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Nested arrays have been studied recently in array signal processing field because of their closed-form expressions for the sensor
locations and achievable degrees of freedom (DOFs). In this paper, the concept of nesting is further extended to space-time adaptive
processing (STAP). Different from the traditional uniform-STAP method that calculates the clutter plus noise covariance matrix
(CNCM) and performs the STAP filter direct using the data snapshots collected from the uniform linear array (ULA) and the
transmitting pulses with uniform pulse repetition interval (PRI), we present a new optimum two-level nested STAP (O2LN-STAP)
strategy which employs an optimum two-level nested array (O2LNA) and an optimum two-level nested PRI (O2LN-PRI) to exploit
the enhancedDOFs embedded in the space-time O2LN structure. Similar to the difference coarray perspective, we first construct a
virtual space-time snapshot from the direct covariancematrix of the received signals.Then, a newCNCMestimation corresponding
to the virtual space-time snapshot can be computed by the spatial-temporal smoothing technique for STAP filter. Furthermore, the
comparative simulations and analyses with the traditional uniform-STAP and the recently reported coprime-STAP are carried out
to verify the effectiveness of the O2LN-STAP approach.

1. Introduction

Space-time adaptive processing (STAP) is an attractive tech-
nique for clutter suppression and target detection in the
airborne/spaceborne moving target indicator (MTI) radar
[1–3]. It is well known that the STAP performance is com-
monly relevant to the effective system degrees of freedom
(DOFs). For example, in contrast with the phased array
(PA) STAP radar composed of uniform linear array (ULA),
multiple-input-multiple-output (MIMO) STAP radar ismore
potential to detect a slow-moving weak target since the
MIMO radar can gain larger DOFs due to its orthogo-
nal transmitting waveforms [4]. However, these orthogonal
waveforms are generated by a number of extra waveform
control modules at the expense of design and control
complexities.

Considering the fact that the PA radar is widely used in
STAP applications, it is still valuable to find some valid ways
to increase its effective DOFs. Intuitively, the DOFs of the

PA radar with ULA and uniform pulse repetition interval
(PRI) can be simply increased by adding array elements and
transmitting pulses. However, there may exist some issues for
this uniform configuration. Firstly, the angle-Doppler ambi-
guities are unavoidable. Secondly, the electronic counter-
countermeasures (ECCM) capabilities are restricted by the
uniform PRI [5]. Finally, it may be restricted by the large
number of microwave modules, analog-to-digital converter
(ADC)modules, and so on for the airborne radar applications
where the significant constraints of equipment weight, size,
hardware complexity, and power consumption are required
[6]. On the other hand, the PA radar with nonuniform
sparse (or thinned) array and PRI can provide an alternative
way to heighten the DOFs while overcoming these issues
[5–9]. Nevertheless, the methods with nonuniform sparse
PRI require sparse recovery (SR) technique that has high
computational complexity [5, 8]. The STAP method in [7]
does not use the SR technique, but it cannot avoid the
typically high-average angle-Doppler side-lobe levels caused
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by randomly spaced sparse array and PRI [6, 9], which
deteriorates the STAP performance of clutter suppression.

It is noted that the aforementioned approaches are all
based on the physical nonuniform sparse antenna arrays.
Actually, the virtual difference coarray concept with DOFs
superiority has also been introduced into the nonuniform
array signal processing domain. In the past years, this
concept, which is able to reduce the average angle-Doppler
side-lobe levels of the nonuniform sparse array without the
usage of SR technique, has been applied to the direction-
of-arrival (DOA) estimation and the spatial beamforming.
According to the array geometry, we classify those methods
for exploiting the enhanced DOFs by use of the difference
coarray perspective into three categories. The first one is
based on the minimum redundancy array (MRA) [10]. It
is shown that the DOFs of the MRA can be improved by
constructing an augmented covariance matrix which is not
positive semidefinite for finite number of snapshots [11, 12].
And in [13, 14], a transformation of this augmented matrix
into a suitable positive definite Toeplitz matrix is suggested
and an elaborate algorithm is presented to construct this
Toeplitz matrix. Nevertheless, this class of approaches has
two issues. One is that, for MRA, there are no closed-form
expressions for the array geometry and the achievable DOFs
for a given number of sensors, and the optimum design of
such arrays is always complicated [15, 16]. Another issue is
that the algorithm for searching an appropriate augmented
covariance matrix for a large array is a complex iterative
procedure, which converges only to a local optimum [13, 14].
Moreover, the second class of methods about the difference
coarray is related to the recently developed coprime arrays,
which have received much attention since they can be formu-
lated more easily than the MRAwhile resolving more sources
than the number of sensors [17, 18]. In [19], performances
of a generalized coprime array have been evaluated by use
of their difference coarray equivalence, and this generalized
coprime array has been applied to DOA estimation with
both subspace-basedmethod and sparse reconstruction tech-
nique. A new approach for passive beamforming and target
detection using coprime array is also presented in [20], which
can get the developments of peak side-lobe ratio and the inte-
grated side-lobe ratio without giving rise to “ghost” targets in
the presence of multiple interferers. Another multifrequency
operation with coprime array is presented in [21] for increas-
ing the number of resolvable sources in high-resolution DOA
estimation. The authors employ multiple frequencies to fill
the missing coarray elements, thereby enabling the coprime
array to utilize all of the offered DOFs effectively. Finally, the
techniques for further exploiting the increased DOFs using
nested arrays [22, 23] can be regarded as the third class of
difference coarray methods. An effective nested array design
scheme can yield a fourth-order difference coarray to provide
a higher number of DOFs for DOA estimation [24]. Another
application for DOA estimation of the distributed sources
with nested arrays has been studied in [25]. To use the nested
array for wideband case, authors in [26] have proposed an
effective strategy to apply the processing algorithm of nested
array to each frequency component, and the whole spectral
information of various frequencies has been cooperated to

conduct the detection and estimation. Nested array has also
been extended to MIMO radar for DOA estimation [27, 28].

In recent years, the difference coarray perspective has
been considered as an effective approach to increase the
system DOFs for STAP applications. To acquire more DOFs,
authors in [29] have arranged the array geometry and the
temporal sample interval to make the location of joint
space-time samples satisfy minimum redundancy interval.
However, this STAP algorithm is limited to a time-consuming
procedure of computer searching. Moreover, a new STAP
strategy for the airborne radar with space-time coprime sam-
pling structure (which is referred to as coprime-STAP in the
following) has been discussed in [30–32]. It is demonstrated
that, using few array elements and transmitting pulses, the
coprime-STAPmethod can achieve comparable performance
with respect to the case of large ULA and great many pulses
with uniform PRI. Additionally, a fully STAP with nested
array is also presented in [33], where a high resolution in
angle-Doppler plane is obtained. However, to complete this
full STAP, the spatial and Doppler frequencies of all jamming
and clutter sources need to be priorly known.

Inspired by the nesting concept in the spatial dimen-
sion, we think that using PRI with nested time interval
might also obtain an increase of DOFs in the temporal
(or Doppler) dimension. Therefore, following the difference
coarray perspective, we have applied an optimum two-level
nested STAP (O2LN-STAP) strategy to improve the STAP
performance in this paper. Different from the traditional
uniform-STAP method that calculates the clutter plus noise
covariance matrix (CNCM) and performs the STAP filter
direct using the received data collected from the physical
ULA with uniform PRI, the STAP strategy shown in this
paper presents a novel processing idea with an optimum
two-level nested array (O2LNA) and an optimum two-
level nested PRI (O2LN-PRI). In our proposed method,
we first construct a virtual space-time snapshot from the
direct covariance matrix of the received signals. The virtual
snapshot can be seen as the collection of the returned signals
from a virtual large ULA and a large number of transmitting
pulses with uniform PRI. Then, using the spatial-temporal
smoothing approach [22], a new CNCM estimation of the
virtual space-time snapshot can be computed for STAP filter.
Remarkably, the existing coprime-STAP method, which is
also considered in the virtual difference coarray domain,
can get more DOFs than the traditional uniform-STAP that
is implemented on the physical array and pulses. However,
simulation results and comparative analyses in the following
have indicated that the O2LN-STAP method can obtain
more DOFs than both the traditional uniform-STAP and the
coprime-STAP under the constraint of the same number of
physical array elements and transmitting pulses, whichmakes
a higher angle-Doppler resolution, lower side-lobe levels,
larger signal-to-interference-plus-noise ratio (SINR), and
better minimum detectable velocity (MDV) performances.
On the other hand, for a specified number of DOFs and SINR
level, the O2LN-STAP method can reach them with fewer
physical array elements and transmitting pulses (i.e., less
hardware complexity and power consumption) in contrast
with the traditional uniform-STAP and the coprime-STAP.
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Figure 1: A two-level nested array and its difference coarray. (a) A two-level nested array with 3 sensors in each level. (b)The corresponding
difference coarray.

