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This article presents a novel approach to calculate and accelerate the Occupancy Grid Mapping (OGM) for real-time mobile robot
navigation.Here, we have improved themain process involved in the construction ofOGMs in twoways.On one hand, we propose a
newmethod to perform the camera calibration (CC) process, in which we reduce the number of intermediate steps (homographies)
when the reference system is transformed from the real world into a navigationmap, reducing consequently the computational costs.
On the other hand, the OGM is constructed by an online probabilistic method, which simultaneously performs both the camera
calibration and maps construction, thus reducing cumulative errors when these two processes are separately treated. Furthermore,
the proposed system can be easily parallelized and mapped onto a digital system (e.g., Field Programmable Gate Arrays, FPGAs)
for real-time robot navigation.

1. Introduction

Robot navigation is an important task that allows robots
to perform activities such as localization, path planning,
collision avoidance [1], and people finding [2]. Here, envi-
ronment modeling plays a key role and several methods have
been proposed, e.g., Occupancy Grid Mapping (OGM) [3],
Geometric Mapping (GM) [4], and Topological Mapping
(TM) [5], with the former being the predominant one. The
OGM method creates maps from environments which have
been sensed by either a sonar [3, 6] or a different sensor
such as laser range finder (e.g., Laser Imaging Detection
and Ranging (LIDAR)) [7–11], ultrasonic [12], radar [13], and
vision [14–18], as well as using a combination of them [19–24].
Thereby, any environment can be mapped using OGM-based
methods, albeit estimating the localization of a robot based on
its position and orientation in a mapped environment with a
high-resolution may require high computational costs [25].

Traditional OGM-based methods have some issues, such
as a wrong assignation of occupancy probabilities in maps

during the sensor readings, specially when its beam is
reflected over several surfaces and the beam may return or
not. Another problem occurs during themapping when grid-
elements’ probabilities reach a probability of 1 and further
sensor’s readings are not capable of changing them [26]. In
this work, two major contributions on the main processes
associated with OGM-based visual navigation systems; that
is, Camera Calibration (CC) and Occupancy Map construc-
tion are presented. In the former, we extract accurate metric
information [27, 28] from the environment, which serves
as input to generate the OGM and navigation system. On
the occupancy map construction, spatial representations of
the robot environment [2] are created by covering the plane
with repetitions of a particular regular polygon (tessellation
of the plane) [29] that stores a probabilistic estimation of
its state (empty or occupied). To the best of our knowledge,
these two processes are usually treated separately; thus, one
main contribution of this work is that such processes are
simultaneously implemented and performed to build up the
proposed OGM-based visual navigation system. The other
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main contribution of this work is regarding the CC method;
there are several CCmethods and different classifications (see
[30, 31] for comprehensive reviews), where its fundamental
operation is the homography, usually represented as a 3 × 3
matrix and denoted by𝐻 [32]. This is an invertible mapping
from a projective plane to itself such that three points lie
on the same line if and only if their mapped points are
also collinear [33, 34]. Herein, the proposed CC method
uses only two homographies, fewer than a traditional CC
method (four in most of the cases), thus reducing the high
computational costs and speeding up the process when the
OGM is calculated.

In Figure 1, we graphically highlight the improvements of
our approach to perform the CC process compared with a
traditional one. In such figure, red and green arrows corre-
spond to homography operations required by our approach
and those in traditional ones, respectively. Here, the CC
method allows associating points from the real-world’s {𝑊} to
grid-elements of the OGM {𝐺}. The traditional CC method,
green arrows labeled as TM (Traditional Method) from
1 to 4, calculates the homography 𝐻𝑤𝑟 transforming the
real-world’s reference system {𝑊} into the robot’s reference
system {𝑅} in the step TM1; next the step TM2 transforms
from robot’s reference system {𝑅} into camera’s reference
system {𝐶} by using the homography 𝐻𝑟𝑐; afterwards the
step TM3 transforms camera’s reference system {𝐶} into
the camera’s plane of the image {𝐼} (converting meters to
pixels) by means of homography 𝐻𝑐𝑓; finally, homography,
𝐻𝑓𝑚, transforms the camera’s plane of the image {𝐼} into
the OGM {𝐺} (see [30] for implementation details). The
proposed CC method, red arrows labeled as PM (Pro-
posed Method) from 1 to 2, is as follows: step PM1 trans-
forms from the real-world’s reference system {𝑊} into the
robot’s reference system {𝑅} by means of an homography
𝐻𝑤𝑟 and finally PM2 through a second homography 𝐻𝑟𝑚
directly transforms from the robot’s reference system {𝑅}
into the OGM {𝐺}; this is achieved by means of a partic-
ular experimental configuration of the calibration pattern
(chessboard-like proposed in [27]) and the camera sensor,
later explained.

