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Two-dimensional (2D) NMR relaxometry has been widely used as a powerful new tool for identifying and characterizing
molecular dynamics. Various inversion algorithms have been introduced to obtain the versatile relaxation information conveyed
by spectra. The inversion procedure is especially challenging because the relevant data are huge in 2D cases and the inversion
problem is ill-posed. Here, we propose a new method to process the 2D NMR relaxometry data. Our approach varies from
Tikhonov regularization, known previously in CONTIN and Maximum Entropy (MaxEnt) methods, which need additional
efforts to compute an appropriate regularization factor. This variety improves Butler–Reeds–Dawson algorithm to optimize the
Tikhonov regularization problem and the regularization factor is calculated alongside. The calculation is considerably faster than
the mentioned algorithms. The proposed method is compared with some widely used methods on simulated datasets, regarding
algorithm efficiency and noise vulnerability. Also, the result of the experimental data is presented to test the practical utility of the
proposed algorithm. The results suggest that our approach is efficient and robust. It can meet different application requirements.

1. Introduction

Relaxometry refers to the measurement of relaxation time
in NMR. Relaxation time is known to correlate with many
macroscopicmaterial characteristic parameters like viscosity,
crystallinity, concentration, and lots of microscopic param-
eters like length of polymer chain or kind of radical group,
radius ofmolecule cluster [1].Thismakes relaxometry analyze
a competitive tool in analytical chemistry.

Generally, the spin-spin relaxation (T2) spectra and the
spin-lattice relaxation (T1) spectra should be combined to
boost the analysis. The distribution information of T2 and
T1 conveyed by spectra was used to determine the relative
amounts of free Mn2+ ions and chelated manganese ions
when both species are present in the same aqueous solution
[2]. Water-soluble manganese porphyrins can serve as MRI
contrast enhancement agents, and manganese ions bound to
enzymes or proteins are useful paramagnetic probes to elu-
cidate the structures and functions of proteins and enzymes

[3]. Given the information of T2 and T1, the values of 1/T2,
1/T1, and T1/T2 can be easily calculated. The information of
T1/T2 and T2 was very useful to obtain information about the
reaction of nanoparticles withmolecular targets [4], based on
the fact that biotinylated nanoparticles probes reactedwith an
avidin molecular target to form stable clusters permitting T2
and T1 to be measured as a function of cluster size. In these
previous studies, T2 spectra and T1 spectra weremeasured by
independent experiments.

In comparison with classical one-dimensional (1D)
techniques, such as applying Carr-Purcell-Meiboom-Gill
(CPMG) sequence for measuring T2, inverse-recovery
sequence for T1 and pulsed gradient spin echo for diffusion
coefficients (D), 2D NMR relaxometry technique measures
two parameters at a single experiment. When using 1D
spectra, there is a crucial risk that different structures
in the real world would be grouped into the same one if
their peaks overlapped with each other. In addition, when
most of the peaks overlap heavily, 1D spectra will be much
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too complex for interpretation. By the introduction of an
appropriate additional spectral dimension, 2D relaxometry
produces 2D spectra. These spectra are simplified and lots
of extra information is obtained from a single experiment.
The overlapped peaks existing in 1D NMR relaxometry
can be distinguished easily in a suitable 2D spectrum.
Recently, 2D NMR relaxometry has been widely used as a
powerful tool for identifying and characterizing molecular
dynamics, especially inmaterials consisting ofmany complex
components [5–7].

