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In order to improve the reconstruction precision and performance of 2D profiles, this paper presents a new high-precision
extraction method of segment points of 2D profile features. Firstly, we extract the intervals which include initial segment points
based on the curvature information of data points. Secondly, a grid is dynamically constructed in the interval and all the nodes of the
grid are considered as candidate segment points for an optimization process. Thirdly, the optimization model of each feature curve
is constructed on the basis of boundary constraints. Selection of the optimal segment point is related to two factors: the number
of control points of B-spline and the total approximation error of all collected points to the fitted curves. Numerical experiments
were conducted and the results demonstrate the efficacy of our method in capturing design intent and in industrial applications,

compared to existing methods.

1. Introduction

Reverse reconstruction includes two levels: shape similarity
in low level and initial design intent recovery in high level.
Shape similarity is applied in some situations which do not
need high precision, like toys and culture relic. Initial design
intent recovery is applied in other situations where high
precision is required, such as turbine blade, class A surface,
and skinned surface. 2D profiles are used in many occasions,
such as tool profiles [1] and the processing path [2], and
reconstruction of 2D profiles is a basis of 3D reconstruction.
A comprehensive study on the reconstruction of 2D profiles
in high level is vital.

In the process of a forward design, by following the
requirements of mathematic functions and aesthetics, a
sketch is designed by using features (e.g., line, arc, and spline)
and satisfying constraints (such as G' and G* constraints)
at the conjunction of the features. Likewise, in the process
of a reverse design, we should try our best to recover the
initial design intent: the 2D profile should be reconstructed

not only with good precision, but also with the consideration
of features and constraints.

2D profile curve reconstruction has received extensive
studies in literatures. Liu [3] and Park [4] used a set of
line segments to reconstruct profile curve. In some other
works [5-8], researchers used a single B-spline to reconstruct
profile curves. Chen et al. [9] proposed an algorithm that
constructed NURBS curves based on letting inflection points
be control points. Huang [10] and Tai [11] segmented data
points based on their curvature information and then took B-
spline curves and boundary continuities into account to get
a continuous profile curve. Hashemian et al. [12] presented a
new approach for object reconstruction by means of smooth
NURBS curves and surfaces. Since these methods did not
consider different feature information implied in data points,
we cannot capture the initial design intent.

In order to enrich the feature information in profile
curves, Benko et al. [13, 14] put line segments, circular arcs,
and boundary constraints into consideration to reconstruct
2D profiles. Shan [15] also used lines and circular arcs as
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the features of profile curves, and constraints were satisfied
between features. These methods are helpful in capturing the
initial design intent, but hard to describe the complicated
freeform surface.

Ke et al. [16-18] put lines, circular arcs, B-spline curves,
and boundary constraints into consideration to reconstruct
profile curves. The constrained nonlinear problem was con-
verted into an unconstrained one by using a penalty function
method, and then the Levenberg-Marquardt method was
employed to get an iterative solution. Zhang et al. [19] also put
lines, circular arcs, B-spline curves, and boundary constraints
into consideration to reconstruct profile curves. Imani et al.
[20] reconstructed profile curves by using the nonuniform
rational B-spline (NURBS) curve. This has the advantage
that NURBS can express line segment, circular arc, and B-
spline curve uniformly. We designate the method of Ke and
Imani as the overall reconstruction method (ORM). The
basic steps of ORM are (a) extract the initial segment points
according to curvature information; (b) segment section data
into multiple single-feature data using the initial segment
points; (3) fit every single-feature data into a seed curve; and
(4) reconstruct all the seed curves with constraints between
them iteratively to solve all the parameters. But the extraction
precision of the initial segment points affects the initial values
of parameters. If the initial values are not good, the ORM is
easy to converge to a local optimal solution.

Currently, the actual process of reverse design is as
follows: (a) extract the initial segment points according to
curvature information; (b) segment the section data into
multiple single-feature data using the initial segment points
as scissors; (c) fit every single-feature data into a feature
curve; (d) add a constraint into two adjacent features; and
(e) adjust the control points of freeform to get a better
solution. We designate this method as the step by step
reconstruction method (SSRM, the most commonly used).
In the SSRM, the extracted segment points are directly the
final segment points, and the extraction precision of segment
points directly affects the final reconstruction precision of 2D
profiles.