The proposed system aims to tackle some of the main
problems associated to OGM-based visual navigation sys-
tems, such as CC methods being computational intensive
and there is a trade-off between the size and the resolution
of the grid, so that to fulfill the real time requirements
it is common practice to use a simplified inverse sensor
model that maps the measurements to the grid [24]; this
result affects the precision of the representation [35]. In the
proposal, the CC method and OGM construction are both
together treated and performed, contrary to most works
that commonly process them separately. Besides, the grid-
elements of OGM are generated from the calibration pattern
which favors to dispense sensor model generation and allows
to reduce cumulative errors derived from rounded values
of homographies. Besides, the system was designed to be
implemented on digital systems such as Field Programmable
Gate Arrays (FPGAs) to take advantage of their capabilities
to parallelize algorithms.

The rest of the paper is organized as follows: Section 2
presents some related works. Section 3 introduces the pro-
posed OGM-based visual navigation system including its
components and methods. Numerical experiments, config-
uration, and results are shown in Section 4. Finally, in
Section 6, conclusions of this work and future work are given.

2. Related Works

Maps are an interface for the visualization of environmental
data that allows the access to information and exploratory
activities [36]. In this regard, the OGM is a method for
modeling both indoor and outdoor environments through a
2D or 3D grid, in which each grid-element stores quantitative
information about the occupancy state (empty or occupied)
of the environment’s region it covers. The creation of an
OGM is not a trivial task, and it requires translation of
the data coming from sensors by means of sensory models
to make estimations about the status of the environment
being modeled [26]. The OGM method was introduced
in [3] and it consists of radar sensors and implements
two intermediate models to map the probabilities of empty
and occupied regions sensed from the environment; these
models are unified according to an updating rule where the
greater probability value from the same spatial grid-element
between two models is chosen to define the occupancy
state (unknown, empty, or occupied) of the corresponding
grid-element in the unified or global map. Later, in [37] a
modification to update the globalmapwas proposed, which is
based on Bayes Theorem. However, these two updating rules
have numerical issues when probabilities tend to extreme
values of 0 (empty) or 1 (occupied) [38]; this issue was
overcame by Thrun’s proposal, where the occupancy state of
each grid-element is calculated as the logarithmic value of
probability of being occupied divided by the probability of
being empty [39].

Since their creation the OGM methods have been the
dominant paradigm to model environments; nevertheless,
it is still a highly active research field. Several proposals to
generate OGMs using different kind of sensors have been
published, although recently most of researches have been
using visual sensors such as CCD and RGB-D cameras. Next
reviewed works are described.

The LIDAR sensors have been used in several works for
capturing environment information and modeling through
OGM. In [7], information is processed by assigning different
probabilistic functions to each occupied grid-element. A
Simultaneous Localization and Mapping (SLAM) task is
carried out in [8], and this is made through a binary Bayesian
filter as updating function, besides mutual information, to
predict the uncertainty degree of each grid-element. In [9], a
SLAM task is performed at hardware level by using genetic
algorithms and updating just the grid-elements along the
exploration area of the sensor. With the purpose of reducing
hardware requirements, in [10] there are several sensors
integrated that uniquely use integer arithmetic in order to
represent the probability of grid-elements. A novel sensor
model to map and detect moving objects is proposed in [11].
The LIDAR and radar sensors are used besides a Graphic
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Processing Unit (GPU) to generate maps and an approach
based on histograms is introduced for detection of highways
limits in [24].