2. Methods

Generally, the physical and mathematic model of a 2D NMR
experiment is described using the following equation [8]:

𝑀(𝜏2, 𝜏1) = ∬𝐾2 (𝜏2, 𝑥) 𝑆 (𝑥, 𝑦)𝐾𝑇1 (𝜏1, 𝑦) 𝑑𝑥𝑑𝑦
+ 𝐸 (𝜏2, 𝜏1)

(1)

where 𝐾1 and 𝐾2 are kernels modeling a relevant parameter
for each, 𝑆 is a 2D spectrum, the symbol ‘T’ denotes matrix
transpose, (𝜏2,𝜏1) is the sampling time, and 𝐸 stands for the
experimental noise which is assumed to be white Gaussian
noise with zero-mean. It is noteworthy that the kernels can
vary in different forms depending on the type of experimental
pulse sequences. In inversion-recovery-CPMG experiments,
for example, the forms of the kernels are as follows [9]:

𝐾2 (𝜏2, 𝑇2) = exp(− 𝜏2𝑇2)

𝐾1 (𝜏1, 𝑇1) = 1 − 2 exp(− 𝜏1𝑇1)
(2)

The kernels indicate the influence of a certain factor (T1,
T2, or D) to the measured decay data. However, there is no
closed form for 𝑆. And data is collected at discrete values
in practice. Consequently, a numeric approximation to 𝑆 is
made. Equation (1) has a discretized form as follows:

M = K2SK
𝑇
1

(3)

The noise term is ignored or integrated into M because
noise should be incomparable to valuable data.

If the kernels are independent to each other, (3) can be
easily restated into 1D form using Kronecker product:

m = Ks (4)

where m = vect(M), s = vect(S), K = K1 ⊗ K2. Here the
operator vect(∙) represents vectorization that makes a vector
by stacking columns of a matrix. The symbol ‘⊗’ stands for
Kronecker product of two matrices.

To determine s from (4), an Inverse Laplace Transform
(ILT) should be applied to experimental data. Up till now,
the 2D ILT problem has been transformed into a 1D one.
A careful reader may have a suspicion whether existing 1D
ILT algorithms can be applied to solve the problem directly.

Unfortunately, the data size of the transformed 1D problem is
too large for 1D inversion algorithms.

In 2D case,K is produced by two kernels using Kronecker
product or a lexicographically order. Taking an inversion-
recovery-CPMG experiment for example, just 8 CPMG echo
trains with different polarization time are collected, and only
2048 echoes are stored at each CPMG train. Suppose that
the preset T1-T2 grid is 128∗128 sized, then reading all the
entries of K will take 1GiB (2048∗8∗128∗128∗32/8 Byte,
in a 32-bit system) in memory. The procedure to calculate
inverse matrix of K is both memory and time-consuming.
And any derivation involved optimization method would
produce some other large temporary variables causing long
computations. These problems may not be handled properly
with an ordinary computer.

Additionally, the 2D ILT problem is notoriously ill-posed
and ill-conditioned. We can get a solution even with a
zero-fitting-residual, but in most cases, this accurate and
precise solution will not be the exact one which contains
relevant information about the true world. For example, in
an ideal case, we set K = [1.01 1; 1 0.99] and the noise-free
measured datam = [2.01 1.99]𝑇, then we will get the “real”
spectrum s = [1 1]𝑇. However, in practice experimental
data is inevitably collected with noise. If the measured data
changes to m = [2 2]T due to noise, we will get s∗ =
[200 −200]T immediately. The fitting residual is zero but the
resultant spectrum does not have any practical significance.
Small perturbations in measured data change the results by
a large margin. The standard solution of the 2D inversion
problem always produces a spectrum severely contaminated
by noise.

To reduce the data size, a singular value decomposition
(SVD) based compressing method [10] is widely used. Data
compressing is performed with each kernel individually
before combining two kernels into one matrix. The funda-
mental idea of thismethod is to truncate all the small singular
values ofK1,2 to considerably reduce the data size. A trade-off
between size and accuracy is made by the retaining number
of singular values. The key point and the difficulty of this
method are how to set the retaining number adaptively.

To circumvent the ill-posed problem, regularization tech-
niques should be applied. In general, these methods can be
divided into iterative regularization and direct regularization.
The iterative regularization can be implemented fast and
cheaply. Early iterations will produce good approximations
and approximations degrade at later iterations. The extent of
regularization corresponds to stop-ping criteria.

