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Abstract. 
The bivariate Brownian bridge, a nontensor Gaussian Field, is defined by  where  and  is a Brownian sheet. We obtain a distributional identity, a consequence of the Karhunen-Loève expansion for the bivariate Brownian bridge by Fredholm integral equation and Laplace transform approach.



1. Introduction
Let  be a mean zero Gaussian process on  with covariance function  Then the well-known Karhunen-Loève (KL) expansion is where  is a sequence of 2-index i.i.d.  random variables,  forms an orthogonal sequence in , and  is the set of eigenvalues of the integral operator . For the random variables  and ,  means that  and  have the same law; then a natural consequence of the KL expansions is the distributional identity 
As we know, a tied-down Brownian bridge (see [1]) is defined by  whose covariance  is tensor (separate) product and its Karhunen-Loève expansion is well known; see [2–4]. A bivariate Brownian bridge is defined by  whose covariance , a nontensor (nonseparate) product, is mentioned in the literature, such as [3, 5–10] and references therein. In this paper, we provide the Karhunen-Loève expansion for the bivariate Brownian bridge, which is our main goal and the highlight of our work.
In particular, Deheuvels et al. in [6] give the explicit Laplace transform of the bivariate Brownian bridge; however, there are few references for the explicit eigenvalues and the associated simple eigenfunctions expression of the nontensor Gaussian process, which is one of our motivations. Somayasa in [9] studied the approximation methods for computing the quantiles about the bivariate Brownian bridge in our paper, which is considered as the residual partial sums limit process associated with a constant model; if we know the eigenvalues of the process, then we can compute the explicit quantiles analytically. Meanwhile, the explicit and simple eigenvalues can be used in other aspects of statistics, which is our another motivation.
The rest of the paper is organized as follows. In Section 2, we give the first part eigenvalues in (23) of the bivariate Brownian motion through solving the differential equation converted from the associated Fredholm integral equation of the covariance function of the process. The other part eigenvalues in (23) can be found via Laplace transform.
2. Karhunen-Loève Expansion
There are some lemmas needed to prove Theorem 4. Before we prove the lemmas, we introduce some notations.
Set and let  be the disjoint union of ; that is,  and then set It is proved in Lemma 1 that  is the number of pairs of , which is also the dimension number of the space spanned by the eigenfunctions associated with eigenvalues (41).
We use  to denote  and utilize  to represent  for convenience. Then we can simplify the eigenfunctions to the following: 
We note that if , then , and thus . It is easy to check that the eigenfunctions are orthogonal between different , so we only need to find the multiplicity of the eigenfunctions for the same . In Lemma 1, we use the formula  instead of  for convenience.
Now we are in the position to provide the useful lemmas.
Lemma 1.  Let  and the eigenfunctions be defined by with the associated eigenvalues ; then, for , , 
Proof.  Assume ; then we only need to check , 
In fact  implies By multiplying ,  on both sides of (15) and integrate from 0 to 1 with respect to , we obtain which gives . Thus we claim the conclusion.
The following lemma is from [11].
Lemma 2.  For ,  where the above product takes over all prime numbers  and .
Lemma 3.  Let  be the number of divisors of positive integer ; then 
Proof.  By the representation of Dirichlet series  and prime number decomposition, we obtain and the product of (19) takes over all primes and the last equal sign is given by Lemma 2.
On the other hand, the integer  in the left hand side of (19) can be expressed by the product form of 2 and all the other odds; thus we getNotice that ; by (20) and (21), the lemma is proved.
Some important eigenvalues can be provided by the following analysis from Fredholm integral equation, but the entire eigenvalues can be found by the Laplace transform in Theorem 4.
We use Mercer’s theorem to compute the following integral equation of the covariance  of the bivariate Brownian bridge; that is, which is simplified to be 
Taking derivative of (24) with respect to , we obtain 
Taking derivative of (25) with respect to  again, we obtain 
By differentiating both sides of (26) with respect to , we have 
By differentiating both sides of (27) with respect to  again, we get 
From (24) to (27), we know the following facts:
Define the following functions:  where , ,  and, for ,  are constants (depending on ) to be determined by (29) to (31). Then it is easy to see that  are solutions of (28) and thus  are a set of solutions of (28). It is easy to check that when there is only one item in the series in (33) there is the trivial solution of (28), and when the items are more than two, the set of eigenfunctions is the same as the case of the two items. So the eigenfunction question is reduced to consider the sum of two items  and  in (33) ( for ), where the four functions , , , and  satisfyfor , ,  Actually, if , then , , and thus , which is not the solution of the original integral equation (23). Hence .
Then the eigenfunction can be expressed by Firstly, we deal with (35). Using (29), for any  and , we havewhich give 
Then we can rewrite (35) as 
Making use of (31), for any  and , we obtain which give 
Thus the eigenvalues are 
Based on fact (30), the condition , and the normalization condition, we can obtain  and then the simple eigenfunctions are, for ,with associated eigenvalues (41). The multiplicity of the eigenfunctions (42) associated with (41) is , which has been shown by Lemma 1.
Although  is the solution of (28), it does not satisfy (23), so the index becomes  (or only ). Hence we have to search the solution form of (23). We find the interesting fact that  and  satisfy differential equation (28), but they are not the solutions of original integral equation (23). A natural idea is to combine them to relation (42), and then we should check whether (42) are the solutions of both (28) and (23) or not. We realize that (42) satisfy (28), while we do not make sure it is also doable for (23). By routine calculation, if (42) satisfy original integral equation (23), we must make . Therefore the index for the eigenfunction (42) should also be  (or only ).
The well-known trace-variance formula gives 
However, on the other hand, with the help of Lemmas 1 and 3 and the fact that , we have the following comparison relation: 
Therefore, there are still other eigenvalues lost so far. Fortunately, Laplace transform of the bivariate Brownian bridge provided them.
Based on the analysis of the above, now we give the main result, namely, the following Theorem 4 in this paper.
Theorem 4.  The spectrum of the KL expansion for the bivariate Brownian bridge  is given by (41) and (52). In particular, where  are the reciprocal of the roots of (52) and , , and ,  and ,  are two independent sequences of 2-index i.i.d.  random variables. Furthermore, for , ,  and  are large enough, and we have 
Here the first identity in Theorem 4 can be found in Corollary 3.1 in [6].
Proof.  Based on the Laplace transform of the bivariate Brownian bridge  (see Proposition 4.1.(i) of page 521 in [6])and setting  in (48), we get the Fredholm determinant of the covariance function of the process And according to (23) and formula (5.10) of page 146 and Theorems 5.1, 5.2, and 5.3 from page 148 to 150 in [12], the entire eigenvalues  of the integral operator are the reciprocal of the roots of  in (49), which satisfy  or Equation (51) also gives the eigenvalues of the form which are obtained in (41).
Let  stand for (52); then by routine calculation, we know that  is an increasing function on the interval ,  and  by the following fact: Therefore, there is only one positive zero in , , which is denoted by . Let  denote the solution of (52); then  are the other eigenvalues of the integral operator .
For , ,  and  are large enough. The inequalityimplies relation (46). It is also easy to check that (47) holds.
Remark 5.  Although the entire eigenvalues can not be solved by the Fredholm integral equation, it gives the important information, which is stated in Theorem 4.
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