The high-precision extraction of segment points is vital
to improve the reconstruction precision and quality of 2D
profiles, but both the ORM and SSRM did not consider
the effects of segment points. Zhang [19] proposed getting
better reconstruction quality of 2D profiles through high-
precision extraction of segment points. But, only a con-
junction between a spline feature and a line feature was
considered. In this study, we explore the cases where a spline
feature is next to an arc feature. We analyze the effects of
segment points on reconstruction precision and quality of 2D
profiles below and then propose a solution of high-precision
extraction of the segment points.

2. Extraction of Segment Points and Its Effects
on 2D Profile Reconstruction

Segmentation of section data has received extensive studies
in the past. Huang [10] and Tai [11] proposed a segmen-
tation method of section data based on discrete curvature
estimation. Imani [20] proposed a concept of relative angles
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FIGURE 1: Estimation of discrete curvature.

to detect line and arc segments in section data. Extraction
precision of the segment points is low in using both methods.
We take the curvature estimation method as an example to
analyze the extraction error of segment points.

2.1. Extracting Initial Segment Points. Given a set of ordered
data points I = {pgy, p1>-** > Pm)> We can extract initial
segment points based on the curvature information of data
points, and segment data points form regions each of which
is a single feature. We define the discrete curvature of I as
K = {K,,K;,-- ,K,,}. Then, the discrete curvature K; on p;
can be defined as curvature of arc that passes through three
adjacent points p;,_,, p;, and p;,,. As shown in Figure 1 [21],

K; = % = sgn (Api_1 PiPis1) % 1)
itiv1h i
where
i=1,2---,m-1,
Li=pi—pial (2)
L = |1 = pical-

Ap;_, piP;is1 is asigned triangular area, when p;_,, p;, and p;,
run counterclockwise.

The segment points are extracted according to the cur-
vature difference or curvature trend. But the extraction
precision of segment points is affected by the following
factors:

(1) Sample errors: since the data is discrete, generally
a theoretical segment point cannot be accurately measured;
usually the theoretical segment point is between two adjacent
data points.

(2) System errors: due to measurement error, manu-
facture error, etc., even if the theoretical segment point is
accurately measured, there may be a system error between the
measured point and the theoretical segment point.

(3) Method errors: curvature estimation is an approxi-
mate estimation method of curvature of discrete data; the
method itself has an approximation error.

In summary, the practical segment point extracted
according to curvature estimation likely deviates from the
theoretical segment point, and the practical segment point is
in a range close to the theoretical segment point.



Mathematical Problems in Engineering

2.2. The Effects of Segment Points on a Line Feature and
an Arc Feature. When we segment the section data using
a segment point, if the segment point is extracted in low
precision, the data near the segment point will probably be
segmented incorrectly. For example, the data on a line feature
is possible to be wrongly apportioned to a freeform feature.
When reconstructing a line feature and an arc feature, the
low precision segment point will affect the length of the
line feature, the angle of arc feature, and the approximation
accuracy of the line and arc features.

2.3. The Effects of Segment Points on a Freeform Feature.
When reconstructing a freeform feature, the segment point
with low precision will affect the freeform feature.

The definition of a B-spline curve of degree p is

Cu)=) N, WP, (3)

i=0

where P(i = 0,---,n) refers to control points and Ni)P(u)
is the degree p B-spline basis functions defined on the
nonperiodic (and nonuniform) knot vector:

U: <0’.-. ’O’up+1’... ’um—p—l’

p+l

I,--- ,1> (m + 1 knots),
RTRAGEE

p+l
1, u;<u<u,, 4)
Ni,O (T/l) =
0, other
u-—-u; Uirpy1 — U
Nip ) = ——N -y ) + — 20—
”i+p —U; ”i+p+1 Ut 1
' Ni+1,p—1 (u).

According to the definition of a B-spline curve, the shape
of the B-spline curve is determined by control points and a
knot vector.