The method based on truncated SVD (TSVD) is one
of the most popular iterative methods. TSVD should be
performed iteratively to produce a nonnegative solution.
An earlier version of TSVD [11] is provided to handle data
with a good signal-to-noise ratio (SNR). To overcome the
discontinuity produced by the former method, the algorithm
proposed by JIANG et al. [12] in 1D inversion can also
be used in the 2D case. In another way, TAN et al. [13]
combine LSQR and TSVD together to get a more continuous
spectrum. Lin et al. [14] studied the relationship between
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SNR of the sampling data and the optimal value of retaining
number when handling a certain logging data. All the above-
mentioned variants of TSVDmethod tend to be time efficient
but may cause some artificial peaks due to singular value
truncation. This drawback is evident when processing low
SNR data.

A recently proposed iterative regularization method is
based on the Trust-Region Algorithm for the Inversion
(TRAIn) [15]. In TRAIn, the nonnegativity of the resultant
spectrum is imposed by setting s = 𝜂2 and the minimizing
procedure is implemented with respect to 𝜂. Meanwhile,
the extent of regularization is controlled by a termination
threshold relevant to noise level. The termination threshold
is equivalent to the product of the estimated standard devi-
ation of noise and a factor a little bit larger than 1. This
method is reliable for 1D inversion, especially suitable for
samples with nonsymmetrical distributed peaks in spectrum.
Unfortunately, in 2D inversion cases, the spectrum shape is
totally unknown due to the procedure of vectorization in
(4). Additionally, 2D inversion is a large-scale problem and
the truncated conjugate gradient method used to solve the
trust-region subproblem will cause extensive computations
for a given termination threshold. What is worse, several
termination thresholds should be tried to select an optimal
solution.

Other regularization methods that are widely used
include Constrained Regularization (CONTIN) [16], Maxi-
mum Entropy (MaxEnt) [17], and other variants of Tikhonov
regularization. All these variants of Tikhonov regularization
lead to minimizing the following least-squares problem:

min
𝑠≥0

2𝑄 (s) = ‖Ks −m‖2𝐹 + 𝛼𝑅 (s) (5)

where 𝑅(s) is a penalty function imposed to overcome the ill-
posedness, 𝛼 is the so-called regularization factor included
to balance the fidelity-to-data and regularity. Berman et
al. [18] proposes a method to solve this problem, and the
determination of regularization factor is a crucial issue when
adopting these approaches. If 𝛼 is too small, the penalty term
contributes little, then the solution will still be contaminated
by noise a lot. If 𝛼 is too large, the solution will be a poor
approximation of the original problem.

To choose an appropriate 𝛼, many methods are devised,
among which L-curve method [19], generalized cross vali-
dation (GCV) [20], and discrepancy principle [21] are well-
known. The L-curve method supposes that the curve is
shaped as an “L” when plotting (‖s𝛼‖, ‖Ks𝛼 − m‖) in log-
log scale. Here s𝛼 is the corresponding solution to a given 𝛼.
Obviously, the value of 𝛼 should be varied in a wide range
to form a curve. The optima 𝛼 is defined as the one that
produces the pointer locating at the corner of the L-shaped
curve. This method is easy to understand and implement,
but time-consuming. Meanwhile, in some cases, the curve
may not be a well L-shaped one and the locating algorithm
based on curvature will fail. Besides the L-curve method,
GCV is also time-consuming because many iterations over
on the solution space are required. Unlike these twomethods,
discrepancy principle is much simpler and the computational
cost will not be extravagant. If the noise level is known or

can be estimated, the discrepancy principle chooses the𝛼 that
makes the residual equal to the noise level.