The remainder of this paper is organized as follows.
Section 2 introduces the nesting concept of array and PRI.
The formulation of the O2LN-STAP strategy is deduced in
Section 3. Section 4 gives simulation results and discussions
to verify the effectiveness of theO2LN-STAPmethod. Finally,
conclusion is presented in Section 5.

2. Nesting Concept of Array and PRI

2.1. Nested Array. We first briefly describe the nested array
geometry in this subsection, and more details about it
can be found in [22]. The nested array geometry can be
generated very easily in a systematic fashion and we can
exactly predict the DOFs of its difference coarray for a given
number of sensors. Moreover, using this nested structure,
it is indeed possible to generate 𝑂(𝑁2) DOFs from 𝑂(𝑁)
physical elements. The basic nesting strategy can generate a
two-level nested array (2LNA) whose difference coarray is
a filled ULA [22]. Though the idea of nesting is easy to be
extended to higher dimensions, the nested arrays beyond two
levels fail to produce an ULA difference coarray only using a
second-order statistics of the received data [22]. Of course, it
is also possible to produce a virtual filled ULA if we consider
a higher-order statistics (e.g., the fourth-order cumulant)
for the nested arrays beyond two levels [24]. However,
using higher-order statistics usually brings hardly acceptable
computational burden, which is not appropriate for practical
applications. Considering that so many conventional array
processing methods (such as beamforming algorithms) are
based on the ULA, we prefer to deal with those signal
processing issues in the ULA domain for simplicity and
feasibility. Therefore, we just focus on the 2LNA in this paper
since it can build a filled ULA with lower cost.

The 2LNA is basically a combination of two ULAs. One
is called the inner ULA which has𝑁1 elements with spacing𝑑𝑖𝑛. Another is named the outer ULA which has𝑁2 elements
with spacing 𝑑𝑜𝑢𝑡 such that 𝑑𝑜𝑢𝑡 = (𝑁1+1)𝑑𝑖𝑛. In other words,
it is a linear array with sensor locations given by the union of
sets

𝑆𝑖𝑛 = {𝑛𝑖𝑛𝑑𝑖𝑛, 𝑛𝑖𝑛 = 0, 1, . . . , 𝑁1 − 1} (1a)

and

𝑆𝑜𝑢𝑡 = {𝑛𝑜𝑢𝑡 (𝑁1 + 1) 𝑑𝑖𝑛 − 𝑑𝑖𝑛, 𝑛𝑜𝑢𝑡 = 1, . . . , 𝑁2} . (1b)

Obviously, the total number of 2LNA is 𝑁 = 𝑁1 + 𝑁2.
Figure 1(a) illustrates a 2LNA with 𝑁1 = 𝑁2 = 3 and

𝑑 = 𝑑𝑖𝑛, which is similar to the union of the transmitting and
the receiving arrays of the MIMO radar and uses the same
number of sensors.

Next, let us recall the definition of difference coarray
[22]. Considering an array ofN sensors, with p𝑖 denoting the
position vector of the ith sensor, a set is defined as

𝐷 = {p𝑖 − p𝑖} , 𝑖 = 1, 2, . . . , 𝑁; 𝑖 = 1, 2, . . . , 𝑁. (2)

We also define a set𝐷𝑢 which consists of the distinct elements
of the set D. Then, the difference coarray of a given physical
array can be defined as a virtual array which has sensors
located at the positions given by the set 𝐷𝑢. The difference
coarray of the 2LNA presented in Figure 1(a) is shown in
Figure 1(b). Note that the difference coarray of a 2LNA is a
filledULAwith �̂� = 2𝑁2(𝑁1+1)−1 elementswhose positions
are provided by the set

𝑆𝑐𝑜 = {𝑛𝑐𝑜𝑑𝑖𝑛, 𝑛𝑐𝑜 = −𝑁𝑐𝑜, . . . ,𝑁𝑐𝑜, 𝑁𝑐𝑜 = 𝑁2 (𝑁1 + 1)
− 1} (3)

where 𝑛𝑐𝑜 is an integer. Itmeans thatwe can get 2𝑁2 (𝑁1+1)−1
virtual elements (i.e., DOFs) in the coarray domain using only𝑁1 + 𝑁2 physical elements. In order to maximize the total
DOFs of the coarray, authors in [22] have offered the optimal
solutions of𝑁1 and𝑁2 for the expression �̂� = 2𝑁2(𝑁1+1)−1
under the constraint of fixed total number of array sensors
(i.e.,𝑁 = 𝑁1 + 𝑁2 is fixed), which can be given as follows.

Proposition 1. When N is an even integer, the optimal solu-
tions are𝑁1 = 𝑁2 = 𝑁/2; the corresponding maximum value
of �̂� (i.e., DOFs) is (𝑁2 − 2)/2 + 𝑁.

Proposition 2. When N is an odd integer, the optimal solu-
tions are𝑁1 = (𝑁−1)/2 and𝑁2 = (𝑁+1)/2; the corresponding
maximum value of �̂� (i.e., DOFs) is (𝑁2 − 1)/2 + 𝑁.

In the following contexts, we call the two-level nested
array that satisfies Proposition 1 or Proposition 2 as the
optimum two-level nested array (O2LNA).

2.2. Nested PRI. The nesting concept in array design can also
be applied to PRI design for exploiting the enhanced DOFs
in temporal (Doppler) dimension. Generally speaking, just
using the parameter of time interval to replace the parameter
of array element spacing defined in the nested array, we can
still determine and analyze the property of the nested PRI.
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Figure 2: Transmitting pulses in a CPI with two-level nested PRI and its difference copulses. (a) A two-level nested PRI with 3 pulses in each
level. (b)The corresponding difference copulses.

Specifically, we just describe the two-level nested PRI (2LN-
PRI) in short due to the space limitation of this article. We
assume that 𝑀 = 𝑀1 + 𝑀2 transmitting pulses with 2LN-
PRI are received in a coherent processing interval (CPI) for
each range gate, where𝑀1 and𝑀2 have analogous meanings
with 𝑁1 and 𝑁2, respectively. Like the construction of the
2LNA, the 2LN-PRI is also a combination of two uniform
PRIs with constant time intervals 𝑇𝑖𝑛 and 𝑇𝑜𝑢𝑡 = (𝑀1 + 1)𝑇𝑖𝑛,
respectively. Then, the pulse position can be given by the
union of sets

𝑄𝑖𝑛 = {𝑚𝑖𝑛𝑇𝑖𝑛, 𝑚𝑖𝑛 = 0, 1, . . . ,𝑀1 − 1} (4a)

and

𝑄𝑜𝑢𝑡 = {𝑚𝑜𝑢𝑡 (𝑀1 + 1)𝑇𝑖𝑛 − 𝑇𝑖𝑛, 𝑚𝑜𝑢𝑡 = 1, . . . ,𝑀2} . (4b)

Figure 2(a) presents an example of 2LN-PRI in a CPI with𝑀1 = 𝑀2 = 3 and 𝑇 = 𝑇𝑖𝑛.
Similar to the definition of difference coarray, we give a

definition of difference copulses herein. Considering a CPI
with M pulses, using q𝑗 denoting the timing position of the
jth pulse, a set is defined as

𝐺 = {q𝑗 − q𝑗} , 𝑗 = 1, 2, . . . ,𝑀; 𝑗 = 1, 2, . . . ,𝑀. (5)

Also defining a set 𝐺𝑢 which consists of the distinct elements
of the setG, the difference copulses of the physical pulses in a
CPI can be defined as a number of virtual pulseswhose timing
positions are given by the set 𝐺𝑢. For instance, Figure 2(b)
shows the difference copulses corresponding to Figure 2(a).
Note that the difference copulses of a 2LN-PRI in a CPI have�̂� = 2𝑀2(𝑀1+1)−1 pulses with uniform PRI.The positions
of those copulses are provided by the set

𝑄𝑐𝑜 = {𝑚𝑐𝑜𝑇𝑖𝑛, 𝑚𝑐𝑜 = −𝑀𝑐𝑜, . . . ,𝑀𝑐𝑜, 𝑀𝑐𝑜
= 𝑀2 (𝑀1 + 1) − 1} (6)

where 𝑚𝑐𝑜 is an integer. It means that we can get 2𝑀2(𝑀1 +1)−1 virtual pulses (i.e., DOFs) in the copulses domain using
only𝑀1 +𝑀2 physical pulses. Furthermore, substituting𝑀1,𝑀2, and M for 𝑁1, 𝑁2, and N in Propositions 1 and 2, we
can also construct an optimum two-level nested PRI (O2LN-
PRI), which will not be rewritten here for the limited length.