Biological vision systems are a powerful tool to explore
and gather information from the environment.These systems
have inspired the development of vision cameras such as
CCD and RGB-D, which have been widely used for different
applications, e.g., obstacle detection and region segmentation
[40]. In [20], there are generated 3D probabilistic OGM for
the autonomous navigation of aerial vehicles. A system for
automatic driving of cars in highways is proposed in [14];
the system processes 2D and 3D images and uses disparity
maps to estimate the allowed highways sections to drive.
Problems with moving obstacles are studied in [16, 23];
these works used particle-based OGM to detect the objects;
each article has associated a position and velocity. In [17,
18], moving objects are detected through OGMs generated
by means of stereo vision and a sigmoid-function-based
updating rule. An automatic exploration method is proposed
in [21], and this is based on the entropy change in order to
avoid the future uncertainty in the map. Finally, in [19] a
SLAMtaskwas carried out bymeans of information extracted
from structural data from architectonic blueprints with the
purpose of seek and rescue applications.

Most of aforementionedworks implementThrun’s updat-
ing rule due its versatility to deal with a diversity of sensors.
Particularly, OGM-based visual navigation systems provide
a large quantity of information over the environment when
they perform a certain task, and this is why we decided
to design a specific updating rule that deals with such
kind of systems. Also, regarding the difference of traditional
OGM generation methods such as those proposed in [7–
11, 14, 16–19, 21, 23, 24] our proposal is capable of detecting
small obstacles. Albeit our paper presents advantages over
traditional OGM-based methods, its main drawback is the
long time it takes to process such amount of data.

3. OGM-Based Visual Navigation System

Our proposal is schematized in Figure 2. This is mainly
build up by three functional blocks, i.e., acquisition and
image enhancement (green block), camera calibration (yel-
low block), and OGM construction (blue block).

3.1. Acquisition and Image Enhancement (AIE). This block
provides the input images to CC and OGM construction
blocks of the system. This block is defined by two mod-
ules: the Camera Module that captures images from robot’s
environment and the Gamma Correction Module which
enhances the image’s contrast to be processed or handled
by further blocks. Figure 3(a) shows a sample of an original
image captured by the camera module and Figure 3(b) shows
the same image after enhancement with gamma correction
module. Next, each module is described.

3.1.1. Camera Module. In this work, we considered a highly
portable EVB1005 CCD camera from Opal Kelly, Fig-
ure 4(a), with the following technical specifications: an

Aptina MT9P031 5-Mpixel CMOS image sensor, 14 fps at full
resolution (2592 x 1944), 96 MHz pixel clock, 12-bit ADC
resolution. Also, this camera can be easily connected to a
ZEM4310 from Opal Kelly, which is based on the Altera
Cyclone IV FPGA (Figure 4(b)) for deployment of real-time
embedded robotic systems and high level IO communication.

3.1.2. Gamma Correction Module. In our approach, images
were captured in a noncontrolled environment by a camera
with a low aperture’s shutter; for this reason they present
illumination variations. Thus, to enhance the colorimetric
information of such images a gamma correction factor is
applied. The factor is given by the following equation:

𝑔 (𝑢) = 𝑢𝛾 (1)

where 𝑢 ∈ [0, 1] denotes the image pixel intensity and we
define the correction factor 𝛾 in 0.65 (see [41] for more
details).

3.2. Camera Calibration (CC). The CC block carries out the
namesake main process of OGM-based visual navigation
systems. Here, camera calibration is performed to extract
metric information [27, 28] and finally construct a grid
required to build the OGM for mobile robot navigation.
Figure 5 schematizes the chessboard-like pattern resulting
fromCC process.The CC block assigns an index to label each
pixel of an image according to the grid-element it belongs to
and counts how many pixels are in each grid-element. For
the herein proposed CC method, the camera sensor and the
calibration pattern (a black andwhite chessboard-like pattern
[27] with squares of size 10 × 10 cm) are prefixed; the camera
is set over the robot, while the calibration pattern is set on the
floor and in front of the camera; this configuration allows the
camera’s intrinsic parameters to be considered as constants.
Thus only𝐻𝑤𝑟 and𝐻𝑟𝑚 homography operations are required
to directly transform from real-world’s reference system {𝑊}
into the OGM {𝐺} instead of using several intermediates
homographies as a traditional CC method generally requires
(see Figure 1).

Despite the fact that the CC block has the highest
computational cost in the whole proposed system, the cal-
culations and data acquirement are performed once. Besides,
the proposal does not require to know the region that each
pixel occupies per geometric projection, but per each grid-
elements and the number of pixels and their spatial position
that it contains are required. The grid-elements closer to the
camera have a higher definition comparedwith those faraway.

The CC process is performed offline by the follow-
ing modules: Harris Corner Detector, Definition of Grid-
Element’s Components, and Grid-Element Pixel Counting.

