and Lemma 4, it is
easy to verify that

𝜕𝑊𝑘𝜕𝑥𝑘 𝑓𝑘 ≤ ⌈𝜉𝑘⌉(4𝑙𝜎−𝜏−𝑟𝑘)/𝜎
⋅ 𝑘∑
𝑖=1

(𝜉𝑖(𝑟𝑘+𝜏)/𝜎 + 𝜙(𝑟𝑘+𝜏)/𝑟𝑖𝑖−1
𝜉𝑖−1(𝑟𝑘+𝜏)/𝜎)Θ1𝛼𝑘

+ 𝑐𝑘𝑑𝑘 𝑢0𝑞𝑘 𝜉𝑘(4𝑙𝜎−𝜏−𝑟𝑘)/𝜎 𝑥𝑘+1𝑝𝑘 ≤ 113 𝑘−1∑
𝑖=1

𝜉4𝑙𝑖
+ 𝜎𝑘4Θ1𝜉4𝑙𝑘 + 𝑐𝑘𝑑𝑘 𝑢0𝑞𝑘 𝜉𝑘(4𝑙𝜎−𝜏−𝑟𝑘)/𝜎⋅ 𝜉𝑘+1(𝑟𝑘+𝜏)/𝜎 + 𝑐𝑘𝑑𝑘 𝑢0𝑞𝑘 𝜉𝑘(4𝑙𝜎−𝜏−𝑟𝑘)/𝜎⋅ 𝑥∗𝑘+1𝑝𝑘 ,

(A.25)

where 𝜎𝑘4 ≥ 0 is a smooth function. Based on (13), one has


𝜕 (⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘)𝜕𝑥𝑖

 ≤

𝜕 (∑𝑘−1𝑙=1 ∏𝑘−1𝑗=𝑙 𝜙𝜎/𝑟𝑗+1𝑗 ⌈𝑥𝑙⌉𝜎/𝑟𝑙)𝜕𝑥𝑖


≤ 𝑘−1∏
𝑗=𝑖

𝜙𝜎/𝑟𝑗+1𝑗 𝜎𝑟𝑖 (𝜉𝑖(𝜎−𝑟𝑖)/𝜎 + 𝜙(𝜎−𝑟𝑖)/𝑟𝑖𝑖−1
𝜉𝑖−1(𝜎−𝑟𝑖)/𝜎)

+ 𝑘−1∑
𝑙=1


𝜕 (∏𝑘−1𝑗=𝑖 𝜙𝜎/𝑟𝑗+1𝑗 )𝜕𝑥𝑖

 (
𝜉𝑙 + 𝜙𝜎/𝑟𝑙𝑙−1 𝜉𝑙−1) .

(A.26)
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Similarly, by using (13), (A.4), (A.23), (A.26), Remark 14, and
Lemma 4,
𝑘−1∑
𝑖=1

𝜕𝑊𝑘𝜕𝑥𝑖 (𝑑𝑖𝑢𝑞𝑖0 𝑥𝑝𝑖𝑖+1 + 𝑓𝑖)
≤ 𝑘−1∑
𝑖=1

𝑖+1∑
𝑗=1

Θ1 (𝜉𝑗(𝑟𝑖+𝜏)/𝜎 + 𝜙(𝑟𝑖+𝜏)/𝑟𝑖𝑗−1

𝜉𝑗−1(𝑟𝑖+𝜏)/𝜎)
⋅ 𝐹 × 4𝑙𝜎 − 𝜏 − 𝑟𝑘𝜎 21−𝑟𝑘/𝜎 

𝜕 (⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘)𝜕𝑥𝑖


⋅ 𝜉𝑘((4𝑙−1)𝜎−𝜏)/𝜎 ≤ 113 𝑘−1∑
𝑖=1

𝜉4𝑙𝑖 + 𝜎𝑘5Θ1𝜉4𝑙𝑘 ,

(A.27)

where 𝜎𝑘5 ≥ 0 is a smooth function and 𝐹 ≜ max{𝑢𝑞𝑖0 (1 −𝑐𝑖)𝜆𝑖,2, 𝛼𝑖}. Because of (A.11), (A.19), (A.24), Remark 14, and
Lemma 4, the following always holds:12  𝜕