Firstly, when reconstructing the B-spline curve, the seg-
ment point with low precision will affect the control points of
B-spline curve.

Take a B-spline curve of degree 3 as an example. C(0) =
Ny 3(0)Py = P, means that the starting point of the B-spline
curve is the first control point. And the B-spline curve at the
starting point also interpolates at the segment point. Thus,
the segment point is just P. Consequently, the segment point
affects the control points of the B-spline curve.

Secondly, when reconstructing the B-spline curve, the
segment point with low precision will affect the knot vector
of the B-spline curve.

There are multiple methods available for determining the
knot vector, and here we take accumulated-chord method
as an example. Take a look at the knot values below. Since
the extracted segment point deviates from the theoretical
segment point, there is a deviation between the practical knot

vector and the theoretical knot vector, as shown in Figure 2.
The knot vector with a deviation affects the basis function
N; p(u).

i
_ ZJ‘:ILJ
' L
i ! i (5)
" i L _ i Lj+AL
! L L+AL

where L is the accumulated length of chords of the data
points and #; is the knot value of the i-th data point when
feature data is segmented by practical segment points. L' is
the accumulated length of chords of the data points and i;
is the knot value of the i-th data point when feature data
is segmented by theoretical segment points, AL = L' — L.
Because practice segment points deviate from theoretical
segment points, the knot vector is affected, and the basis
function N; () is affected as well.

Consequently, the segment point directly affects the B-
spline curve.

2.4. The Effects of Segment Points on 3D Models. 3D models
or surfaces are often reconstructed through extrusion, rev-
olution, and skin from 2D profile curves. Take the skinned
surface for example: the skinned surface is skinned through
multiple 2D profile curves, and the segment points from
different 2D profile curves should be corresponding. If the
segment points are extracted in low precision, the skinned
surface will be tortuous on the boundary joints of different
feature surfaces.

2.5. Problem Statement. In summary, the extraction precision
of segment points will affect the property of each feature, the
whole 2D profile, and further the 3D model. Thus, we focus
on improving the extraction precision of segment points. In
the reconstruction process of 2D profile curves, the feature
classification (including lines, circular arcs, and B-spline
curves) and G' constraints between features are inherited
from the literatures [16-18].

The rest of this paper is organized as follows. A grid
is constructed in the interval (which includes theoretical
segment point) extracted according to curvature analysis
in Section 3. In Section 4, the optimization model of each
feature curve is developed with consideration on boundary
constraints. Selection of the optimal segment point is related
with two factors: the number of control points of B-spline
and the total approximation error of all data points to the
fitted curve. Thus, we design a search principle of the optimal
segment point according to the two factors in Section 5.
Section 6 introduces the evaluation indicator of our method,
and Section 7 provides a specific algorithm description,
followed by some case studies in Section 8. Finally, Section 9
concludes this paper.

3. Grid Construction

According to curvature analysis, segment points are manually
extracted as initial segment points. Circle an interval that
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FIGURE 3: Dynamic grid construction.

includes the initial segment point (ISP), and the data in the
interval is uncertain. It is possible for the data to belong to
the feature that is in one side of the initial segment point or
belong to the feature that is in the other side of the initial
segment point. Take the two end points of interval as the two
end points of a diagonal line of a rectangular area. As shown
in Figure 3, we assume that we find the ISP in an area between
point Q and point P’ and grid the area by space D'. Next, let
all nodes be candidate segment points (CSPs), reconstruct a
profile curve, and find out the best CSP (assumed node Ph.
Then, reduce area, center on node P', grid the area by space
D?, reconstruct a profile curve, and find out the best CSP.
We repeat this process until meeting a precision requirement.
Generally, we need to grid the area 3 times, where D' =
0.005mm, D* = 0.002mm, D* = 0.001mm.

4. Optimization Model of 2D Profile Features
with Boundary Constraints

In our framework for profile curve fitting, the line and arc
are represented by its implicit algebraic equation, and the
freedom curve is represented by a parametric cubic B-spline
curve.

