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In this study, we propose a direction-controlled nonlinear least squares estimation model that combines the penalty function
and sequential quadratic programming. The least squares model is transformed into a sequential quadratic programming model,
allowing for the iteration direction to be controlled. An ill-conditionedmatrix is processed by our model; the least squares estimate,
the ridge estimate, and the results are compared based on a combination of qualitative and quantitative analyses. For comparison, we
use two equality indicators: estimated residual fluctuation of differentmethods and the deviation between estimated and true values.
The root-mean-squared error and standard deviation are used for quantitative analysis. The results demonstrate that our proposed
model has a smaller error than other methods. Our proposed model is thereby found to be effective and has high precision. It can
obtain more precise results compared with other classical unwrapping algorithms, as shown by unwrapping using both simulated
and real data from the Jining area in China.

1. Introduction

Most problems faced during the course of processing mea-
surement data are nonlinear in nature. In the classical least
squares approach, the nonlinear approximation function is
expanded at an approximate value. This transformation can
linearize the data, allowing the problem to be solved through
the linear least squares approach. The precondition of this
model is that initial parameter values must reach the adjusted
value; otherwise, the model error is significant.

Nonlinear least squares is an optimization method used
to solve nonlinear problems [1–4]. Sequential quadratic pro-
gramming is another important and effective optimization
method [5–7]. A nonlinear least squares problem can be
transformed into a sequential quadratic programming model
and then solved [8–11].

A direction-controlled estimation model is proposed in
this paper. The nonlinear least squares problem is trans-
formed into a sequential quadratic programming model.
The iterative point enters the feasible region via the penalty

function, after which a problem’s optimal solution can be
obtained through sequential quadratic programming [12–14].
In the model, the penalty function is used to reduce the
constraints of the initial values [15–19]. Sequential quadratic
programming possesses quadratic convergence. The model
is contrasted with least squares, and ridge estimate and
simulated data are used to check model performance [20–
23]. The root-mean-squared error (RMSE) and standard
deviation between the estimated and true values, and the 𝜀
value representing the quality of unwrapping, are taken as
indices of performance [24, 25]. We conducted experiments
that showed the feasibility and effectiveness of the model.
Unwrapping experiments using real data from the Jining area
in China show that our proposed algorithm achieves more
precise results than the least squares unwrapping algorithms.
Quantitative indexes include differences in RMSE between
rewrapped results and the original wrapped phase, compu-
tation time, and 𝜀 values [26–28]. The sequential quadratic
programming method achieves better results with respect to
three indices.
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2. Sequential Quadratic Programming Model

Quadratic optimization with equality constraints is defined
as follows:

min 𝑓 (𝑥) = 12𝑥𝑇𝐺𝑥 + 𝑔𝑇𝑥𝑠.𝑡. 𝐴𝑥 = 𝑏,𝑥 ≥ 0 (1)

where 𝐺 ∈ 𝑅𝑛×𝑛 is a symmetric matrix, 𝑔 ∈ 𝑅𝑛×1, 𝐴 ∈𝑅𝑚×𝑛, 𝑏 ∈ 𝑅𝑚×1.
The Lagrange function of (1) is𝐿 (𝑥, 𝑢) = 12𝑥𝑇𝐺𝑥 + 𝑔𝑇𝑥 + V𝑇 (𝐴𝑥 − 𝑏) (2)

where V is the Lagrange multiplier. At 𝑥, the Kuhn–Tucker
(K–T) condition of (2) is𝐺𝑥 + 𝑔 + 𝐴𝑇V = 0𝐴𝑥 = 𝑏 (3)

If 𝐺 is a positive definite matrix, then the unique solution
of (3) is 𝑥 = −𝐺−1𝑔 + 𝐺−1𝐴𝑇 (𝐴𝐺−1𝐴𝑇) (𝐴𝐺−1𝑔 + 𝑏) (4)

In the sequential quadratic programming model, an
optimal subproblem is set up to search for the next feasible
point in the current iterative point. 𝑑𝑘 is the solution of the
optimal subproblem, that is𝑥(𝑘+1) = 𝑥(𝑘) + 𝛼𝑘𝑑𝑘 (5)

where 𝛼𝑘 ∈ (0, 1]. The process for more iterations is repeated,
and the optimization solution can then be obtained.