Despite regularization factor, penalty function is also
important to direct regularizationmethods.The penalty term
can take on different forms as follows:

𝑅 (s) = ‖Ls‖22 (6a)

𝑅 (s) = −∑( 𝑠
∑ 𝑠) log( 𝑠

∑ 𝑠) (6b)

𝑅 (s) = ‖s‖1 (6c)

For CONTIN, 𝑅(s) is defined as ‖Ls‖22 (see (6a)), where
L is a low-pass operator (a second derivative operator is
used as default in CONTIN) to enforce spectra smoothness
because s is believed to be mostly continuous. Unfortunately,
due to this unequal penalization introduced by the second
derivative operator, CONTIN tends to over-smooth weak
peaks and under-smooth strong ones [22, 23]. Consequently,
the resolution of spectrum may degrade.

Many other algorithms chose L as the identity matrix, if
the real spectrum is smooth with a smaller Frobenius norm.
In 2D inversion problem, L should not be chosen as second
or other high-order derivative operator, because the vectored
s is a large vector (typically has 64∗64 rows or more) and
high-order derivative operator will slow down the algorithm
sharply.

The penalty function of MaxEnt is the entropy of the
solution [17] (see (6b)), which is imposed to make the
distribution of spectrum obeying Bayesian statistics. Then
by employing the entropy function, information recovery is
promoted. However, since the entropy term is undefined for
negative values, all the negative values should be changed to
be nonnegative after each iteration. This will cause a poor
computational efficiency.

If there is a priori information that the spectrum consists
of some “discrete” distributions, 𝑅(s) can be set to be
L1-norm (see (6c)). The Iterative Thresholding Algorithm
for Multiexponential Decay (ITAMeD) [24] used the Fast
Iterative Shrinkage Thresholding Algorithm (FISTA) [25] to
employ L1-norm minimization. ITAMeD enforces sparsity
of the spectrum, i.e., among many solutions s in agreement
with experimental signal m, the one with smallest number
of components will be chosen as the resultant spectrum.
Obviously, spectra produced by ITAMeD may rise sharply
from the baseline. The character of enforced sparsity has
made it a powerful tool to recover narrow peaks. But for
broad distribution profiles, ITAMeD will not be a suitable
alternative. Zhou et al. [26] extended this method to 2D cases
to produce sparse T1-T2 spectra.

Unlike the variantmethods reviewed above, Berman et al.
[18] impose two penalty terms to confinemore characteristics
of the spectrum. The PDCO (Primal-Dual interior method
for Convex Objectives) solver is employed to solve the
complicated minimization problem. The main drawback of
this approach employing multiple penalty terms is the extent
allocation of each penalty function. Recently, Campisi-Pinto
et al. [27] featured amethod based on numerical experiments
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Figure 1: Wavelet-based noise estimation.

and simulations that maximize PDCO reconstruction accu-
racy under signal-to-noise conditions. They successfully put
this method in 2D case.

Based on these arguments, we propose the application
of Butler–Reeds–Dawson (BRD) algorithm to process the
2D NMR relaxometry data. BRD algorithm is designed
to estimate solutions of first kind integral equations with
nonnegative constraints and optimal smoothing [28]. Advan-
tages like regularity, high efficiency, and adaptability have
made this method a competitive alternative to solve ill-posed
problems.

A priori knowledge of noise variance is needed because
the quality of solution is connected to noise level in accor-
dance with the Morozov’s discrepancy principle. To estimate
the variance of noise from polluted data, Venkataramanan et
al. [10] assume that the decay time is longer than the echo
spacing. Hence any three successive data points should be
located at the same straight line. The deviate extent is used
to estimate the noise variance. Obviously, their assumption
is bad when sampling fast-decay signals. To avoid this disad-
vantage, a wavelet-based method is proposed. The proposed
noise estimation method employs a wavelet-based denoising
filter to smooth the original CPMG echo trains. The filter
uses near symmetric wavelets and calculates a universal
threshold, and then soft thresholds the first level coefficients.
Generally speaking, the soft-threshold approach involving
wavelet transform packs most of the original signal energy
into a few significant coefficients. The reconstructed CPMG
trainwill be smoother. After a simple subtraction between the
smooth version and the original version ofmeasured data, the
errors causing discontinuity and oscillation are extracted. To
quantify the noise, the histogram of the amplitude of these
extracted errors is calculated. The noise in CPMG train is

assumed to be addictive white Gaussian with zero-mean in
most relevant references. Accordingly, the histogram is fitted
to the expression in (7). Immediately, the noise variance is
evaluated by the standard derivation of the noise from fitting
parameter 𝜎.