4.1. Reconstruction Model of a Line Feature through Fixed Point
B(xy, y,). Following Pratt [22], we write the equation of a
line as lyx + I,y + I, = 0, where parameters [, 1,1, satisty
normalization constraint lg + lf — 1 = 0. Thus, the algebraic
distance equation from a pointto alineisd = ljx + [,y + ;.

The Euclidean distance equation is |d| = |l,x+1; y +1,|. Given
data points {Q; = (x;, ¥,),i = 0,1,---,m}, we use a linear
least-squares technique to fit the line. And an endpoint of the
line interpolates fixed point B(x,, y;,). Therefore, the equation
lyx, + 1, v, + 1, = 0 is true. Establish a mathematical model as

min  f(X)=Ydl =Y |lox; + Ly + b
i=0 i=0
(6)

B+B-1=0

loxb + llyb + 12 =0

where
d is the algebraic distance from a point to the line,
X =[ly I, L] is the parameter vector of the line,
B(xy, y,) is the fixed point.

4.2. Reconstruction Model of an Arc Feature through Fixed
Point B(x, y;,). We write the equation of a circular arc as
(x> + ) + ¢ x + 6,y + ¢ = 0, where parameters ¢y, ¢}, &5, ¢
satisfy normalization constraint ¢; +¢; —4c,c; = 1. Ifthe point
lies close to the circle arc, the Euclidean distance equation is
approximately equal to |d;| = [ (x;> + y;%) + ¢,x; + &, ¥; + G5
Given data points {Q; = (x;, ¥;),i = 0,1,--- ,m}, establish the
reconstruction model as

min  f(X) = idlz
i=0

n
:Z[Co (xi2+yi2)+clxi+ozyi+c3]2 (7)

i=0

o(xt+y)+ax, oy, +6 =0

c12+r;22—4coc3:1

s.t.

where

d; is the algebraic distance from a point to the arc,

X =(¢ ¢ ¢ ¢)isthe parameter vector of the circular
arc,

B(xy, y,) is the fixed point.
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4.3. Reconstruction Model of a B-Spline Feature through Fixed
Point B(xy, y,) Satisfying G' Constraints with Adjacent Curves.
According to B-spline curve definition [23], in order to
make the approximation error be within some user-specified
error bound E, we must precompute the parameters #; and
knots. Similarly, Ma [24] proposed that the shape-preserving
property of fitting a curve is affected by the knot vector U,
parameters 7i;, and error bound E. In order to get good fitting
results, following Piegl [23], we start with many control points
and a linear curve, and work up to degree 3. The fitting results
can capture geometric characteristics inherent in the data,
and tend to “settle” into a natural parameterization. With
these approaches, we can eliminate and lower the negative
influences brought by B-spline curves fitting to get good
segment points.

In this paper, we aim to construct the model of a cubic
B-spline curve through fixed point B(x,, y,) satistying G'
constraints with adjacent curves, which include lines and
arcs.

When the adjacent curve is a line, the B-spline curve
interpolates the fixed point B(x,, ,) and satisfies G' conti-
nuity constraints with the line. Establish the mathematical
model as
|2

min  f = Z |Q; - C (@)

2
= Z Qi - ZNj,3 (@) P, (8)
i=0 j=0
d(P,-L)=0

B-C(fi) =B-Py =0

where

B is the fixed segment point located in the interval [a, b],

P, and P, are the first and second control points of the
B-spline curve,

L is aline connected to the B-spline curve.

When the adjacent curve is an arc, the B-spline curve
interpolates the fixed point and B(x;, y,) satisfies G' continu-
ity constraints with the arc. Establish the mathematical model
as

2
n

Q- ZN]‘,3 ()

Jj=0

min f = ilQi_C(ﬁiNz :i

i=0

B-C(0)=B-P,=0
k0P1x+k1P1y+k2 =0

where

B is the fixed segment point located in the interval [a, b],

Py(Poy Poy) and Py(Py,, Pyy) are the first and second
control points of the B-spline curve,

[k, k;,k,] is the parameter vector of the tangent line (L :
kox + k,y + k, = 0) of the circular arc at the fixed point B.