3. Two-Level Nested STAP Strategy

In this section, we further investigate the STAP with nested
array and nested PRI to exploit the increasing of DOFs for

improving STAP performance. We first present the STAP
signal model with 2LNA and 2LN-PRI in Section 3.1. And
then, in view of difference coarray and copulses perspectives,
the strategy for virtual space-time snapshot construction
is described in Section 3.2. Next, we employ the spatial-
temporal smoothing technique to estimate the virtual CNCM
matching to the virtual space-time snapshot in Section 3.3. At
last, STAP filter based on the virtual snapshot and the virtual
CNCM estimation is illustrated in Section 3.4.

3.1. STAP Signal Model with 2LNA and 2LN-PRI. Consider
a side-looking radar that consists of a 2LNA with 𝑁 =𝑁1 + 𝑁2 identical antenna elements whose locations can be
determined by the union of sets 𝑆𝑖𝑛 and 𝑆𝑜𝑢𝑡. But herein,
denoting 𝜆 as the radar wavelength, we can rewrite the union
as a new set 𝑆 = {𝑛𝑑, 𝑛 = 0, 𝑛1, 𝑛2, . . . , 𝑛𝑁−1}, where 𝑑 =𝑑𝑖𝑛 = 𝜆/2. We name d the basic array spacing parameter
of the 2LNA in this paper. In the same way, we assume that𝑀 = 𝑀1+𝑀2 transmitting pulses with 2LN-PRI are received
in a CPI for each range gate, where the pulse locations can be
determined by the union of sets 𝑄𝑖𝑛 and 𝑄𝑜𝑢𝑡. For simplicity,
we also represent the pulse positions using a new set 𝑄 ={𝑚𝑇, 𝑚 = 0,𝑚1, 𝑚2, . . . , 𝑚𝑀−1}, where 𝑇 = 𝑇𝑖𝑛 is named the
basic PRI parameter of the 2LN-PRI in this paper.

According to this radar configuration, the spatial steering
vector can be given by

a (𝑓𝑠) = [1, 𝑒𝑗2𝜋𝑓𝑠𝑛1 , . . . , 𝑒𝑗2𝜋𝑓𝑠𝑛𝑁−1]𝑇 (7)

where [∙]𝑇 denotes the transpose operation and 𝑓𝑠 is the
spatial frequency which is given by

𝑓𝑠 = 𝑑 sin (𝜃)
𝜆 (8)

where 𝜃 is the angle of arrival (AOA). At the same time, the
Doppler steering vector b(𝑓𝑑) can be written as

b (𝑓𝑑) = [1, 𝑒𝑗2𝜋𝑓𝑑𝑚1 , . . . 𝑒𝑗2𝜋𝑓𝑑𝑚𝑀−1]𝑇 (9)

where 𝑓𝑑 is the normalized Doppler frequency given by

𝑓𝑑 = 2V sin (𝜃) 𝑇
𝜆 = 𝛽𝑓𝑠 (10)

where 𝛽 = 2V𝑇/𝑑 and v is the relative velocity between the
moving radar platform and the signal source from direction
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𝜃. 𝑇 = 𝑇𝑖𝑛 denotes the basic PRI parameter of the 2LN-PRI.
Then, the space-time steering vector k can be expressed as

k (𝑓𝑠, 𝑓𝑑) = b (𝑓𝑑) ⊗ a (𝑓𝑠) (11)

where ⊗ denotes the Kronecker product.
Suppose that𝑁𝑐 clutter patches are uniformly distributed

among the angles from 0 degrees to 360 degrees in a
fixed range bin. We denote 𝛼𝑖,𝑓𝑖𝑠𝑐, and 𝑓𝑖𝑑𝑐 as the complex
amplitude, the spatial frequency, and the normalized Doppler
frequency of the ith clutter patch, respectively. The received
signal x𝑐, which contains clutter c plus noise n, can be
expressed by

x𝑐 = c + n = 𝑁𝑐∑
𝑖=1

𝛼𝑖b (𝑓𝑖𝑑𝑐) ⊗ a (𝑓𝑖𝑠𝑐) + n = 𝑁𝑐∑
𝑖=1

𝛼𝑖k𝑐𝑖 + n

= 𝑁𝑐∑
𝑖=1

c𝑖 + n

(12)

where k𝑐𝑖 = k(𝑓𝑖𝑠𝑐, 𝑓𝑖𝑑𝑐) = b(𝑓𝑖𝑑𝑐) ⊗ a(𝑓𝑖𝑠𝑐) and c𝑖 denote
the space-time steering vector and the returned signal of
the ith clutter patch, respectively. It is assumed that the
clutter patches aremutually uncorrelated, and then the clutter
covariance matrix (CCM) corresponding to the physical
array and pulses can be given by [1–3]

R𝑐 =
𝑁𝑐∑
𝑖=1

𝐸 [c𝑖c𝐻𝑖 ] =
𝑁𝑐∑
𝑖=1

𝜎2𝑖 k𝑐𝑖k𝐻𝑐𝑖 = V𝑐PV𝑐
𝐻 (13)

where V𝑐 = [k𝑐1, k𝑐2, . . . , k𝑐𝑖, . . . , k𝑐𝑁𝑐] is the clutter space-
time steering matrix, 𝜎2𝑖 = 𝐸[|𝛼2𝑖 |] denotes the power of the
ith clutter patch, P = diag([𝜎21 , 𝜎22 , . . . , 𝜎2𝑁𝑐]𝑇) is a diagonal
matrix, [∙]𝐻 is the conjugate transpose operation, and 𝐸[∙]
indicates the expectation operator. Additionally, the noises
are also assumed to be mutually uncorrelated, and then the
noise covariance matrix R𝑛 is described as

R𝑛 = 𝜎2𝑛I𝑀𝑁 (14)

where 𝜎2𝑛 is the noise power and I𝑀𝑁 is an 𝑀𝑁 × 𝑀𝑁
identity matrix. Then, in the assumption that the clutter is
independent of the noise, the CNCM can be given by

R𝑢 = 𝐸 [x𝑐x𝐻𝑐 ] = V𝑐PV𝑐
𝐻 + 𝜎2𝑛I𝑀𝑁 = R𝑐 + R𝑛. (15)

We call this CNCM as the traditional CNCM in order to
distinguish it from the virtual CNCM that will be presented
in the later contents.

As is well known, denoting 𝑓𝑠𝑡 and 𝑓𝑑𝑡 as the spatial
frequency and the normalized Doppler frequency of an
interesting target, the traditional optimum adaptive filter
weights of STAP can be given by [1]

w = R−1𝑢 k𝑡
√k𝐻𝑡 R−1𝑢 k𝑡

(16)

where k𝑡 = k(𝑓𝑠𝑡, 𝑓𝑑𝑡) = b(𝑓𝑑𝑡)⊗a(𝑓𝑠𝑡) denotes the space-time
steering vector of the interesting target and R−1𝑢 denotes the
inverse matrix of R𝑢. The term (k𝐻𝑡 R−1𝑢 k𝑡)1/2 is set to satisfy
the constant false alarm rate (CFAR) property. In addition,
the traditional optimum output SINR can be given by [3]

𝑆𝐼𝑁𝑅 = 𝜎2𝑡 k𝐻𝑡 R−1𝑢 k𝑡 (17)

where 𝜎2𝑡 denotes the target power.
However, the true traditional CNCM is commonly

unknown and needs to be estimated by the MLE approach
using the training samples, which is given by [3]

R̃𝑢 = 1
𝐾X𝑐X

𝐻
𝑐 (18)

where R̃𝑢 is the estimation of the traditional CNCM, K
denotes the number of training samples, and X𝑐 indicates
the training sample matrix formed with the training sample
snapshots collected from K range cells.