𝑦 = 𝐴𝑒−𝑥2/2𝜎2 (7)

Figure 1 shows the result of an experimental CPMG echo
train. During the noise estimating, what we care about is
the histogram of the subtraction of the original signal and
the filtered signal. The histogram in the top-right subplot in
Figure 1 shows that the noise is Gaussian.

After noise estimation, an adaptive SVD based com-
pressing method is implemented to reduce the problem
scale. The detailed procedures of the proposed compressing
method, which sets the retaining number equal to the rank of
kernel matrix, is given in supporting information. Then two
kernels are rearranged into one using Kronecker product or
a lexicographically order.

Up till now, the 2D inversion problem has been rewritten
into an identical 1D form (see (4)) and the variance of
noise has been estimated. This a priori information will be
used by BRD algorithm to perform the standard Tikhonov
regularization (see (8)).

min
𝑠≥0

2𝑄 (s) = ‖Ks −m‖2𝐹 + 𝛼 ‖s‖2𝐹 (8)

The aboveminimum problem should be solved under the
nonnegativity constraint. If we solve the problem directly, all
the negative components calculated by optimizing iterations
should be rewritten to nonnegative values. This will degrade
the monotonicity of optimization algorithm. To overcome
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this drawback, BRD algorithm transforms the constrained
problem to an unconstrained convex optimization one (see
(9)).

min 𝜒 (c) = 1
2
c𝑇 [𝐺 (c) + 𝛼I] c − c𝑇m (9)

where

c = Ks −m
−𝛼 (10)

𝐺 (c) = K𝐻(c)K𝑇
𝐻(c) = diag (𝐻𝑒𝑎V𝑖𝑠𝑖𝑑𝑒 (K𝑇c)) (11)

Here𝐻𝑒V𝑖𝑠𝑖𝑑𝑒(∙) denotes Heaviside function and diag(∙)
makes a diagonal matrix using the specified values. The
nonnegativity constraint is imposed implicitly by a Heaviside
function. Obviously, [𝐺(c) + 𝛼I] is positive definite. Imme-
diately, we will get the first and second derivation of 𝜒 with
respect to c. A more detailed review of the BRD algorithm
can be found in supporting information. In absence of any
constraint, the minimization problem (see (9)) can be solved
by anyNewton-likemethod if regularization factor 𝛼 is given.

Now the only remaining problem is to choose an appro-
priate regularization factor 𝛼. To connect the quality of
spectra to the noise level of measured data, the norm of the
fitting residual is assumed to be equal to the noise variance
(see (10)). This assumption is easy to understand. Because
there will be no fitting error if using noise-free data, then the
fitting residual comes from noise.

Ks𝛼 −m2 = 𝑁𝜎2 (12)

In (12), s𝛼 is the solution of problem in (9) with a given 𝛼
(𝛼 is initialized to (15));𝑁 stands for the number of measured
data. If 𝛼was initialized with a certain value, we can easily get
an optimal c with respect to the given 𝛼. Then the ideal value
of 𝛼 should be calculated using the optimal c. After updating
𝛼, we will get the next optimal c and then the next 𝛼. After
enough iterations, 𝛼 will converge to a fixed value 𝛼opt and
the corresponding 𝛼opt will be output as the optimal solution.
This update searching strategy used by BRD algorithm is
advantageous over L-curve method and GCV, because it
avoids lots of time-consuming unnecessary inversions.