3.2.1. Harris Corner Detector Module. It implements the
Harris algorithm [42] to detect corners in the captured and
enhanced images by the AIE module. This allows, either, to
add missed corners or to remove those wrongly detected.
The Harris’ algorithm returns the set of coordinates 𝑆 =
{(𝑥1, 𝑦1), . . . , (𝑥𝑁, 𝑦𝑁)} where the 𝑁 corners were detected.
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Figure 1: A comparative diagram showing the required homography operations in the traditional (green arrows) and proposed (red arrows)
CC methods (based on [30]).

Table 1: Rules for grid update of the global map.

Global map Local map Global map
Previous probability Current probability Current probability
𝑂𝑔𝑒𝐺𝑀(𝑘 − 1) 𝑂𝑔𝑒𝐿𝑀(𝑘 + 1) 𝑂𝑔𝑒𝐺𝑀(𝑘)
free free 𝑂𝑔𝑒𝐿𝑀(𝑘)
free unknown 𝑂𝑔𝑒𝐺𝑀(𝑘 − 1)
free occupied 𝑃𝑅 ∗ 𝑂𝑔𝑒𝐿𝑀(𝑘) + 𝑃ℎ ∗ 𝑂𝑔𝑒𝐺𝑀(𝑘 − 1)
occupied free 𝑃𝑅 ∗ 𝑂𝑔𝑒𝐿𝑀(𝑘) + 𝑃ℎ ∗ 𝑂𝑔𝑒𝐺𝑀(𝑘 − 1)
occupied unknown 𝑂𝑔𝑒𝐺𝑀(𝑘 − 1)
occupied occupied 𝑂𝑔𝑒𝐿𝑀(𝑘)
unknown free 𝑂𝑔𝑒𝐿𝑀(𝑘)
unknown unknown 𝑂𝑔𝑒𝐺𝑀(𝑘 − 1)
unknown occupied 𝑂𝑔𝑒𝐿𝑀(𝑘)

In Figure 6, the detected corners in the calibration pattern
are shown.

3.2.2. Definition of Grid-Element’s Components Module. In
thismodule, images are segmented in order to define the grid-
elements of the chessboard-like pattern. For this purpose, it is
necessary to group the grid corners of the calibration image in
rows and columns as shown in Figure 7, where the corners are
represented by yellow squares and organized in horizontal lines
(in blue) and vertical lines (in red). For each horizontal line, its
first elementwould be themost-left corner, whereas the upper
one in each vertical imaginary line would be considered the
first one. In the samemanner, grid-elements can be defined by
grouping rows and columns taking the first element similarly
as what has been made for imaginary lines. This module is
performed through the next four steps.

(1) Horizontal Corners Grouping. The objective is to
identify which corners of 𝑆 are part of the same
horizontal line. For this, the Euclidean distances
between the first corner of a horizontal line and
the subsequent corners are calculated, considering
only the components in the 𝑦-axis; that is, the pairs
of corners whose euclidean distance is less than a
heuristic value 𝑘 (see (2)):

𝑑 ((0, 𝑦𝑖) , (0, 𝑦𝑗)) < 𝑘

𝑖 = 1, . . . , 𝑁 − 1 and 𝑗 = 𝑖 + 1, . . . , 𝑁
(2)

(2) Vertex’s Grid-Element Estimation. To estimate the
vertices that conforms a grid-element, the first corner
from two contiguous horizontal lines must be in the
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Figure 2: Block diagram of the proposed OGM-based Visual
Navigation System.

same vertical line. This is verified by calculating and
comparing the Euclidean distances 𝑑1 and 𝑑2 (see
Figure 8); the former distance is calculated by using
the first corner 𝑆(1, 𝑟) on a horizontal line 𝑟 and the
first corner 𝑆(1, 𝑟 + 1) on the next horizontal line, and
then𝑑2 is calculated by using the second corner 𝑆(2, 𝑟)
and the same 𝑆(1, 𝑟 + 1). Besides, (3) is used to figure
out which detected corner is the left side of a grid-
element; that is, if the left side of equation is greater
than the right side then the left side of a grid-element
is in the same row 𝑟 rather than the corner 𝑆(1, 𝑟)
(see Figure 8(a)). Otherwise, the left side of a grid-
element is in the same column rather than the corner
𝑆(2, 𝑟) (see Figure 8(b)). This is used to identify grid-
elements through its conforming vertexes:

𝑑 (𝑆 (1, 𝑟) , 𝑆 (1, 𝑟 + 1)) < 𝑑 (𝑆 (2, 𝑟) , 𝑆 (1, 𝑟 + 1)) (3)

(3) Line Segments Definition. By using the two-point form
of the equation of a line, we define the segments
that form each grid-element; that is, the slope and 𝑦-
intercept point are calculated.