5. Search Principle of Optimal Segment Points

Before selecting an optimal segment point, we want to
emphasize the following two points.

First, when approximating the same data Q =
{Qi(x;, y)}ity> we will get different B-spline curves within
different error bounds E. It embodies in the difference of
control points and knots vector. If the E is a large number,
we can remove more knots, and the final control points
will be less. Otherwise, the final control points will be
more.

Secondly, when we reconstruct the B-spline curve based
on all CSPs within the same error bound E, the number
of control points of B-spline curves based on the optimal
segment point (OSP, if we can extract) or the CSP near the
OSP is not necessarily least. But this is only a special case.
In general, it is still the least. This is probably a consequence
oflack of the boundary information of collected data because
the collected data points are usually contaminated with errors
and noise.

Corresponding to every CSP, we need two pieces of infor-
mation: (1) the number of control points for reconstructing
a B-spline curve and (2) the total approximation error of
all collected points to the fitted curve. Next, we can use
MATLARB to construct a 3D surface by selecting the optimal
segment point, as shown in Figure 4. Corresponding to each
CSP of simulation data, Figure 4(a) is the statistical graph
of the number of control points of reconstructing B-spline
curves, and Figure 4(b) is the statistical graph of the total
approximation error.

If we only analyze Figure 4(b), the optimal segment point
is (1.5217, 2.0226). However, the theoretical segment point of
the designed simulation data is (1.5000, 1.5000). The distance
error between them is large. And if we find out the number
of the corresponding control points of the optimal segment
points in Figure 4(a), we see that the number is not the
least (10), but the greatest (14). This is incorrect because the
position of segment point is affected by the factors of the knot
vectors U, parameters #i;, error bound E, etc.

Using another analysis method, we consider Figures
4(a) and 4(b) together. This specific method is to look for
the minimum number of control points and subminimum
number of control points and analyze the distribution of
the two smallest control points in Figure 4(a). If the area
of subminimum number of control points is much larger
than the area of minimum number of control points, we
only analyze the total approximation errors corresponded
to the area of the subminimum number of control points.
Otherwise, only analyze the minimum number of control
points.

Outside the area of the control points we are looking
for, we assign a large value to the corresponding total
approximation error and then get a new approximation error
statistical graph as shown in Figure 5. Now we can directly
determine the position of the minimal approximation error
and find out the optimal segment point. The optimal segment
point obtained by this new method is (1.5047, 2.0076). The
distance error between the theoretical segment point and
practical segment point is smaller than before.
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FIGURE 4: Two factors of reconstruction of B-spline: (a) statistical graph of the number of control points; (b) statistical graph of the total
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6. Evaluation Indicators

We compare the reconstruction results with other methods
using the five evaluating indicators: €, &, €,,» & 0.

&, is the distance between the practical extracted segment
point P, and the theoretical segment point P, and defined by

ea=|P, - P (10)
g, 1s the average distance error and defined by
_ ZZO |d1| _ ZZO |Qt B C(ﬁt)l (11)

w

m+1 m+1

where C(i;) is the spline feature which is reconstructed
through the data points {Q,}7",.
¢, is the maximum distance error, as shown below:

&, = max {|d|}7") = max {|Q, - C(@)|},.  (12)

g is the average distance error of a range of data points, and
defined by

(13)

Sl i jQ - c @)

& =
! m'+1

m +1
Because of the locality of the B-spline curve, we calculate the
statistics of the first 15 points near the segment point of the
freedom feature, i.e., m' = 14.

o7 is the variance of the distance error between the first
15 data points and the reconstructed spline feature, as shown
below:

2 z:z’o (dz’ - 81)2

o = (14)

m' + 1
7. Algorithm Description

In order to improve the search efficiency, the determination
of OSP needs to use a dynamic grid of target area as
shown in Section 3. We divide the target area to get a sparse
grid to search for currently best point and then divide the
area around the best point to get a dense grid to search
for the currently best point again. We repeat these steps
until the density of grid nodes reaches the desired accuracy
requirements. Finally, let the searched point be the OSP.
The method proposed here is called as regional search and
reconstruction technology. The fitting algorithm of sectional
data is as follows.