2𝑊𝑘𝜕𝑥𝑘𝜕𝑥0
 𝑔𝑘 𝑔⊤0  ≤

𝑘∑
𝑖=1

𝛽0𝛽𝑘 𝑥0 Θ1
⋅ 4𝑙𝜎 − 𝜏 − 𝑟𝑘2𝜎 𝜉𝑘((4𝑙−1)𝜎−𝜏−𝑟𝑘)/𝜎


𝜕 (⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘)𝜕𝑥0


⋅ (𝜉𝑖(2𝑟𝑘+𝜏)/2𝜎 + 𝜙(2𝑟𝑘+𝜏)/2𝑟𝑖𝑖−1

𝜉𝑖−1(2𝑟𝑘+𝜏)/2𝜎) ≤ 113
⋅ 𝑘−1∑
𝑖=1

𝜉4𝑙𝑖 + 𝜎𝑘6Θ1𝜉4𝑙𝑘 ,

(A.28)

where 𝜎𝑘6 ≥ 0 is a smooth function. Using (A.7), (A.10),
(A.24), (A.26), and Lemma 4, one has12 𝑘−1∑
𝑖=1

 𝜕
2𝑊𝑘𝜕𝑥𝑘𝜕𝑥𝑖

 𝑔𝑘 𝑔⊤𝑖  ≤ 12
⋅ 𝑘−1∑
𝑖=1

𝑘∑
𝑙=1

𝑖∑
𝑗=1

𝛽𝑖𝛽𝑘Θ1 4𝑙𝜎 − 𝜏 − 𝑟𝑘2𝜎 𝜉𝑘((4𝑙−1)𝜎−𝜏−𝑟𝑘)/𝜎
× 
𝜕 (⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘)𝜕𝑥𝑖

 (
𝜉𝑙(2𝑟𝑘+𝜏)/2𝜎

+ 𝜙(2𝑟𝑘+𝜏)/2𝑟𝑘
𝑙−1

𝜉𝑙−1(2𝑟𝑘+𝜏)/2𝜎) × (𝜉𝑗(2𝑟𝑖+𝜏)/2𝜎
+ 𝜙(2𝑟𝑖+𝜏)/2𝑟𝑖𝑗−1

𝜉𝑗−1(2𝑟𝑖+𝜏)/2𝜎) ≤ 113 𝑘−1∑
𝑖=1

𝜉4𝑙𝑖
+ 𝜎𝑘7Θ1𝜉4𝑙𝑘 ,

(A.29)

12  𝜕
2𝑊𝑘𝜕𝑥2
𝑘

 𝑔𝑘2 ≤
𝑘∑
𝑖=1

𝛽2𝑘Θ1
⋅ 4𝑙𝜎 + 𝑞𝑘 − 𝑟𝑘2𝜎 𝜉𝑘((4𝑙−1)𝜎−𝜏−𝑟𝑘)/𝜎 𝑥𝑘(𝜎+𝜏)/𝑟𝑘

× (𝜉𝑖(2𝑟𝑘+𝜏)/2𝜎 + 𝜙(2𝑟𝑘+𝜏)/2𝑟𝑘𝑖−1
𝜉𝑖−1(2𝑟𝑘+𝜏)/2𝜎)2

≤ 113 𝑘−1∑
𝑖=1

𝜉4𝑙𝑖 + 𝜎𝑘8Θ1𝜉4𝑙𝑘 ,
(A.30)

where 𝜎𝑘7 ≥ 0 and 𝜎𝑘8 ≥ 0 are smooth functions. In terms of
(13) and (A.19), it follows that