(4) Grid-Elements Labeling. Finally, each pixel is assigned
a label with the number of the grid that contains it.
Labeling is performed by evaluating the 𝑦-intercept

coordinates of the lines with the value in the 𝑥-
component position of the pixel. Then, the 𝑦-
intercept coordinate with the highest value is used to
determine the pixel’s position with respect to the four
sides of each calculated grid allowing finding out if the
pixel is contained in any grid; if so a label according
to the number of grid-element is assigned to the pixel;
otherwise a zero value is assigned.

The result of these four steps is shown in Figure 9; here we
can observe the chessboard-like pattern with the segmented
and labeled grid-elements marked with yellow color.

3.2.3. Grid-Element Pixel Counting Module. This module has
been designed to count the pixels of each grid-element over
the whole grid according to the last step in the Definition
of Grid-Element’s Components. The resulting information is
stored in a hash table and it is later used besides Imagen
Binarization module’s output in order that the POLM module
can estimate the occupancy probability of grid-elements. A
detailed description is presented in the next section.

3.3. Occupancy GridMaps Construction. The global mapping
corresponds to the exploration of the whole environment and
in turn is built up by several Probabilistic Occupancy Local
Maps (POLMs). In the beginning, an unknown environment
has a OGMwith a general occupancy probability that is equal
to 0.5, which corresponds to an unknown occupancy state for
all POLMs and its grid-elements, according to (4). To sense
an environment through a POGM that requires generating
several POLMs, thewhole process is as follows (see Figure 10).
The first step is performed by the Image BinarizationModule
which segments images captured in AIE block to distinguish
between floor and obstacles regions. Then, due to the lack of
knowledge about spatial and orientation information of the
current POLM and the general OGM, an odometry process
is performed as a second step. The Probabilistic Occupancy
Local Map module, in the third step, generates a partial map
according to the orientation of the camera, whichwill be used
to define and update the OGM. The fourth and last step is
the UpdateModule, which updates the OGM according to its
previous occupancy states and the current occupancy states
of its POLMs.Thesemodules serves to either create aOGMof
an unknown environment or update one previously mapped:

𝑂𝑆𝑔𝑒𝐺𝑀 (𝐾) =
{{{{
{{{{
{

empty 𝑂𝑔𝑒𝐺𝑀 < 0.5
unknown 𝑂𝑔𝑒𝐺𝑀 = 0.5
occupied 𝑂𝑔𝑒𝐺𝑀 > 0.5

(4)

3.3.1. Image Binarization Module. In this module, an image
coming from AIE module is segmented in two classes, which
correspond to either floor (class 0) or obstacle regions (class
1). This is achieved by using a linear classifier trained with a
gradient descent algorithm [43]. Here, each pixel is classified
in one of the two classes according to its neighborhood (a
3 × 3 window) information; from the window, mean and
standard deviation are also obtained and used by the classifier
as feature vector.
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(a) (b)

Figure 3: Input image correction. (a) Original captured image. (b) Contrast enhanced image.

(a) Camera sensor module (b) FPGA module

Figure 4: OpalKelly modules.

Figure 5: CC’s output: grid template of chessboard-like calibration
pattern.

3.3.2. Odometry Module. Robot’s navigation requires the
position and orientation of the robot according to its local
and global reference axe. This task is commonly achieved
through the odometry estimation method, which is based
on geometric equations that provide an estimation of robot’s
location by combining information obtained from wheel’s
encoders and actuators. This method is widely used because

Figure 6: Output of Harris Corner Detector Algorithm. The
detected corners are in yellow.

it only uses the robot’s kinematic model and the external
forces acting over the mechanism are not taken into account.
In our proposal, the odometry module provides the robot’s
position and orientationwhen an image is captured or during
navigation (see [38] for more details). This module provides
input to the Probabilistic Occupancy Local Map and Update
modules with respect to real-world’s reference system {𝑊}.
The orientation of the system is provided to the Probabilistic
Occupancy Local Map module, whereas the spatial position
is given to the Update one.
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Figure 7: Representation of calibration chessboard-like pattern’s
components.