3.2. Derivation of Virtual Space-Time Snapshot. An approach
to acquire virtual space-time snapshot was firstly reported
in [30] for coprime arrays. Herein, we employ a similar
process to derive the virtual space-time snapshot for the
2LNA with 2LN-PRI. Note that the term k(𝑓𝑠, 𝑓𝑑)k(𝑓𝑠, 𝑓𝑑)𝐻
can be rewritten as

kk𝐻 = [b (𝑓𝑑) ⊗ a (𝑓𝑠)] [b (𝑓𝑑) ⊗ a (𝑓𝑠)]𝐻
= [b (𝑓𝑑) b (𝑓𝑑)𝐻] ⊗ [a (𝑓𝑠) a (𝑓𝑠)𝐻] ,

(19)

owing to the property of (𝐴 ⊗ 𝐵)(𝐶 ⊗ 𝐷) = (𝐴𝐶) ⊗ (𝐵𝐷).
Moreover, the (p, q)th entry in a(𝑓𝑠)a(𝑓𝑠)𝐻 has the form

[a (𝑓𝑠) a (𝑓𝑠)𝐻]𝑝,𝑞 = 𝑒𝑗2𝜋𝑓𝑠(𝑛𝑝−𝑛𝑞) = 𝑒𝑗2𝜋𝑓𝑠𝑛𝑝𝑞 . (20)

We can observe that (20) actually reflects the difference
coarray of a 2LNA according to the definition in (2). Then,
for the considered 2LNAwhose difference coarray is an ULA
with �̂� elements, the set {𝑛𝑝𝑞, 𝑝, 𝑞 = 0, 𝑛1, ⋅ ⋅ ⋅ 𝑛𝑁−1} in (20)
should contain all integers from −𝑁𝑐𝑜 to𝑁𝑐𝑜 according to (3).
And we define a new set {𝑛} which consists of the distinct
elements of the set {𝑛𝑝𝑞}. Then, there exists an arrangement
that could convert a(𝑓𝑠)a(𝑓𝑠)𝐻 to a new spatial steering
vector â(𝑓𝑠), which is corresponding to a virtual ULA with
�̂� elements and 𝑛𝑑 spacing in the coarray domain. â(𝑓𝑠) can
be written as

â (𝑓𝑠) = [𝑒−𝑗2𝜋𝑓𝑠𝑁𝑐𝑜 , ⋅ ⋅ ⋅ 1, . . . , 𝑒𝑗2𝜋𝑓𝑠𝑁𝑐𝑜]𝑇 . (21)

Similarly, the (k, l)th entry in b(𝑓𝑑)b(𝑓𝑑)𝐻 takes the form
[b (𝑓𝑑) b (𝑓𝑑)𝐻]𝑘,𝑙 = 𝑒𝑗2𝜋𝑓𝑑(𝑚𝑘−𝑚𝑙) = 𝑒𝑗2𝜋𝑓𝑑𝑚𝑘𝑙 (22)

where the set {�̂�𝑘𝑙, 𝑘, 𝑙 = 0,𝑚1, ⋅ ⋅ ⋅ 𝑚𝑀−1} contains all
integers from −𝑀𝑐𝑜 to𝑀𝑐𝑜 in the condition of 2LN-PRI. Still
defining a new set {�̂�}which consists of the distinct elements
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of the set {�̂�𝑘𝑙}, the term b(𝑓𝑑)b(𝑓𝑑)𝐻 can be rearranged into
a new Doppler steering vector b̂(𝑓𝑑), which is corresponding
to �̂� virtual pulses with constant PRI �̂�𝑇 in a CPI and can
be expressed as

b̂ (𝑓𝑑) = [𝑒−𝑗2𝜋𝑓𝑑𝑀𝑐𝑜 , ⋅ ⋅ ⋅ 1, . . . , 𝑒𝑗2𝜋𝑓𝑑𝑀𝑐𝑜]𝑇 . (23)

Furthermore, it is noted that the expression (15) of CNCM
R𝑢 includes the term k𝑐𝑖k

𝐻
𝑐𝑖 .Thus, based on the analysis shown

from (19) to (23), it is possible to derive a virtual space-time
data snapshot corresponding to a virtual ULA and virtual
pulses with constant PRI from the expression (15). We can
extract the specified elements in the matrix R𝑢 to construct a
new �̂� × �̂�matrix Z such that

Z = 𝑁𝑐∑
𝑖=1

𝜎2𝑖 â (𝑓𝑖𝑠𝑐) b̂ (𝑓𝑖𝑑𝑐)𝑇 + 𝜎2𝑛e1e𝑇2 (24)

where e1 and e2 are �̂�×1 and �̂�×1 column vectors of all zeros
except a one at center position, respectively. Thus, a �̂��̂� × 1
virtual space-time snapshot of the clutter plus noise can be
got through vectoring (24), which can be expressed as

z = 𝑁𝑐∑
𝑖=1

𝜎2𝑖 b̂ (𝑓𝑖𝑑𝑐) ⊗ â (𝑓𝑖𝑠𝑐) + 𝜎2𝑛e2 ⊗ e1 =
𝑁𝑐∑
𝑖=1

𝜎2𝑖 k̂𝑐𝑖 + n̂

= ĉ + n̂

(25)

where k̂𝑐𝑖 = b̂(𝑓𝑖𝑑𝑐) ⊗ â(𝑓𝑖𝑠𝑐) denotes the virtual space-time
steering vector of the ith clutter patch. ĉ and n̂ indicate the
virtual clutter vector and the virtual noise vector, respectively.

Comparing (25) with (12), we can find that z behaves
like a virtual clutter plus noise signal collected from a virtual
ULA with �̂� elements and 𝑛𝑑 spacing in a virtual CPI with
�̂� uniform transmitting pulses with time intervals �̂�𝑇. But
the differences are that the amplitudes of the virtual clutter
patches are indeed the powers of the realistic clutter patches
and the virtual noise becomes a deterministic vector which is
also determined by the power of the realistic noise. Moreover,
it is noted that, under the constraints of 𝑁 = 𝑁1 + 𝑁2
and 𝑀 = 𝑀1 + 𝑀2, the inequalities that �̂� > 𝑁 and�̂� > 𝑀 are always maintained whatever the values of(𝑁1, 𝑁2) and (𝑀1,𝑀2) are. That is to say, the virtual space-
time snapshot z has an increased number of DOFs in contrast
with the physical one as shown in (12). Thus, it is attractive
to implement STAP on the virtual space-time snapshot z for
improving the performance of clutter suppression and target
detection. However, in view of the fact that z is just a single
snapshot, the corresponding CNCM estimation in term of
expression (18) is a rank-one matrix, which is hard to be used
to design the STAP filter [2, 3]. In order to build a full-rank
CNCM estimation, we make the spatial-temporal smoothing
technique operate on the virtual space-time snapshot to get
a virtual CNCM estimation for STAP filter. The detailed
process will be presented in Section 3.3.

3.3. Derivation of Virtual CNCM Estimation. For applying
the spatial-temporal smoothing technique, the data matrix

0

0

…
…

…
…

…… ……

Z,

Z

Z0,0





(N − 1)

−(N − 1)

(M − 1)−(M − 1)

Figure 3: Partition strategy of the virtual space-time snapshot.

Z should be divided into 𝑀𝑁 number of submatrixes, each
with size𝑁 ×𝑀, where𝑁 = 𝑁2(𝑁1 + 1) and𝑀 = 𝑀2(𝑀1 +1). The partition strategy is illustrated in Figure 3, and the
submatrix can be defined as

Z𝜌,𝛾 =
𝑁𝑐∑
𝑖=1

𝑒−𝑗(𝜌𝑓𝑖𝑠𝑐+𝛾𝑓𝑖𝑑𝑐)𝜎2𝑖 a (𝑓𝑖𝑠𝑐) b (𝑓𝑖𝑑𝑐)𝑇 + 𝜎2𝑛e1,𝜌e𝑇2,𝛾 (26)

where𝜌 = 0, 1, . . . ,𝑁−1, 𝛾 = 0, 1, . . . ,𝑀−1, e1,𝜌 is a subvector
constructed from the (𝑁 − 𝜌)th entry to the (2𝑁 − 1 − 𝜌)th
entry of e1, e2,𝛾 is a subvector constructed from the (𝑀−𝛾)th
entry to the (𝑀−𝛾) th entry of e2, a(𝑓𝑖𝑠𝑐) is the spatial steering
vector corresponding to a virtual sub-ULA with 𝑁 elements
and basic spacing d, and b(𝑓𝑖𝑑𝑐) is the Doppler steering vector
corresponding to 𝑀 virtual pulses in a sub-CPI with basic
PRI parameter T.