(1) According to the curvature information of the discrete
data, extract the initial segment points (ISPs), segment the
data points using the ISPs into multiple data segments, and
determine the corresponding features of each data segment
and the area of optimal segment point based on practical
experience.

(2) In reference to the density of data points, determine a
reasonable grid spacing to divide the target area.
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FIGURE 6: Reconstruction of simulation data: (a) initial sectional discrete data, (b) results of three methods, and (c) magnified view of local

area.

(3) For each current grid node, fit a simple feature (includ-
ing line feature and arc feature) through the grid node first,
and then fit a B-spline feature based on boundary condition
(G' continuous); meanwhile count the total approximation
error of all data points to the fitted curve, and the number of
control points of the B-spline curve.

(4) Make a comprehensive analysis on the two groups of
data, and then determine the current optimal segment points.

(5) If the current density of grid nodes meets the precision
requirement, output the optimal segment point. Otherwise,
let the current optimal segment point as the center, reduce the
target area, reduce the grid spacing, divide grid, and return to
step (3).

(6) Reconstruct a profile curve based on the optimal
segment point.

8. Numerical Examples and Comparisons

We give the following examples and comparisons to verify the
proposed method. Here, three methods were analyzed and
compared: the step by step reconstruction method (SSRM,
the most commonly used), the overall reconstruction method
(ORM, proposed by Ke [17, 18]), and the regional search and
reconstruction technology (RSRT, proposed in this paper).
With synthetic objects, we get sectional discrete data from
theoretical CAD models and then reconstruct profile curves
based on these discrete data and analyze approximation error
between the reconstruction results and the theoretical CAD
models. The analysis data of synthetic objects include two

types: simulation data (discrete data of the known theoretical
models) and simulation data with noise (Gaussian noise is
added to the discrete data of the theoretical models). Finally,
we test our method with a set of data points from the point
cloud of a real industrial part.

The evaluation indicators include ¢ , €, €,,,> &, 07.

Example 1. Figure 6 shows the reconstruction of simulation
data whose adjacent features are a line feature and a spline
feature. Figure 6(a) shows the initial sectional discrete data
of simulate data, including 69 points. The size is about
6 x 2mm®, and the theoretical segment point (TSP) is
(1.000000, 4.000000). The results of three methods are shown
in Figure 6(b). Figure 6(c) shows the magnified view of a
local area. The segment point P; of the curve B, solved by
SSRM is (1.013870, 4.055580), whose distance error with TSP
is 0.057284mm; the segment point P; of the curve B, solved
by ORM is (1.015943, 4.056204), whose distance error with
TSP is 0.058421mm; and the segment point P; of the curve
B; solved by RSRT is (0.998023, 3.992092), whose distance
error with TSP is 0.008151mm.

In Table 1, comparison of the distance errors &, resulting
from these methods indicates that the distance error resulting
from RSRT is about 7 times smaller than that of ORM and
SSRM. From an evaluation of the approximation precision
of the freedom feature (¢, and ¢,,), the ORM has higher
precision than the other two methods; this happens because
the number of control points resulting from the ORM is more
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TABLE 1: Analysis of the reconstruction of simulation data (unit: mm).
Pp Pt &4 €y En & 0;
SSRM (1013870, (1.000000, 0.057284 0.004191 0.010459 0.003694 9.28E-06
4.055580) 4.000000)
ORM (1015943, (1.000000, 0.058421 0.001162 0.005010 0.001117 1.78E-06
4.056204) 4.000000)
RSRT (0.998023, (1.000000, 0.008151 0.003614 0.008219 0.000786 420E-07
3.992092) 4.000000)
TABLE 2: Analysis of the reconstruction of simulation data with noise (unit: mm).
P, P, &4 &y & g 0
SSRM (1.020960, (1.000000, 0.054973 0.007562 0.024227 0.005280 1.34E-05
4.050820) 4.000000)
ORM (1.016743, (1.000000, 0.054645 0.005712 0.012665 0.004829 9.84E-06
4.052017) 4.000000)
RSRT (0.991956, (1.000000, 0.018839 0.006336 0.017187 0.004374 4.93E-06
3.982966) 4.000000)

than RSRT. In Figure 6(c), combining the average distance
error g with the discrete degree o0y, the distribution of data
points near segment point of the freedom feature resulting
from RSRT is more uniform than other two methods. We can
see that the RSRT we proposed in this paper can find high-
precision segment point. Thereby, we can greatly improve the
overall quality of the reconstruction curve.