Compared to other algorithms mentioned above, the
BRD algorithm increases the computation efficiency greatly.
However, there is a distinct drawback of this method in
that the optimal solution is sensitive to the accuracy of the
estimated noise variance. The update searching loop will not
converge if the SNR of the measured data is too high or
the estimated noise level is smaller than the actual one. To
overcome this defect, some additional terminal criteria are
imposed to improve the robustness of the BRD algorithm.

To demonstrate the improved BRD algorithm for the
Inversion (BRDAIn) of two-dimensional NMR relaxometry
data, we define the fit error as

𝜒 (𝛼) = ‖Ks −m‖ = 𝛼 ‖c‖ (13)

The slope of the log-log graph of 𝜒(𝛼) is proved [29] to be
in the interval of [0, 1]:

0 ≤ 𝑑 (log𝜒)
𝑑 (𝛼) ≤ 1 (14)

Therefore, the larger the regularization factor is, the
larger the fitting residual becomes. Additionally, based on
numerical simulations, we find that the optimizing algorithm
to solve the minimization problem (see (9)) converges much
faster for larger 𝛼.

Based on these assertions, 𝛼 is initialized to be a large
value (at least larger than the optimal 𝛼) to further improve
algorithm efficiency in the proposed method. The corre-
sponding c will be calculated with little computational effort.
Once c is calculated, the next 𝛼 is readily computed according
to (12) and (13). As the update searching goes, 𝛼 decreases.
If 𝜒(𝛼) arrives at the estimated noise floor, the algorithm
will stop. If 𝛼 changes too slowly, i.e., the slope of the log-
log plot of 𝜒(𝛼) is smaller than a preset tolerance TOL, the
update searching should terminate because the extra time-
consuming iterations make little sense to the output result.
If 𝛼 becomes too small, the extent of regularization will be
too low, consequently the algorithm terminates if 𝛼 is less
than a preset minimum value 𝛼min. All the above-mentioned
terminal criteria are shown in Figure 2.

It is noteworthy that the above-mentioned update search-
ing method is first introduced by the original extension of
the BRDmethod, but the algorithm efficiency of this original
version can vary in a wide range. If the start point of 𝛼 is
smaller than the optima one 𝛼𝑜𝑝𝑡, the first several steps will
cause long time computing. What is worse, it will take many
more iterations to converge because 𝛼may oscillate within a
small interval containing 𝛼𝑜𝑝𝑡. In our improved method, 𝛼 is
initialized to

𝛼𝑖𝑛𝑖𝑡 = 𝑚𝑒𝑎𝑛 (diag (K𝑇K)) (15)

which is much larger than 𝛼𝑜𝑝𝑡.
Considering our terminal criteria and initializing strat-

egy together, when the update searching starts, 𝛼 will not
increase. Consequently, no oscillating happens and the algo-
rithm will converge rapidly.

In the following sections, the noise vulnerability, effec-
tiveness, and spectra resolution of the proposed algorithm are
analyzed.The comparison of our algorithm to other methods
is also presented.

3. Materials and Experiments

The simulated and experimental data were processed using
MATLAB on Windows 8 (64-bit edition), configured with
Intel Core i5 3470 CPU running at 3.2GHz. The simulations
were designed to illustrate the efficiency and robustness of the
proposed algorithm.
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Figure 2: Terminal criteria of BRDAIn.

3.1. Simulations

Simulation 1 (SIM-1): Algorithm Efficiency. For SIM-1, the
forward-modeling spectrum used to mimic the inverse-
recovery-CPMG experiment is unimodal. The spectrum
contains a Gaussian peak centered at (T2, T1) = (10,100)
microseconds. Some white Gaussian noise with zeros-mean
were added to the simulated data to make the SNR of data
equal to 100. Here SNR is defined as the ratio between the
maximum value of signal and the standard derivation of
noise.