Then, we can define a new covariance matrix via spatial-
temporal smoothing approach as follows:

R𝑠 = 1
𝑀𝑁
𝑁−1∑
𝜌=0

𝑀−1∑
𝛾=0

z𝜌,𝛾z
𝐻
𝜌,𝛾 (27)

where z𝜌,𝛾 = vec(Z𝜌,𝛾) and vec(∙) means to transform a
matrix into a column vector. It is noted that R𝑠 is a Hermitian
positive semidefinite matrix of size 𝑀𝑁 × 𝑀𝑁. Following
the same proof process of Theorem 2 in [22] or Theorem 3 in
[34], the expression (27) can be reformulated as

R𝑠 = 1
𝑀𝑁R2𝑢 (28)

where

R𝑢 = V𝑐PV
𝐻

𝑐 + 𝜎2𝑛I𝑀𝑁 (29)

where V𝑐 = [k𝑐1, k𝑐2, . . . , k𝑐𝑁𝑐], k𝑐𝑖 = b(𝑓𝑖𝑑𝑐) ⊗ a(𝑓𝑖𝑠𝑐), and
P is the diagonal matrix which represents the powers of all
clutter patches as aforementioned in Section 3.1. Then, like
the expression (15), R𝑢 can be exactly viewed as the virtual
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CNCM estimation of the signals received from a virtual sub-
ULA with 𝑁 antenna elements and 𝑀 virtual transmitting
pulses in a sub-CPI with constant PRI. k𝑐𝑖 is regarded as
another virtual space-time steering vector corresponding to
the sub-ULA and sub-CPI. On the other hand, it is hard to
calculate 𝑅𝑢 via (29) in practice because we can hardly get
the precise 𝑓𝑖𝑑𝑐, 𝑓𝑖𝑠𝑐, and 𝜎2𝑖 of the ith clutter patch direct from
the echoes to compute the matrixes V𝑐 and P. Contrarily,
since R𝑠 can be easily computed by a sum of vector outer
products with finite snapshots as presented in (27), R𝑢 is
suggested to be calculated by (28), which can be rewritten
as

R𝑢 = (𝑀𝑁R𝑠)1/2 (30)

Thus, as is described in Section 3.4, the matrix R𝑢 can
be employed as the CNCM estimation for O2LN-STAP
filter.

3.4. STAP Filter. Finally, we can perform the STAP filter
based on the virtual sub-ULA with 𝑁 antenna elements and
the𝑀 virtual transmitting pulses in a sub-CPI with constant
PRI.Then, the corresponding virtual optimum adaptive filter
weights can be given by

w = R−1𝑢 k𝑡
√k𝐻𝑡 R

−1

𝑢 k𝑡
(31)

where k𝑡 = b(𝑓𝑑𝑡) ⊗ a(𝑓𝑠𝑡) denotes the virtual target space-
time steering vector with respect to the sub-ULA and sub-
CPI and R−1𝑢 denotes the inverse matrix of R𝑢. Note that the
expression (31) is actually acquired by substituting R𝑢 and k𝑡
for R𝑢 and k𝑡 in (16), respectively. Additionally, the virtual
optimum output SINR corresponding to the sub-ULA and
sub-CPI can be written as

𝑉𝑆𝐼𝑁𝑅 = 𝜎2𝑡 k𝐻𝑡 R−1𝑢 k𝑡 (32)

Significantly, using the space-time two-level nested structure,
the final available DOFs for STAP filter are indeed equivalent
to𝑀𝑁 rather than �̂��̂�. Intuitively, we rewrite the value of
DOFs again as follows:

𝐷2−𝑛𝑒𝑠𝑡𝑒𝑑 = 𝑀𝑁 = 𝑀2 (𝑀1 + 1) × 𝑁2 (𝑁1 + 1) (33)

Remarkably, though 𝑁 < �̂� and 𝑀 < �̂�, the inequalities
that 𝑁 ≥ 𝑁 and 𝑀 ≥ 𝑀 are still maintained under
the constraints of 𝑁 = 𝑁1 + 𝑁2 and 𝑀 = 𝑀1 + 𝑀2.
In other words, the available DOFs of the STAP with the
space-time two-level nested structure are still larger than
that of the traditional approaches. Using w for STAP filter
is able to get more DOFs than using w that is directly
derived from the physical antenna array and transmitting
pulses:

𝐷𝑜𝑝𝑡
2−𝑛𝑒𝑠𝑡𝑒𝑑

=

{{{{{{{{{{{{{{{{{{{{{{{{{

(𝑁 + 1)
4
2 × (𝑀 + 1)

4
2 𝑁 : 𝑜𝑑𝑑; 𝑀 : 𝑜𝑑𝑑; (𝑎)

(𝑁24 + 𝑁
2 ) × (𝑀24 + 𝑀

2 ) 𝑁 : 𝑒V𝑒𝑛; 𝑀 : 𝑒V𝑒𝑛; (𝑏)
(𝑁 + 1)

4
2 × (𝑀24 + 𝑀

2 ) 𝑁 : 𝑜𝑑𝑑; 𝑀 : 𝑒V𝑒𝑛; (𝑐)
(𝑁24 + 𝑁

2 ) × (𝑀 + 1)
4
2 𝑁 : 𝑒V𝑒𝑛; 𝑀 : 𝑜𝑑𝑑; (𝑑)

(34)

In particular, in the case of O2LNA and O2LN-PRI, the
maximum available DOFs can be given by expression (34),
which is able to generate 𝑂(𝑀2𝑁2) DOFs from 𝑂(𝑀𝑁)
physical elements.Then, the STAP strategy using O2LNAand
O2LN-PRI is referred to as O2LN-STAP.

4. Results and Discussion

In this section, numerical experiments and results are offered
to verify the theoretical derivations and compare the per-
formances of the O2LN-STAP with those of the traditional
uniform-STAP and the recently reported coprime-STAP.
We assume a side-looking airborne radar composed of an
O2LNA with 𝑁1 = 𝑁2 = 3 and an O2LN-PRI with 𝑀1 =𝑀2 = 3. Obviously, the total numbers of array elements
and transmitting pulses in a CPI are 𝑁 = 6 and 𝑀 = 6,
respectively. The carrier frequency is 10GHz, the basic PRI
is 𝑇 = 1/600𝐻𝑧, and the basic array element spacing is𝑑 = 𝜆/2. Without loss of generality, we set 𝛽 = 1 to avoid
temporal aliasing. There are 180 clutter patches uniformly
distributed in the forward area of the antenna array, which are
assumed to follow the zero-mean complex-valued Gaussian
distributions. The noise power is normalized to 0dB and the
clutter-to-noise ratio (CNR) is set to 30dB. It is assumed that
a target is located at angle 16.5 degrees, and its normalized
Doppler frequency is -0.27.

4.1. Smoothed Virtual CNCM Estimation. In STAP appli-
cations, the eigenspectrum is usually utilized to measure
the similarity of different covariance matrices. Herein, we
also employ it to validate the derivation of virtual CNCM
estimation from the spatial-temporal smoothing technique.
According to the simulation parameters, we can get that𝑁 =
12 and𝑀 = 12. We define a new matrix RV to represent the
theoretical CNCMof an ULAwith𝑁 elements and𝑀 pulses,
where the clutter space-time steering vectors and amplitudes
are both assumed to be priorly known. In other words, the
matrix RV is able to be calculated via (29). Thus, we compare
R𝑢, which is computed through (30), with RV and R𝑠 in terms
of their eigenspectra. Figure 4 depicts the comparative results.
According to the Brennan rule [3], the rank of RV should be
𝑁 + 𝛽(𝑀 − 1) = 23. And we can see from the figure that R𝑢
andR𝑠 have the same rank asRV. But the eigenvalues ofR𝑠 are
very different from the others, while the eigenvalues ofR𝑢 and
RV are nearly overlapped completely. Thus, we can see that
R𝑢 has the same eigenspectrum as RV. Therefore, on the basis
of these eigenspectra, we have demonstrated the theoretical
derivation of R𝑢, which is indeed matching to a virtual ULA
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Figure 4: Eigenspectra of different covariance matrices.

with 𝑁 antenna elements and 𝑀 virtual transmitting pulses
in a CPI with constant PRI, as is expressed in (29) and (30).