3.3.3. Probabilistic Occupancy Local Map Module. In this
module, the Probabilistic Occupancy Local Maps (POLMs)
are generated; each map has a dimension of 31 × 31 grid-
elements (covering a surface of 3.1 × 3.1m in the real world).
To generate a probabilistic occupancy local map at time 𝑘, we
take the current image given by Image Binarization module
and the information of the grid generated in the CC block.
For each grid-element in the binarized image, pixels that were
classified as obstacles are counted and used together with
the quantity of pixels in the grid-element (obtained from
CC block) to calculate its occupancy probability 𝑂𝑔𝑒𝐿𝑀(𝑘) =
𝑜𝑏𝑗𝑒𝑐𝑡𝑃𝑖𝑥𝑒𝑙𝑠/𝑝𝑖𝑥𝑒𝑙𝑠𝐺𝑟𝑖𝑑𝐸𝑙𝑒𝑚𝑒𝑛𝑡. A grid-element into the
probabilistic occupancy local maps can have any of three
occupancy states (𝑂𝑆𝑔𝑒𝐿𝑀(𝑘)), which are given by

𝑂𝑆𝑔𝑒𝐿M (𝑘) =
{{{{{
{{{{{
{

empty 𝑂𝑔𝑒𝐿𝑀 < 0.5

unknown 𝑂𝑔𝑒𝐿𝑀 = 0.5

occupied 𝑂𝑔𝑒𝐿𝑀 > 0.5

(5)

3.3.4. Update Module. This module updates the OGM by
means of its current status and that of the POLMs. The
update is carried out over each grid-element by comparing
its current occupancy probability value 𝑂𝑔𝑒𝐿𝑀(𝑘) against its
corresponding occupancy probability value 𝑂𝑔𝑒𝐺𝑀(𝑘 − 1) on
the OGM in the previous time. Next, we present the resulting
cases of such comparison for the current grid-element and (6)
shows the update rule for each of them.

Case 1. 𝑂𝑆𝑔𝑒𝐺𝑀(𝑘 − 1) is empty and 𝑂𝑆𝑔𝑒𝐿𝑀(𝑘) is occupied or
𝑂𝑆𝑔𝑒𝐺𝑀(𝑘 − 1) is occupied and 𝑂𝑆𝑔𝑒𝐿𝑀(𝐾) is empty.

Case 2. 𝑂𝑆𝑔𝑒𝐿𝑀(𝑘) is unknown and the value of𝑂𝑆
𝑔𝑒

𝐺𝑀(𝑘−1) is
not taken into account:

𝑂𝑔𝑒𝐺𝑀 (𝑘)

=
{{{{
{{{{
{

𝑃𝑅 ∗ 𝑂𝑔𝑒𝐿𝑀 (𝑘) + 𝑃ℎ ∗ 𝑂
𝑔𝑒

𝐺𝑀 (𝑘 − 1) Case 1
𝑂𝑔𝑒𝐺𝑀 (𝑘 − 1) Case 2
𝑂𝑔𝑒𝐿𝑀 (𝑘) Else

(6)

where 𝑃𝑅 = 0.25 and 𝑃ℎ = 0.75 are weight factors.

In Table 1, cases and update rules for the Probabilistic
Occupancy Global Map are summarized.

4. Experiments

To validate our approach, we carried out numerical tests in
a controlled environment, i.e., a room of 3.8 × 8.5 m with
fixed obstacles. A sketch of the environment is shown in
Figure 11, where blocks in gray represent obstacles and some
samples of captured images with different spatial location
are shown; the arrows connected to sample images mark the
direction or orientation of the robot’s sight in the environ-
ment. Furthermore, the floor in the environment is covered
with tiles of 50 × 50 cm, which were used as reference for
comparing the real position of obstacles in the environment
against the position of obstacles detected by our method.
For capturing the environment’s images the camera sensor
was set over a robotic platform called NI LabVIEW robotics
Starter Kit from the National Instrument Company (NI);
it has two DC motors, two encoders, and a reconfigurable
board SbRIO-9632 (Single Board Reconfigurable I/O). The
utilized navigation method was the potential fields; basically,
it calculates the attraction forces produced by the target’s
position and the repulsion forces associated to the objects;
thus, the target’s position attracts the robot; meanwhile the
obstacle’s forces repel it, and this allows the robot to navigate
among obstacles and reach its target’s position [38].