The optimal subproblem of (1) can be defined as follows:

min
𝑥

∇𝑓𝑇 (𝑥𝑘) (𝑥 − 𝑥𝑘)
+ 12 (𝑥 − 𝑥𝑘)𝑇𝐺 (𝑥𝑘) (𝑥 − 𝑥𝑘)𝑠.𝑡. 𝑠 (𝑥𝑘) + ∇𝑠𝑇 (𝑥𝑘) (𝑥 − 𝑥𝑘) = 0

(6)

where 𝑠(𝑥) = 𝐴𝑥 − 𝑏, ∇𝑓(𝑥𝑘) =(𝜕𝑓/𝜕𝑥1 , 𝜕𝑓/𝜕𝑥2 , ⋅ ⋅ ⋅ , 𝜕𝑓/𝜕𝑥𝑛)𝑇 |𝑥=𝑥𝑘 , ∇𝑠(𝑥𝑘) =(𝜕𝑠/𝜕𝑥1, 𝜕𝑠/𝜕𝑥2, ⋅ ⋅ ⋅ , 𝜕𝑠/𝜕𝑥𝑛)𝑇 |𝑥=𝑥𝑘𝐺(𝑥𝑘) is the Hessian matrix of 𝑓(𝑥):𝐺(𝑥𝑘) = ∇2𝑓 (𝑥𝑘) = 𝜕2𝑓𝜕𝑥2
=
[[[[[[[[[[[[

𝜕2𝑓 (𝑥)𝜕𝑥21 𝜕2𝑓 (𝑥)𝜕𝑥1𝜕𝑥2 ⋅ ⋅ ⋅ 𝜕2𝑓 (𝑥)𝜕𝑥1𝜕𝑥𝑡𝜕2𝑓 (𝑥)𝜕𝑥1𝜕𝑥2 𝜕2𝑓 (𝑥)𝜕𝑥22 ⋅ ⋅ ⋅ 𝜕2𝑓 (𝑥)𝜕𝑥2𝜕𝑥𝑡⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅𝜕2𝑓 (𝑥)𝜕𝑥1𝜕𝑥𝑡 𝜕2𝑓 (𝑥)𝜕𝑥2𝜕𝑥𝑡 ⋅ ⋅ ⋅ 𝜕2𝑓 (𝑥)𝜕𝑥2𝑡

]]]]]]]]]]]]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=𝑥𝑘
(7)

The penalty function of model (1) is defined as follows:

𝑃̃ (𝑥, 𝜋) = 12𝑥𝑇𝐺𝑥 + 𝑔𝑇𝑥 + 𝜋 ‖𝐴𝑥 − 𝑏‖ (8)

where 𝜋 > 0 is the penalty coefficient.
If the objective and constraint function satisfy certain

conditions, then the penalty method is convergent; i.e., the
algorithm converges to the unique, optimal result [15, 29, 30].

The penalty function method is simple to compute. As
the penalty coefficient increases, the initial point is iterated to
the optimal solution. However, when the penalty coefficient
is very large, computation time increases.

3. Sequential Quadratic Programming for
Nonlinear Least Squares

Synthesizing both methods, the penalty function is simple
to compute in earlier iterations, and the sequential quadratic
programming method allows for quadratic convergence. A
direction-controlled nonlinear least squares estimation algo-
rithm using the penalty function and sequential quadratic
programming is proposed herein. The least squares model
is transformed into the quadratic optimization model. The
iterative point enters the feasible region by the penalty
function, and the optimal solution can then be obtained
by sequential quadratic programming. Efficiency in problem
solving can be improved by combining the two methods.