𝜕2 (⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘)𝜕𝑥𝑖𝜕𝑥0


≤ 
𝜕2𝜙𝜎/𝑟𝑘
𝑘−1𝜕𝑥𝑖𝜕𝑥0

 𝜉𝑘−1
+ 𝑘−2∑
𝑗=1

𝜕 (∏𝑘−1𝑙=𝑗+1 𝜙𝑙𝜎/𝑟𝑙+1 𝜕𝜙𝜎/𝑟𝑗+1𝑗 /𝜕𝑥0)𝜕𝑥𝑖 𝜉𝑗
+ 𝑘−2∑
𝑗=1

𝑘−1∏
𝑙=𝑗+1

𝜙𝑙𝜎/𝑟𝑙+1 
𝜕𝜙𝜎/𝑟𝑗+1𝑗𝜕𝑥0


 𝜕𝜉𝑗𝜕𝑥𝑖


+  𝜕𝜉𝑘−1𝜕𝑥𝑖



𝜕𝜙𝜎/𝑟𝑘
𝑘−1𝜕𝑥0


≤ 
𝜕2𝜙𝜎/𝑟𝑘
𝑘−1𝜕𝑥𝑖𝜕𝑥0

 𝜉𝑘−1
+ 𝑘−2∑
𝑗=1

𝜕 (∏𝑘−1𝑙=𝑗+1 𝜙𝑙𝜎/𝑟𝑙+1 𝜕𝜙𝜎/𝑟𝑗+1𝑗 /𝜕𝑥0)𝜕𝑥𝑖 𝜉𝑗
+ 𝑘−2∑
𝑗=1

𝑘−1∏
𝑙=𝑗+1

𝜙𝑙𝜎/𝑟𝑙+1 
𝜕𝜙𝜎/𝑟𝑗+1𝑗𝜕𝑥0



𝜕 (⌈𝑥∗𝑗 ⌉𝜎/𝑟𝑗)𝜕𝑥𝑖


+ 
𝜕 (⌈𝑥∗𝑘−1⌉𝜎/𝑟𝑘−1)𝜕𝑥𝑖



𝜕𝜙𝜎/𝑟𝑘
𝑘−1𝜕𝑥0

 .

(A.31)

Combining (A.12), (A.24), (A.26), (A.31), Remark 14, and
Lemma 4 yields

12 𝑘−1∑
𝑖=1

 𝜕
2𝑊𝑘𝜕𝑥𝑖𝜕𝑥0

 𝑔𝑖 𝑔⊤0  ≤
𝑘−1∑
𝑖=1

𝑖∑
𝑗=1

2−𝑟𝑘/𝜎𝛽0𝛽𝑖 𝑥0 Θ1
⋅ 4𝑙𝜎 − 𝜏 − 𝑟𝑘𝜎 𝜉𝑘((4𝑙−2)𝜎−𝜏)/𝜎
⋅ (𝜉𝑗(2𝑟𝑖+𝜏)/2𝜎 + 𝜙(2𝑟𝑖+𝜏)/2𝜎𝑗−1

𝜉𝑗−1(2𝑟𝑖+𝜏)/2𝑟𝑖)
× ((4𝑙 − 1) 𝜎 − 𝜏 − 𝑟𝑘𝜎


𝜕 (⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘)𝜕𝑥𝑖


𝑘−1∑
𝑙=1

𝜓𝑙,1 𝜉𝑗
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+ 
𝜕2 (⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘)𝜕𝑥𝑖𝜕𝑥0


𝜉𝑘) ≤ 113 𝑘−1∑

𝑖=1

𝜉4𝑙𝑖 + 𝜎𝑘9Θ1𝜉4𝑙𝑘 ,
(A.32)

where 𝜎𝑘9 ≥ 0 is a smooth function. Exactly following the
same procedure, tedious calculations conclude that