Several methods including TSVD, CONTIN, TRAIn,
ITAMeD, and the proposed BRDAInmethod were applied to
process the synthetic data. To compare the efficiency of each
algorithm, time elapsed to invert the same data was recorded.
For TSVD, the MATLAB implementation was shipped from
Hansen’s Regularization toolbox [30]. CONTIN calculations
were implemented using a MATLAB version [31] (𝛼 = 0.1,
calculated by L-curve method). The code of TRAIn and
ITAMeDwe used can be found in the supporting information
of the original articles. PDCOwas implemented from PDCO
method [18, 27]. For all thesemethods, the preset T1-T2mesh
grid is 64 rows and 64 columns.

Simulation 2 (SIM-2): Noise Vulnerability. SIM-2 used the
same forward-modeling spectrum to simulate the inverse-
recovery-CPMG experiment. Four sets of noisy data with
different SNRs were generated by randomly adding white
Gaussian noise to the simulated data. The SNRs of these
synthetic data vary in a broad range, including 50, 25, 10, and
5. These datasets were processed by TRAIn, ITAMeD, and
BRDAIn method.

3.2. Experiments. We have run inverse-recovery-CPMG
experiments to test the practical utility of BRDAIn. The
sample consists of two bottles ofMnCl2 dopedwater with dif-
ferent concentrations (1.0g/L and 1.5g/L, respectively). Wait-
ing times of inverse-recovery-CPMG sequence are 0.2ms,

0.57ms, 1.627ms, 4.642ms, 13.24ms, 37.765ms, 107.722ms,
307.267ms, 876.451ms, and 2500ms. Echo spacing and echo
number of each CPMG are 0.235ms and 8000, respectively.
The experiment was performed at 32 degrees Celsius on
a 23.5MHz NMR spectrometer (MesoMR, produced by
Suzhou Niumag Analytical Instrument Corporation, China).
The entire dataset of this experiment can be found in
supporting information. And the inversion spectrum using
BRDAIn is shown in Figure 8.

4. Results and Discussion

Results of simulated and experimental data produced by
afore-mentioned algorithms allowed us to evaluate the per-
formance of BRDAIn in comparison to others.

For data with a high SNR in SIM-1, all methods yield a
reasonable T1-T2 spectrum, but BRDAIn and PDCO finish
the calculation in less than 1minute.The BRDAIn has slightly
less running time than PDCO.

It is noteworthy that none of the above-mentioned
algorithms except BRDAIn and PDCO can handle the
original T1-T2 inversion problem in SIM-1 in a relatively
limited time. Therefore, the same data compressing pro-
cedure as BRDAIn was involved before CONTIN, TRAIn,
ITAMeD, TSVD and PDCO calculations. Besides, all these
five methods need prior calculations to get an appropriate
regularization factor. In our experiment, the regularization
factor was calculated using L-curve. The data in Table 1
just record the elapsing time with a certain value of the
relevant factor. But for TSVD method, Hansen has imple-
mented a fast L-curve method to calculate the truncat-
ing location. So TSVD can finish the whole calculation
rapidly.

For CONTIN, the second derivative operator slows the
calculations down sharply because the operator matrix is
huge in 2D cases. TRAIn procedure is much faster in
comparison with CONTIN. However, both CONTIN and
TRAIn need enough times of calculations to form an L-curve
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Figure 3: T1-T2 spectra obtained from simulated data in SIM-1 by (a) TRAIn, (b) ITAMeD, (c) BRDAIn, (d) TSVD, (e) CONTIN, and (f)
PDCO.

Table 1: Time elapsed for each method to invert data from SIM-1.

Method TRAIn ITAMeD BRDAIn TSVD CONTIN PDCO

Time Elapsed(s) 228.38(termFac = 1.1) 19.74(iter = 1e4) 6.44 0.18 8305.11(alpha=1) 7.4
206.81(termFac = 1.5) 126.59(iter = 1e5) 11522.20(alpha=0.1)

to get a proper parameter. For ITAMeD, when the number of
iterations increases, it will take much more time to converge.