5. Results and Discussion

In Table 2, we present numerical results on the environment’s
metric information performed by the Camera Calibration
process using a chessboard-like calibration pattern (see Fig-
ure 5). These values correspond to the grid’s information
per grid-element, and they were further used to estimate the
occupancy probability of maps.

Results for the image segmentation module in the OGM
construction process are shown in Figure 12. From there, we
can observe the captured and resulting images in odd and
even columns, respectively. In general, it can be observed
that the module’s output gives images with a good distinction
between floor (black regions) and obstacle (white regions);
for example, it can segment obstacles with significant size
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S(1,r+1)

d1
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(a) 𝑆(1, 𝑟 + 1) is in the same line that 𝑆(1, 𝑟)
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S(1,r+1)

d1 d2

(b) 𝑆(1, 𝑟 + 1) is in the same line that 𝑆(2, 𝑟)

Figure 8: Use of Euclidean distances to find the vertices of the grids.

Figure 9: Calibration pattern with segmented grid-elements.

such as the desktop’ parts, but it is also capable of distinguish-
ing small obstacles such as the power outlet.

Furthermore, in the even columns of Figure 13 we show
the POLMs generated from the segmented images (odd
columns). POLMs represent the visual field of the robot’s
camera as occupancy grids with three different colors, white,
gray, and black, that represent the occupancy probability
for high, unknown, and low, respectively. The unknown
probability mainly refers to pixels either outside of the grid’s
region or behind an obstacle (outside of the visual field
of the camera). Thus, for the POLMs shown in Figure 13
we have different grid-elements with different occupancy’s
level for the obstacles detected in the environment; for
example, in Figure 13(b) we show the POLM corresponding
to Figure 13(a) with left side grid-elements empty (black
color) and some grid-elements near and at middle of the grid
occupied (white color) detecting the desktop’s part, and the
rest of grid-elements, mostly at right side, have an unknown
occupancy state because they are out of vision range (gray
color).

Finally, in Figure 14 we present the output of our
approach where a precise Occupancy Grip Map with 38 × 85
grid-elements has been constructed from the environment
schematized in Figure 11. To get this, we run the system
over the experimental environment following the trajectory

Table 2: Camera calibration results: number of pixels per grid-
element.

No. No. No. No.
Grid Pixels Grid Pixels
1 107045 23 5166
2 47852 24 3382
3 26077 25 3587
4 27100 26 3608
5 26206 27 3706
6 15574 28 3660
7 15759 29 3659
8 15635 30 3553
9 10396 31 3021
10 10295 32 2714
11 10344 33 2874
12 10658 34 3165
13 10764 35 3090
14 6576 36 2781
15 7046 37 2793
16 7042 38 2033
17 6969 39 2356
18 6862 40 2486
19 5430 41 2288
20 5468 42 2027
21 5431 43 1974
22 5386 44 2034

shown in yellow in Figure 14. Also, we show some prob-
abilities calculated by the system when an obstacle was
detected.

To evaluate the performance of our proposal, we compare
the quality of OGMs generated by our method against those
obtained by Thrun’s updating rule [39], both applied to the
images shown in previous section. Instead of performing a
visual inspection of generated OGMs, which becomes highly
subjective, we use OGM evaluation metrics which provide
quantitative values and allow a numeric comparison.
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Figure 10: POGM generation process: POLMs are obtained from the captured images in order to build the POGM.

Figure 11: Sketch of the experimental environment.

Several OGM evaluation metrics have been proposed in
the state of the art (e.g., [19, 26, 44–46]).We use three of them:
Map score [26], Precision, and Recall [19], which are briefly
described as follows.