4.2. PerformanceComparisonwithTraditional Uniform-STAP.
As we know, the traditional uniform-STAP is commonly
based on the ULA with uniform PRI. In addition, we will
take another method named as direct-nested-STAP into
consideration too, which adopts the same direct processing
as the traditional uniform-STAP but acts on the physical
O2LNA and pulses with O2LN-PRI. In this subsection,
we compare the performance of the O2LN-STAP with the
traditional uniform-STAP and the direct-nested-STAP in two
different conditions: one is setting a fixed number of physical
array elements and transmitting pulses; another is setting a
fixed objective of DOFs.

(1) Setting a Fixed Number of Physical Array Elements and
Pulses. Firstly, we implement the comparison under the
restriction of fixed numbers of physical array elements N and
transmitting pulsesM.Without loss of generality, we suppose
that N and M are even numbers. For O2LN-STAP, we can
get that 𝑁1 = 𝑁2 = 𝑁/2 and 𝑀1 = 𝑀2 = 𝑀/2, as is
described inProposition 1. And the final availableDOFs value
for the O2LN-STAP is given by (34)(b). In contrast, it is well
known that the available DOFs of the traditional uniform-
STAP and the direct-nested-STAP are only equivalent to𝑀𝑁,
which is evidently much smaller than the value of (34)(b). For
example, fixing𝑁 = 6 and𝑀 = 6, the value of (34)(b) is 144,
but𝑀𝑁 equals to 36.

Furthermore, we study the normalized STAP filter output
response and the optimum output SINR performance to
illustrate the advantages of the O2LN-STAP in the case of
fixed number of array elements and transmitting pulses.
Figure 5 presents the normalized STAP filter output response
for the three different STAP strategies. Specifically, Figures
5(a), 5(b), and 5(c) are corresponding to the O2LN-STAP,
the traditional uniform-STAP, and the direct-nested-STAP,
respectively. It is observed that all of the three strategies can
form a deep notch at the clutter ridge and make a maximum
peak at the target position. Nevertheless, the side-lobe levels
and the angle-Doppler resolution of the O2LN-STAP are

better than those of the other two approaches owing to the
increased available DOFs of the O2LN-STAP. Moreover, the
direct-nested-STAP even shows much higher side-lobe levels
than the traditional uniform-STAP obviously. It is because
that though the direct-nested-STAP seems to utilize the
nested array and pulses too, it actually fails to construct a
larger virtual ULA and more virtual pulses with uniform
PRI.Thedirect-nested-STAP also just directly operates on the
physical nested array and pulses rather than takes advantage
of the difference coarray and copulses. Therefore, the sparse
property of the nested array and pulses results in the poor
side-lobe performance of the direct-nested-STAP.

In addition, in the condition of fixed number of array
elements and transmitting pulses, the optimum output SINR
curves against the target normalized Doppler frequency are
shown in Figure 6. The SINR curve of the O2LN-STAP
is derived from (32), and the others are from (17). It is
clear that the SINR of the O2LN-STAP in the nonclutter
regions is much higher than those of the traditional uniform-
STAP and the direct-nested-STAP owing to the enhanced
DOFs of O2LN-STAP. Moreover, the O2LN-STAP method
and the direct-nested-STAP both possess a narrower clutter
notch than the traditional uniform-STAP, which means an
improvement of MDV performance. However, in view of the
bad filter output response as shown in Figure 5(c), we do
not suggest to use the direct-nested-STAP for improving the
MDV performance in practice.

Note that almost all conventional STAP methods em-
ploy constant uniform PRI. But the electronic counter-
countermeasures (ECCM) capabilities are restricted by the
uniform PRI. Moreover, in contrast with the uniform PRI,
the two-level nested PRI approach can get a comparative
performance with the uniform PRI approach that has a
larger number of physical pulses. In other words, the two-
level nested PRI approach is potential to reduce the radar
probability of intercept owing to the low accumulation of
transmitting energy and time.Therefore, the two-level nested
PRI approach can get some advantages over the conventional
way in these aspects. On the other hand, the small number
of pulses ought to cause a performance decrease (e.g., the
decrease of Doppler resolution and high side-lobe levels in
temporal dimension) as shown in Figure 5(b). However, we
can obtain an increased number of virtual pulses via the
transformation described in Section 3 to offset the deficiency
of the physical pulses for performance improvements, as is
presented in Figure 5(a). Additionally, from the hardware
perspective, the conventional uniform PRI may be easier to
realize. Nevertheless, the two-level nested PRI approach is
also not hard to realize for the reason that the two-level nested
structure is actually thinned from the conventional uniform
one and close to the uniform structure; besides, it may get
several benefits in contrast with the conventional way.

With respect to the other situations that N and M are
not even integers, similar analysis procedures and simulation
results can also be carried out to confirm the effectiveness
of the O2LN-STAP, which will not be presented here on
account of the space limitation. In summary, we can draw
a conclusion that (which is referred to as conclusion 1 in the
following), given a fixed number of physical array elements
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Figure 5: Normalized STAP filter output responses in the case of fixed total number of array elements and transmitting pulses. (a) The
proposed O2LN-STAP. (b)The traditional uniform-STAP. (c)The direct-nested-STAP.
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and transmitting pulses, the O2LN-STAP can obtain more
DOFs than the traditional uniform-STAP and the direct-
nested-STAP, which improves the filter output response,
SINR and MDV performances.

(2) Setting a Fixed Objective of DOFs. In most of the STAP
applications, we prefer to achieve a fixed objective of DOFs
using as low cost as possible for performance improvement.
Remarkably, the converse of conclusion 1 means that the
O2LN-STAP needs fewer physical array elements and trans-
mitting pulses than the other two methods to achieve a
certain designated number of DOFs. Considering that the
direct-nested-STAP is not suitable for the practical applica-
tions due to its high side-lobe levels, we mainly focus on
the comparison between O2LN-STAP and the traditional
uniform-STAP in this subsection. For instance, if the objec-
tive of DOFs is set to 144, the O2LN-STAP can reach it with𝑁 = 𝑀 = 6, but the traditional uniform-STAP needs the
configuration of 𝑁 = 𝑀 = 12. Thereby, the O2LN-STAP
method is potential to save the hardware resource and reduce
the power consumption.

Furthermore, as is deduced in Section 3, we note that
the O2LN-STAP method originates from the traditional
CNCM R𝑢. However, the true traditional CNCM is com-
monly unknown and needs to be estimated by the MLE
approach using the training samples, as is described in (18).
The accuracy of the estimation of the traditional CNCM is
proportional to the ratio of the number of training samples
K to the product between the number of array elements and
the number of transmitting pulses (i.e.,MN) according to the
RMB rule [3]. It is also well known that, with the increase
of the number of training samples, the estimation error of
the traditional CNCM for small MN would converge to zero
more quickly than that for largeMN.Therefore, using CNCM
estimation to replace the true CNCM for STAP filter would
result in SINR loss due to the estimation error. Note that
the O2LN-STAP could achieve an objective of DOFs with
smaller MN than the traditional uniform-STAP. Hence, it
seems that the output SINR of the O2LN-STAPmay converge
to an identical optimum level more rapidly than that of the
traditional uniform-STAP since the O2LN-STAP employs
fewer physical array elements and transmitting pulses. That
is to say, it is supposed that the O2LN-STAP may achieve a
specific output SINRwith smaller number of training samples
than the traditional uniform-STAP, which is referred to as
supposition 1 in the following.

In order to further study this issue, we carry out an
experiment to analyze the convergence performance of the
output SINR versus the number of training samples by the
way of substituting the CNCMestimation for the true CNCM
R𝑢 to realize the deducing processing shown in Section 3 and
then get the corresponding estimations of R𝑠 and R𝑢 via (27)
and (30) for the final filter processing, respectively. Note that
we use the CNCM estimation in (18) that is actually acquired
by the sample matrix inverse (SMI) algorithm [1] and the
CNCM estimation calculated through principal components
(PC) technique [3] to replace the trueCNCMR𝑢 , respectively.
This experiment is applied to both the O2LN-STAP and the
traditional uniform-STAP for comparison. The results are
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Figure 7: Output SINR performances versus the number of training
samples.