The nonlinear model is defined as follows:𝐿 + Δ = 𝑓 (𝑥) (9)

where𝐿 = (𝐿1, 𝐿2, ⋅ ⋅ ⋅ , 𝐿𝑛)𝑇 is an 𝑛×1 vector;𝑓 is a nonlinear
function;𝑋 = (𝑋1, 𝑋2, ⋅ ⋅ ⋅ , 𝑋𝑡)𝑇 is a 𝑡 × 1 vector to be estimated,
and Δ = (Δ 1, Δ 2 , ⋅ ⋅ ⋅ , Δ 𝑛)𝑇 is an 𝑛 × 1 observational error
vector. The error equation of (9) is𝑉 (𝑥) = 𝑓 (𝑥) − 𝐿 (10)

The least squares principle must be satisfied, that is,

min𝐹 (𝑥) = 𝑉𝑇 (𝑥) 𝑃𝑉 (𝑥)= [𝑓 (𝑥) − 𝐿]𝑇 𝑃 [𝑓 (𝑥) − 𝐿] (11)

Equation (11) can be converted to quadratic optimizationwith
equality constraints as follows:

min 𝐹 (Δ𝑥𝑘) = 𝑉𝑇𝑃𝑉𝑠.𝑡. 𝑉 = 𝑓 (𝑥𝑘) − 𝐿 (12)

The subproblem of (12) can be obtained by linearizing the
equality constraint at 𝑥𝑘. The expression is as follows:

min 𝐹 (Δ𝑥𝑘) = 𝑉𝑇𝑃𝑉𝑠.𝑡. 𝑉 = 𝐵 (𝑥𝑘)Δ𝑥𝑘 + 𝐶 (𝑥𝑘) − 𝐿 (13)
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Table 1: Estimated values by sequential quadratic programming, least squares, and the ridge estimate.

True value Least squares method Ridge method Sequential quadratic programming method

𝑥 1 2.8552 0.8654 1.2205
1 -1.3035 1.3872 1.2598
1 1.2584 0.8283 1.1896
1 2.3954 0.5180 0.9064
1 -1.9306 1.1375 1.1034

RMSE 1.9672 0.2996 0.1852
The standard deviation 4.3989 0.6699 0.4141

where 𝐵(𝑥𝑘) = 𝜕𝑓(𝑥)/𝜕𝑥|𝑥=𝑥𝑘 , 𝐶(𝑥𝑘) = 𝑓(𝑥𝑘), and the
positive definite matrix 𝑃 is the weight matrix. Equation (12)
shows convex programming.

The penalty function of (12) is𝑃̃ (𝑥, 𝜋) = 𝑉𝑇𝑃𝑉 + 𝜋 󵄩󵄩󵄩󵄩𝑓 (𝑥) − 𝐿󵄩󵄩󵄩󵄩 (14)
The steps of the algorithm using the penalty function and

sequential quadratic programming are as follows.(1)The initial values are defined as 𝑥(0) and 𝜋0; the control
error is 𝑒 > 0, 𝜀 > 0; and the number of iterations is 𝑘(𝑘 = 0).(2)The initial value𝑥(0) is substituted into (14) to calculate
the iterative value ‖𝑓(𝑥(𝑘)) − 𝐿‖. If ‖𝑓(𝑥(𝑘)) − 𝐿‖ < 𝑒, the
iteration terminates.(3) If ‖𝑥(𝑘+1) − 𝑥(𝑘)‖ ≤ 𝜀, the result is 𝑥∗ = 𝑥(𝑘+1);
otherwise, set 𝑥 = 𝑥(𝑘) and move to the next step.(4) By taking 𝑥(0) = 𝑥 as the new initial value,
(12) is solved using sequential quadratic programming. The
correction 𝑥(𝑘) value can then be obtained.(5) If ‖𝑥(𝑘+1) − 𝑥(𝑘)‖ ≤ 𝜀, the result is 𝑥∗ = 𝑥(𝑘+1);
otherwise, return to step (4) until the condition is met.

In the course of running the algorithm, the penalty
coefficient of (6) is as follows [31]:

𝜋 = max(󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 [𝑉
𝑇 (Δ𝑥𝑘)𝑇] ( 𝑃 00 0 ) ( 𝑉Δ𝑥𝑘 )Δ𝑥𝑘 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 , 2𝜋− + 𝛽) (15)

where 𝛽 ≥ 0 is the constant, and 𝜋− is the penalty coefficient
of the previous iteration.