It may be briefly summarized that only BRDAIn, PDCO,
and TSVD can process the 2D relaxometry data in a
short time. But as can be seen in Figure 3, there are lots
of artificial small peaks in the TSVD result. Meanwhile,

the whole CONTIN calculation takes about 26 hours (100
cases with different values of regularization factor were
calculated to plot an L-curve). And the resultant spectrum
is over-smoothed obviously. Therefore, both TSVD and
CONTIN method were not adopted in the later experi-
ments.
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Figure 4: T1-T2 spectra obtained by TRAIn from simulated data with (a) SNR = 50, (b) SNR = 25, (c) SNR=10, and (d) SNR = 5.

As the SNR of the simulated data decreases in SIM-2,
the peak in the inverted spectra becomes broader for all
inverting algorithms except PDCO.This is easy to understand
because a higher SNR means a higher accuracy of sampling
and an accurate peak bound and vice versa. In comparison
with other algorithms except PDCO, this broadening effect
is obviously suppressed when using BRDAIn. The PDCO
method has a good ability to control the peak, but it may
narrow the spectral peaks. Of course, it is also possible that
I did not choose good parameters.

For results of ITAMeD (Figure 5) and BRDAIn (Figure 6),
the noise vulnerability is about the same. But for TRAIn
method (Figure 4), there is a notable feature that all the
resultant spectra are symmetric. This is the combined effect
of the setting s = 𝜂2 in TRAIn method and the vectorization
procedure to restate 2D inversion problem into 1D form.
Consequently, if there is no prior knowledge about peak
shape, TRAIn is not a good alternative. For the results of
PDCO (Figure 7), as the SNR decreases, many pseudopeaks
will appear in PDCOresults. But if the SNR is high, the PDCO
method is a good choice to obtain reliable results, especially
when the SNR is over 1500 [27].

The above simulations have demonstrated the efficiency
and robustness of BRDAIn. And the practical utility of our
method will be shown from result of experimental data.

Mn2+MRI contrast enhancement agents were commonly
used in clinical. The concentration of water-soluble Mn2+
can affect the relaxation rate obviously. T1-T2 spectra can
be used to rapidly determine whether the concentration was
optimal. The experiment simply demonstrated the relation
between concentration and relaxation time and it is only the
beginning of what you can do using 2D relaxometry. Gen-
erally speaking, the more paramagnetic ions dissolved into
water, the shorter the proton relaxation time is. Therefore,
two bottles of MnCl2 doped water with different concentra-
tions (the concentration gap should be large enough) will
appear as two isolated peaks along the diagonal in T1-T2
spectrum.

5. Conclusion

Two-dimensional inversion algorithms with NMR had been
intensively studied all over the world. However, exist-
ing methods are either too sensitive to noise or pay an
exhausting importance to estimated noise variance. To
overcome these shortcomings, a new method based on
Butler–Reeds–Dawson algorithm is proposed. We demon-
strate the performance of the proposedmethod by simulation
and experiments. The results show that BRDAIn is both
efficient and robust. Comparing to othermethodsmentioned
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Figure 5: T1-T2 spectra obtained by ITAMeD from simulated data with (a) SNR = 50, (b) SNR = 25, (c) SNR=10, and (d) SNR = 5.
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Figure 6: T1-T2 spectra obtained by BRDAIn from simulated data with (a) SNR = 50, (b) SNR = 25, (c) SNR=10, and (d) SNR = 5.
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Figure 7: T1-T2 spectra obtained by PDCO from simulated data with (a) SNR = 50, (b) SNR = 25, (c) SNR=10, and (d) SNR =5.
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Figure 8: T1-T2 spectrum of CuSO4 doped water.

in this paper, BRDAIn seems to be an effective extension
of the existing algorithms for the inversion of 2D NMR
relaxometry data.
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