provided in Figure 7. In the following, the term “using SMI
filter” is corresponding to the aforementioned SMI approach
and “using PC filter” is matching to the PC approach. The
objective SINR curve in the figure is actually the theoretical
upper bound of the output SINR corresponding to the
traditional uniform-STAP with 𝑁 = 𝑀 = 12. It can be
seen that the O2LN-STAP using SMI filter has not converged
to the objective SINR, while the others have reached it.
Additionally, the approaches using PC filter present better
convergence performance than those using SMI filter as
expected, since the PC algorithm utilizes the clutter subspace
technique to eliminate a part of cross correlation among
clutter patches and then lower the requirement for training
samples [3]. Moreover, the traditional uniform-STAP using
PC filter (or SMI filter) exhibits faster convergence property
and higher SINR in the case of a small number of training
samples than the O2LN-STAP using PC filter (or SMI filter),
which is not coincident with supposition 1 proposed in the
preceding paragraph. This is because that, for the O2LN-
STAP method, the estimation error of R𝑢 would propagate
throughout the additional procedures for the derivations of
virtual space-time snapshot and virtual CNCM estimation,
and the spatial-temporal smoothing process would also bring
about a new estimation error. Therefore, we need more
training samples to reduce this effect of error accumulation
that is not existent in the traditional uniform-STAP. But from
another point of view, we can see from Figure 7 that only
employing half of the array elements and transmitting pulses
of the traditional uniform-STAP, the O2LN-STAP using PC
filter can achieve the specified aim of SINR with a close
convergence performance to the traditional uniform-STAP
using PC filter. On the other hand, the O2LN-STAP using
PC filter still has a superior convergence performance than
the traditional uniform-STAP using SMI filter. It is because
that the requirement of sample numbers for PC technique
is less than that for SMI approach [3], which makes the
estimation error of R𝑢 for PC technique become smaller than
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Figure 8: Normalized STAP filter output responses with N = 6 array elements andM = 6 transmitting pulses. (a)The proposed O2LN-STAP.
(b)The coprime-STAP.

that for SMI approach. Therefore, using fewer array elements
and pulses, the O2LN-STAP is still potential to be used for
clutter suppression with less hardware complexity and power
consumption.

4.3. Performance Comparison with Coprime-STAP. As afore-
mentioned in the introduction section, the recently reported
coprime-STAP strategy can also achieve enhanced DOFs to
improve the STAP performance with low cost in contrast
with the traditional uniform-STAP [32]. In this subsection,
we will further compare the performance of the O2LN-STAP
with that of the coprime-STAP. Herein, the coprime-STAP
model used for analysis and simulation is identical with those
in [30, 32]. It is assumed that the spatial coprime array is
composed of two ULA with interelement spacing 𝑁1𝑑 and
𝑁2𝑑, respectively, where 𝑁1 and 𝑁2 are coprime integers
and satisfy 𝑁1 < 𝑁2. Meanwhile, we also assume that the
coprime PRI is a combination of two uniform PRIs denoted
as𝑀1𝑇 and𝑀2𝑇, where𝑀1 and𝑀2 are coprime integers and
satisfy 𝑀1 < 𝑀2. Then, there are 𝑁 = 𝑁2 + 2𝑁1 − 1 array
elements and M = 𝑀2 + 2𝑀1 − 1 pulses in a CPI in total for
coprime-STAP. According to [30], the final available DOFs of
the coprime-STAP can be given by

𝐷𝑐𝑜𝑝𝑟𝑖𝑚𝑒 = (𝑁1𝑁2 + 1) × (𝑀1𝑀2 + 1) . (35)

We also compare the performance of the O2LN-STAP
with the coprime-STAP in the two different conditions as
described in Section 4.2.

(1) Setting a Fixed Number of Physical Array Elements and
Pulses. We first make the comparison in the case of a
fixed number of physical array elements and transmitting
pulses. We give a new proposition with respect to 𝐷𝑐𝑜𝑝𝑟𝑖𝑚𝑒
and 𝐷𝑜𝑝𝑡

2−𝑛𝑒𝑠𝑡𝑒𝑑
under this situation, which is described as

Proposition 3 in the following.

Proposition 3. Under the constraint of the same number of
physical antenna array elements and transmitting pulses (i.e.,𝑁 = 𝑁, 𝑀 = 𝑀), the final available DOFs of the

O2LN-STAP𝐷𝑜𝑝𝑡2−𝑛𝑒𝑠𝑡𝑒𝑑 is larger than that of the coprime-STAP
𝐷𝑐𝑜𝑝𝑟𝑖𝑚𝑒 (i.e.,𝐷𝑜𝑝𝑡2−𝑛𝑒𝑠𝑡𝑒𝑑 > 𝐷𝑐𝑜𝑝𝑟𝑖𝑚𝑒), when𝑁 > 2 and𝑀 > 2.

Significantly, the conditions in Proposition 3 that 𝑁 >2 and 𝑀 > 2 are almost always met in the practical
applications. The detailed proof process can be found in
appendix. For example, fixing 𝑁 = 6 array elements and𝑀 = 6 transmitting pulses, the parameters of coprime-STAP
have to be set as𝑁1 = 𝑀1 = 2 and𝑁2 = 𝑀2 = 3 for achieving
a maximum value of DOFs, while the parameters of O2LN-
STAP are set as 𝑁1 = 𝑀1 = 3 and 𝑁2 = 𝑀2 = 3. Then, we
can get 𝐷𝑐𝑜𝑝𝑟𝑖𝑚𝑒 = 49 via (35), while 𝐷𝑜𝑝𝑡2−𝑛𝑒𝑠𝑡𝑒𝑑 = 144 through
(34)(b). Their normalized STAP filter output responses and
optimum output SINR curves are illustrated in Figures 8
and 9, respectively. It is clearly observed that, with the same
number of physical array elements and transmitting pulses,
the O2LN-STAP gains better angle-Doppler resolution, lower
side-lobe levels, higher SINR, and narrower clutter notch
(improved MDV performance) than the coprime-STAP.

(2) Setting a Fixed Objective of DOFs. We then compare the
performances in the situation of a fixed objective of DOFs.
Similar to the analysis in the previous subsection, it is noted
that Proposition 3 can be illustrated in another way. That
is to say, given a specified objective of DOFs, the O2LN-
STAP can reach it with fewer physical array elements and
transmitting pulses than the coprime-STAP. For example,
we first assume that there exists a virtual space-time system
consisting of a virtual ULA with 16 elements and 16 virtual
transmitting pulses with uniform PRI in a CPI (this virtual
space-time system is denoted as V-ULA-UPRI-16x16), whose
DOFs equal to 16 × 16 = 256. Then, in order to construct
an identical virtual space-time structure and obtain the same
DOFs as V-ULA-UPRI-16x16, we can employ the O2LN-
STAP with the configurations of 𝑁1 = 𝑀1 = 3, 𝑁2 =𝑀2 = 4, and 𝑁 = 𝑀 = 7. On the other hand, we have
to set 𝑁1 = 𝑀1 = 3, 𝑁2 = 𝑀2 = 5, and 𝑁 = 𝑀 =10 to reach the DOFs goal by use of the coprime-STAP.
Obviously, the O2LN-STAP can achieve the DOFs aim with
fewer physical array elements and transmitting pulses than
the coprime-STAP. In addition, as is reported in the literature
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[30, 32], the coprime-STAP method is also derived from the
traditional CNCM R𝑢. Hence, there also exists SINR loss due
to the estimation error when the true traditional CNCM is
replaced by its estimation in practice. Thus, based on the
CNCM estimation, we still further analyze the output SINR
performance versus the number of training samples for the
O2LN-STAP and the coprime-STAP. Considering that the
PC technique is more suitable for the sample-starved envi-
ronment than the SMI algorithm as aforementioned before,
we only use the PC technique to implement the practical
STAP filter for both O2LN-STAP and coprime-STAP in the
comparative simulation in this subsection. The results are

presented in Figure 10. The objective curve in the figure
is indeed the theoretical upper bound of the output SINR
corresponding to the V-ULA-UPRI-16x16 STAP system. We
can see that the O2LN-STAP and the coprime-STAP can
converge to the objective SINR level with different number of
training samples. Concretely, the O2LN-STAP exhibits faster
convergence property and higher SINR in the case of a small
number of training samples than the coprime-STAP. This is
because that the traditional CNCM for the O2LN-STAP has
smaller size than that for the coprime-STAP in the conditions
of 𝑁 = 𝑀 = 7 and 𝑁 = 𝑀 = 10, which makes the
requirement of training samples for estimating the small-size
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CNCM less than that for estimating the large-size CNCM,
according to the RMB rule. Therefore, in contrast with the
coprime-STAP, the O2LN-STAP is more potential for clut-
ter suppression with fewer training samples, physical array
elements, and pulses in the sample-limited heterogeneous
environment.