12 𝑘−1∑
𝑖=1

𝑖∑
𝑗=1

 𝜕
2𝑊𝑘𝜕𝑥2𝑖

 𝑔𝑖2
≤ 𝑘−1∑
𝑖=1

𝑖∑
𝑗=1

𝛽2𝑖Θ12−𝑟𝑘/𝜎 𝜉𝑘((4𝑙−2)𝜎−𝜏)/𝜎

⋅ 4𝑙𝜎 − 𝜏 − 𝑟𝑘𝜎 ((𝜕(⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘)𝜕𝑥𝑖 )2

× (4𝑙 − 1) 𝜎 − 𝜏 − 𝑟𝑘𝜎 + 
𝜕2 (⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘)𝜕𝑥2𝑖


𝜉𝑘)

× (𝜉𝑗(2𝑟𝑖+𝜏)/2𝜎 + 𝜙(2𝑟𝑖+𝜏)/2𝑟𝑖𝑗−1

𝜉𝑗−1(2𝑟𝑖+𝜏)/2𝜎)2
≤ 113 𝑘−1∑
𝑖=1

𝜉4𝑙𝑖 + 𝜎𝑘10Θ1𝜉4𝑙𝑘 ,

(A.33)

𝑘−1∑
𝑖,𝑗=1,𝑖 ̸=𝑗

12
 𝜕
2𝑊𝑘𝜕𝑥𝑖𝜕𝑥𝑗

 𝑔𝑖 𝑔⊤𝑗  ≤
𝑘−1∑
𝑖,𝑗=1,𝑖 ̸=𝑗

𝑖∑
𝑙=1

𝑗∑
ℎ=1

2−𝑟𝑘/𝜎
⋅ 4𝑙𝜎 − 𝜏 − 𝑟𝑘𝜎 𝛽𝑖𝛽𝑗Θ1 𝜉𝑘((4𝑙−2)𝜎−𝜏)/𝜎
× ((4𝑙 − 1) 𝜎 − 𝜏 − 𝑟𝑘𝜎


𝜕 (⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘)𝜕𝑥𝑖


⋅ 
𝜕 (⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘)𝜕𝑥𝑗

 +

𝜕2 (⌈𝑥∗𝑘 ⌉𝜎/𝑟𝑘)𝜕𝑥𝑖𝜕𝑥𝑗


𝜉𝑘)

⋅ (𝜉𝑙(2𝑟𝑖+𝜏)/2𝜎 + 𝜙(2𝑟𝑖+𝜏)/2𝑟𝑖𝑙−1

𝜉𝑙−1(2𝑟𝑖+𝜏)/2𝜎)
× (𝜉ℎ(2𝑟𝑗+𝜏)/2𝜎 + 𝜙(2𝑟𝑗+𝜏)/2𝑟𝑗ℎ−1

𝜉ℎ−1(2𝑟𝑗+𝜏)/2𝜎)
≤ 113 𝑘−1∑
𝑖=1

𝜉4𝑙𝑖 + 𝜎𝑘11Θ1𝜉4𝑙𝑘 ,

(A.34)

where 𝜎𝑘10 ≥ 0 and 𝜎𝑘11 ≥ 0 are smooth functions. At last, by
using Lemma 4,

𝑐𝑘−1𝑑𝑘−1 𝑢0𝑞𝑘−1 𝜉𝑘−1(4𝑙𝜎−𝜏−𝑟𝑘−1)/𝜎 𝜉𝑘(𝑟𝑘−1+𝜏)/𝜎
≤ 113𝜉4𝑙𝑘−1 + 𝜎𝑘12Θ1𝜉4𝑙𝑘 , (A.35)

where 𝜎𝑘12 is a position constant. Define the nonnegative
smooth function𝜎𝑘 = ∑12𝑖=1 𝜎𝑘𝑖, and put (A.18), (A.20), (A.22),
(A.25), (A.27)-(A.30), and (A.32)-(A.35) together, the proof
of Proposition 18 is completed.

Proof of Proposition 19 . By (31), Proposition 17, and Lemma 2,
Proposition 19 is proved.
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