Example 2. Figure 7 shows the reconstruction of simulation
data with noise, which is Gaussian noise (0.01mm) added
into the data in Figure 6(a). Figure 7(a) is the initial sectional
discrete data of simulated data with noise. The results of
three methods are shown in Figure 7(b). Figure 7(c) gives a
magnified view of local area. The segment point P; of the
curve B, solved by SSRM is (1.020960, 4.050820), and the
corresponding distance error with TSP is 0.054973mm; the
segment point P; of the curve B, solved by ORM is (1.016743,
4.052017), whose distance error with TSP is 0.054645mm;
and the segment point P; of the curve B; solved by RSRT is
(0.991956, 3.982966), and the corresponding distance error
with TSP is 0.018839mm.

In Table 2, compared to the distance errors &; resulting
from existing methods, the distance error resulting from
RSRT is approximately 3 times smaller. With respect to an
average distance error ¢, and maximum distance error ¢,,,
the ORM has higher precision than the other two methods.
This is because of more control points generated in the ORM.
In Figure 7(c), based on the average distance error ¢ and
the discrete degree o3, the distribution of data points near
segment point of the freedom feature resulting from RSRT
is more uniform than the other two methods. We can see that
our RSRT is also superior to the other two methods even in
the case with noise.

Example 3. Figure 8 shows the reconstruction of simulation
data whose adjacent features are an arc feature and a spline

feature. Figure 8(a) is the initial sectional discrete data
of simulate data, including 150 points. The size is about
11.5 x 4.5mm?, and the TSP P, is (1.5000, 5.0000). The results
of three methods are shown in Figure 8(b). Figure 8(c) is
the magnified view of local area. The segment point P; of
the curve B, solved by SSRM is (1.5537, 5.0442), and the
corresponding distance error with TSP is 0.0696mm; the
segment point P; of the curve B, solved by ORM is (1.5597,
5.0426), whose distance error with TSP is 0.0733mm; and the
segment point P;’ of the curve B; solved by RSRT is (1.4810,
4.9835), and the corresponding distance error with TSP is
0.0252mm.

In Table 3, compared to the distance errors g; resulting
from existing methods, the distance error resulting from
RSRT is about 3 times smaller. With respect to the approx-
imation precision of the freedom feature (¢, and ¢,,), the
RSRT has higher precision than the other two methods. In
Figure 8(c), in combination of the average distance error g
with the discrete degree 07, the distribution of data points near
segment point of the freedom feature resulting from RSRT
is more uniform than the other two methods. It can be seen
that our RSRT can find the high-precision segment point.
Thereby, RSRT can greatly improve the overall quality of the
reconstruction curve.

Example 4. Figure 9 shows the reconstruction of simulation
data with noise, which is data in Figure 8 added with Gaussian
noise (0.01mm). Figure 9(a) is the initial sectional discrete
data of simulated data with noise. The results of three
methods are shown in Figure 9(b). Figure 9(c) is a magnified
view of local area. The segment point P; of the curve B, solved
by SSRM is (1.5609, 5.0416), whose distance error with TSP
is 0.0738mm; the segment point P; of the curve B, solved by
ORM is (1.5581, 5.0450), and the corresponding distance error
with TSP is 0.0717mm; and the segment point P; of the curve
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FIGURE 7: Reconstruction of simulation data with noise: (a) initial sectional discrete data, (b) results of three methods, and (c) magnified view
of local area.
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FIGURE 8: Reconstruction of simulation data: (a) initial sectional discrete data, (b) results of three methods, and (c) magnified view of local
area.
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FIGURE 9: Reconstruction of simulation data with noises: (a) initial sectional discrete data, (b) results of three methods, and (c) magnified

view of local area.