Finally, note that the key point of our research is focused
on how to enhance the DOFs based on the nested space-time
structure and illustrating the advantages of this structure.
All the comparative simulation results are carried out by
combining different space-time structures with common
STAP procedure including CCM estimation and angle-
Doppler filter. Then, the computational complexity is mainly
embedded in the STAP processing related toCCMestimation
or angle-Doppler filter, but neither in the nested space-time
structure nor in other contrastive structures. Hence, by ana-
lyzing the computational complexity of the algorithms with
respect to CCM estimation and angle-Doppler filter, one can
further discuss the computational complexity of the STAP
methods concerning the different space-time structures used
herein.

5. Conclusion

In this paper, we have considered the issue of STAP with
nested array and nested PRI for clutter suppression on the
airborne/spaceborne MTI radar and proposed an O2LN-
STAP strategy. The O2LN-STAP is capable of providing
enhanced available DOFs in the difference coarray and
copulses domains to further improve the STAP performance.
Simulation results have validated the theoretical derivations
of the proposed O2LN-STAP and revealed the following. (1)
Under the constraint of the same number of physical array
elements and transmitting pulses, the O2LN-STAP can offer
higher available DOFs than the traditional uniform-STAP
and the coprime-STAP, which makes an improved angle-
Doppler resolution, lower side-lobe levels, higher SINR,
and better MDV performance. (2) For achieving a specified
number of DOFs to improve the STAP performance, the
O2LN-STAP needs fewer number of physical array elements
and transmitting pulses than the traditional uniform-STAP
and the coprime-STAP, which reduces the hardware com-
plexity and power consumption. (3) The O2LN-STAP is
more potential for clutter suppression with fewer training
samples, physical array elements, and pulses in the sample-
limited heterogeneous environment than the coprime-STAP.
In addition, in contrast with the coprime-STAP, the enhanced
available DOFs and the improved performance of the O2LN-
STAP are obtained at the sacrifice of array mutual coupling
performance. Hence, the issue for reducing the mutual
coupling while holding the DOFs advantage of the nested
class of STAP method might be an interesting research work
in the future.

Appendix

Proof of the Proposition 3. Firstly, fix the total number of
physical array elements and transmitting pulses to N and

M, respectively. N and M are both positive integers. For the
O2LN-STAP, we have

𝑁 = 𝑁1 + 𝑁2,
𝑀 = 𝑀1 +𝑀2. (A.1)

Using the inequality of arithmetic mean and geometric mean
(AM-GM inequality), we can get that

𝑁2 (𝑁1 + 1) ≤ 𝑁22 + (𝑁1 + 1)22 , (A.2)

with equality if (and only if)𝑁2 = (𝑁1 + 1). Combining (A.1)
and the constraint that 𝑁1 and 𝑁2 should be both positive
integers, we can further obtain the maximum value of the
term𝑁2(𝑁1 + 1), which can be written as

for odd 𝑁, 𝐴1 = max {𝑁2 (𝑁1 + 1)} = (𝑁 + 1)2
4 , (A.3a)

for even 𝑁, 𝐵1 = max {𝑁2 (𝑁1 + 1)} = 𝑁2
4 + 𝑁

2 , (A.3b)

where𝑁1 and𝑁2 are computed by

for odd 𝑁,
𝑁1 = 𝑁 − 1

2 ,
𝑁2 = 𝑁 + 1

2 ,
(A.4a)

for even 𝑁, 𝑁1 = 𝑁2 = 𝑁
2 . (A.4b)

Following a similar deducing process, we can also obtain the
maximum value of the term𝑀2(𝑀1 + 1) given by

for odd 𝑀, 𝐴2 = max {𝑀2 (𝑀1 + 1)}
= (𝑀 + 1)2

4 , (A.5a)

for even 𝑀, 𝐵2 = max {𝑀2 (𝑀1 + 1)}
= 𝑀2

4 + 𝑀
2 , (A.5b)

where𝑀1 and𝑀2 are given by

for odd 𝑀,
𝑀1 = 𝑀 − 1

2 ,
𝑀2 = 𝑀 + 1

2 ,
(A.6a)

for even 𝑀, 𝑀1 = 𝑀2 = 𝑀
2 . (A.6b)

On the other hand, for the coprime-STAP, we have

𝑁 = 𝑁 = 2𝑁1 + 𝑁2 − 1,
𝑀 = 𝑀 = 2𝑀1 +𝑀2 − 1.

(A.7)
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Figure 11: Three different function values versus N. (a) Original curves. (b) Close-up of the original curves.

Still using the AM-GM inequality, we can get that

𝑁1𝑁2 + 1 ≤ 𝑁21 + 𝑁222 + 1, (A.8)

with equality if (and only if) 𝑁1 = 𝑁2. Now if we do
not consider the constraint that 𝑁1 and 𝑁2 should be both
integers, we can get themaximumvalue of𝑁1𝑁2+1 according
to (A.7) and (A.8), which is expressed as

𝐶1 = max {𝑁1𝑁2 + 1} = (𝑁 + 1)2
9 + 1, (A.9)

where𝑁1 and𝑁2 are given by

𝑁1 = 𝑁2 = 𝑁 + 1
3 (A.10)

Similarly, we can get themaximumvalues of𝑀1𝑀2+1, which
is written by

𝐶2 = max {𝑀1𝑀2 + 1} = (𝑀 + 1)2
9 + 1, (A.11)

where𝑀1 and𝑀2 are given by

𝑀1 = 𝑀2 = 𝑀 + 1
3 (A.12)

Note that 𝐴1, 𝐵1, and 𝐶1 can be seen as three different
function values with respect to the variable N. And their
function values versus the variable N are presented in
Figure 11. Figure 11(b) is the close-up of Figure 11(a). It is clear
that the values of𝐴1 and 𝐵1 are both larger than 𝐶1 when 2 <

𝑁 ≤ 20, and 𝐵1 is equivalent to𝐶1 when𝑁 = 2. Additionally,
it is noted that the second-order derivatives of 𝐴1, 𝐵1, and𝐶1 with respect to N are 1/2, 1/2, and 2/9, respectively. That is
to say, since the function values of 𝐴1 and 𝐵1 increase more
rapidly with the increasing ofN than that of 𝐶1, the curve 𝐶1
would no longer intersect the curves 𝐴1 and 𝐵1 after N = 20.
It means that the values of 𝐴1 and 𝐵1 are always larger than
that of𝐶1 when𝑁 > 2, which is not shown in Figure 11 due to
the space limitation. Similarly, we can also say that the values
of 𝐴2 and 𝐵2 are always larger than that of 𝐶2 when𝑀 > 2.

Furthermore, we rewrite the expression of 𝐷𝑜𝑝𝑡
2−𝑛𝑒𝑠𝑡𝑒𝑑

and𝐷𝑐𝑜𝑝𝑟𝑖𝑚𝑒 as follows:

𝐷𝑜𝑝𝑡
2−𝑛𝑒𝑠𝑡𝑒𝑑

=
{{{{{{{{{{{{{{{

𝐴1𝐴2 𝑁 : 𝑜𝑑𝑑; 𝑀 : 𝑜𝑑𝑑; (𝑎)
𝐵1𝐵2 𝑁 : 𝑒V𝑒𝑛; 𝑀 : 𝑒V𝑒𝑛; (𝑏)
𝐴1𝐵2 𝑁 : 𝑜𝑑𝑑; 𝑀 : 𝑒V𝑒𝑛; (𝑐)
𝐵1𝐴2 𝑁 : 𝑒V𝑒𝑛; 𝑀 : 𝑜𝑑𝑑; (𝑑) ,

(A.13)

𝐷𝑐𝑜𝑝𝑟𝑖𝑚𝑒 < 𝐶1𝐶2. (A.14)

Note that if we consider the constraint that 𝑁1 (or 𝑀1) and𝑁2 (or𝑀2) are coprime integers and𝑁1 < 𝑁2 (or𝑀1 < 𝑀2),
the conditions of (A.10) and (A.12) cannot be satisfied and the
maximum values of 𝐶1 and 𝐶2 cannot be even reached too,
which results in expression (A.14).Therefore, considering the
aforementioned analysis results that 𝐴1 > 𝐶1, 𝐵1 > 𝐶1 when𝑁 > 2 and𝐴2 > 𝐶2, 𝐵2 > 𝐶2 when𝑀 > 2, we can deduce the
conclusion that 𝐷𝑜𝑝𝑡

2−𝑛𝑒𝑠𝑡𝑒𝑑
> 𝐷𝑐𝑜𝑝𝑟𝑖𝑚𝑒 when𝑁 > 2 and𝑀 > 2

according to (A.13) and (A.14). Thus, Proposition 3 has been
proved.
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