(i) Map score metric compares the M and N maps,
through the sum of squared differences between their
grid-elements𝑚𝑥,𝑦 ∈ 𝑀 and 𝑛𝑥,𝑦 ∈ 𝑁, respectively, at
position (𝑥, 𝑦). Generally, the𝑀𝑎𝑝𝑆𝑐𝑜𝑟𝑒 (≥ 0) is used
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Figure 12: Binarization and segmentation (even columns) of captured images (odd columns), where black and white regions correspond to
floor and obstacles, respectively.

to compare an ideal map of the environment and a
map generated by means of a method; thus, the lower
the𝑀𝑎𝑝𝑆𝑐𝑜𝑟𝑒 is, the more alike maps are. Next, the
metric is shown:

𝑀𝑎𝑝𝑆𝑐𝑜𝑟𝑒 = ∑
𝑚𝑥,𝑦∈𝑀,𝑛𝑥,𝑦∈𝑁

(𝑚𝑥,𝑦𝑛𝑥,𝑦)
2

(7)

(ii) Precision and Recall metrics evaluate the quality of
generatedmaps through a precision recovery analysis.
The generated maps are treated as classification prob-
lems in which the objective is to correctly classify the
pixels into occupied or empty classes.The pixels occu-
pied in the reference environment are considered as
true positives and the empty pixels as true negatives.
The pixels of any other detected object are defined as
false positive. Next, these metrics are shown:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑅𝐸) = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖V𝑒𝑠
𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑆𝑝𝑎c𝑒 ∗ 100 (8)

T he Precision metric represents the percentage of
obstacles correctly detected:

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅𝐸𝐶) = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖V𝑒𝑠
𝐴𝑐𝑡𝑢𝑎𝑙 𝑂𝑐𝑐𝑢𝑝𝑖𝑒𝑑 𝑆𝑝𝑎𝑐𝑒 ∗ 100 (9)

And the Recall metric represents the percentage of
obstacles correctly detected among all obstacles in the
reference environment.

In order to use the aforementioned OGM evaluation
metrics and compare our method against Thrun’s method,
we obtained the ideal map and generated the OGMs by using
our proposal andThrun’s method; these are shown in Figures
15(a), 15(b), and 15(c), respectively.

The results of the OGM evaluation metrics applied to the
generated OGMs are shown in Table 3. It can be numerically
observed that our proposed method gets lightly better results
for the three OGM evaluation metrics used for comparison.
Even when numeric values are close for both generated
OGMs, it can be argued that our proposal is lightlymore alike
to the ideal map because it has a lower value for the Score
Mapmetric and has obstacles correctly detected according to
Precision andRecallmetrics because it has greater values than
those obtained byThrun’s method.

6. Conclusions and Future Work

In this work, we have successfully contributed to the field
of visual robot navigation by improving the main process
associated with the construction of navigation maps using
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Figure 13: Probabilistic Occupancy Local Maps for binarized and segmented images.

Detected Obstacles

Figure 14: The final Occupancy Grid Map of the environment used
for experimentation.

Table 3: Values obtained from OGM evaluation metrics.

Map Score PRE REC
Proposed Method 206.7 95.49 79.94
Thrun’s Method 214.6 95.19 79.90

occupancy grids. It is well known that OGM has been the
predominant algorithm for navigation tasks in mobile robots
such as localization, path planning, collision avoidance,
people finding, etc.; however it is also true that this method
demands high computational cost, specially for large map
construction. Thus, we have proposed a novelty method
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(a) Ideal Map (b) Our method (c) Thrun’s method

Figure 15: OGMs generated for comparison.

that uses fewer homography operations, which significantly
reduces the amount of calculations compared to previous
methods that require camera calibration; this is achieved by
keeping the extrinsic camera parameters fixed. Furthermore,
this improvement of the CC process allowed us to treat
simultaneously the two main processes involved in OGM-
based visual navigation systems, i.e., camera calibration
and maps construction. By treating simultaneously these
processes, we get more precise navigation maps because the
errors generated by rounding values while building maps
are avoided. Three OGM metrics were used to compare our
proposal against the Thrun’s method, and both generated
maps that are quite similar but the maps generated by our
proposal obtained values which indicate that they and the
ideal map are more alike. A final remark is that our method
is able to truly detect small objects as has been shown in the
results.

On the other hand, OGM-based methods depend also
on a correct positioning of the robot on the map, just based
on the measurement of the odometry, which can generate
a large cumulative error during a continuous operation of
the algorithm. This problem is intended to be solved in
a future work using visual odometry to complement the
measurements, either by analyzing the optical flow or by
using markers and in this way the displacement error is
estimated and corrected. Also, to improve the processing
time, a FPGA-based architecture can be implemented to take
advantage of the parallelism features of our method and thus
accelerate the current implementation.
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