TABLE 3: Analysis of the reconstruction of simulation data (unit: mm).

PP Pt &g &y En & 0;
SSRM (1.5537, (15000, 0.0696 0.0014 0.0055 0.0020 1.60E-06
5.0442) 5.0000)
ORM (15597, (15000, 0.0733 0.0011 0.0084 0.0033 5.73E-06
5.0426) 5.0000)
RSRT (1.4810, (15000, 0.0252 0.0007 0.0045 0.0011 9.79E-07
4.9835) 5.0000)

B, solved by RSRT is (1.5220, 5.0165), and the corresponding
distance error with TSP is 0.0275mm.

In Table 4, compared to the distance errors ¢, resulting
from existing methods, the distance error resulting from
RSRT is about 3 times smaller. With respect to an average
distance error ¢, and maximum distance error ¢,, point of
view, the RSRT has higher precision than the other two meth-
ods. In Figure 9(c), based on the average distance error ¢ and
the discrete degree o3, the distribution of data points near
segment point of the freedom feature resulting from RSRT
is more uniform than other two methods. Thus, our RSRT is
superior to the other two methods even in the case with noise.

Example 5. Figure 10 shows the high-precision reconstruc-
tion of a partial sectional data of a turbine blade. Figure 10(a)
is the sectional data of turbine blade tenon, and the data
acquisition density is D < 0.03mm. Figure 10(b) gives
the curvature information of discrete data, and Figure 10(c)
is the magnified view of local area. With respect to P;
(shown in Figure 10(d)), according to the curvature infor-
mation, it is difficult to determine the most appropriate
point as segment point from these points: A (1.518512,
0.910234), B (1.538464, 0.907334), C (1.558423, 0.904822),
and D (1.578395, 0.902990). However, if our method is

used, we do not need to predetermine segment points.
We just need to make sure that the segment point is
in a rectangular area that takes AD as its diagonal line.
Then we use a dynamic grid method to search for the
optimal segment point PP1(1.530588, 0.907243). Figure 10(d)
shows the high-precision result obtained from the RSRT.
P15 Pyys Pps, Py, Pys are the optimal segment points.

9. Conclusions and Future Work

We have presented a new solution for high-precision extrac-
tion of the segment points of 2D profiles based on a
dynamic grid method in this paper. We name this method
as regional search and reconstruction technology (RSRT),
which has the following key advantages over other existing
methods.

(1) Low dependence: the segment point is optimized from
an area space, rather than appointed from the measured data
points by rule-of-thumb methods. It increases the possibility
of searching the optimal solution.

(2) Universality: the number of control points of a B-
spline curve and the total approximation error are considered
together to select the optimal segment point (OSP). This
can avoid misjudging the OSP, if the boundary information
is incomplete. At the same time, this can improve the
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TABLE 4: Analysis of the reconstruction of simulation data with noises (unit: mm).
Pp Pt & [ &y & 0;

SSRM (15609, (1.5000, 0.0738 0.0041 0.01488 0.0041 8.25E-06
5.0416) 5.0000)

ORM (1.5581, (15000, 0.0717 0.0040 0.01583 0.0039 9.76E-06
5.0450) 5.0000)

RSRT (1.5220, (15000, 0.0275 0.0037 0.01227 0.0036 5.42E-06
5.0165) 5.0000)

(©)

arc
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B-spline
line

arc

Pps

line g
B-spline
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(d)

F1GURE 10: High-precision reconstruction of a partial sectional data of turbine blade. (a) Sectional data of turbine blade tenon, (b) curvature
information of discrete data, (c) magnified view of local area, and (d) high-precision result getting from the RSRT.

reconstruction accuracy of a B-spline curve without reducing
the smoothness of the curve.

(3) High precision: the spline features are constantly
reconstructed while the RSRT searches for the OSP. The
reconstruction quality of spline features can be significantly
improved with the OSP.

An important area for future research is a practical
method for fitting high-quality profile curves based on
boundary condition (G* continuous).
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