4. Experimental Results and Analysis

4.1. Simulated Data. In this case, 𝐴𝑋 = 𝐿, where𝐴

=
((((((((((((((((
(

2.0000 −5.0000 1.0000 1.0000 −9.5000−2.0000 4.0000 1.0000 −1.0500 8.5000−2.0000 1.0000 1.0000 −1.0000 2.4000−1.0000 2.5000 4.0000 −0.5000 7.0000−1.0000 3.2000 4.0000 −0.5000 8.40001.0000 1.0000 −3.0000 0.4000 0.49003.0000 7.0000 −3.0000 1.5000 12.70005.0000 −1.0000 −2.0000 2.5000 −3.00004.0000 2.0000 −2.0000 2.0100 3.00004.0000 3.0000 −2.0000 2.0000 5.0000

))))))))))))))))
)

. (16)
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Figure 1: Ridge parameter from the L-curve.

The observations are 𝐿̃ = [−10.5 10.45 1.4 12 14.1 −0.11 21.2 1.5 9.01 12]𝑇.𝑋 = [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5]𝑇are unknown parameters. The
true values are 𝑋 = [1 1 1 1 1]𝑇.

The white noise is Δ ∼ 𝑁(0, 𝜎2𝐼), where 𝐼 denotes the
identity matrix and 𝜎 = 0.1, 𝑒 = 10−2 𝜀 = 10−2.

The condition number of 𝐴 is 41397, so this is an ill-
conditioned problem. Using sequential quadratic program-
ming, least squares, and the ridge estimate, the estimated
results can be compared, as shown in Table 1.

In Table 1, the ridge parameter of the ridge estimation is
1.4568. Figure 1 shows the ridge parameter from the L-curve
[32].

In this ill-conditioned problem, all methods obtain esti-
mated values. The distance between the initial and true
values is large. Sequential quadratic programming obtains the
closest solution (Table 1). The RMSE and standard deviation
show that the sequential quadratic programming model is
the best, and the ridge estimate method is better than the
least squares method. In sequential quadratic programming,
the iterative point enters the feasible region via the penalty
function and the optimal solution can then be obtained
via sequential quadratic programming. The constraints on
the initial values of sequential quadratic programming are
reduced; however, the computational cost is increased. Ridge
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(b) Wrapped phase after noise
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(c) Least squares method
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Figure 2: Unwrapping results obtained using the above-mentioned two methods.

estimation performs much better than least squares, but
determining the ridge parameters is difficult.

4.2. Phase Unwrapping Experiments

4.2.1. Simulated Data. To verify the effectiveness of the algo-
rithm, simulated data were used to conduct experiments. In a
simulated interferogram with a size of 100 pixels × 100 pixels,
a coherence coefficient of 0.85 and Gaussian noise with a
standard deviation of 0.8160 radians were added to the image,𝑒 = 𝜀 = 10−3. The least squares and sequential quadratic
programmingmethods were used to unwrap images. Figure 2
shows the unwrapping result of each method.

Both methods obtain good unwrapping results, without
lines or islands. The image obtained by sequential quadratic
programming is smoother than that obtained by least squares
and is more similar to the noise-free image.

Figure 3 shows a cross-sectional view of the unwrapping
phase.

As shown in Figure 3, the abscissa represents the hori-
zontal position (x-coordinate) of the pixel in the 50th line of
the image. The ordinate denotes the phase. The maximum
value of the cross-sectional view of sequential quadratic
programming is close to the maximum value of the simulated
surface. The maximum value of the cross-sectional view of
the least squares method is far from the maximum value of
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Figure 3: Fiftieth line cross-sectional view of the unwrapping phase using least squares and sequential quadratic programming.

Table 2: Unwrapping time, RMSE, and 𝜀 value.
Method Computation time (s) RMSE (rad) 𝜀 (rad)
Least squares 12.142 0.7594 0.6214
Sequential quadratic programming 11.866 0.5393 0.4228

Table 3: Selected parameters of ASAR image data.

Number Sensor Date Type Latitude and longitude of center Polarization Ascending Wavelength
022403 ENVISAT 20050306 SLC 116.314 6, 35.305 1 VV Ascending C
022404 ENVISAT 20050130 SLC 116.314 4, 35.305 1 VV Ascending C

the simulated surface. The curve obtained for of the least
squares method is also much rougher than that of sequential
quadratic programming.

Table 2 shows the running time, RMSE, and 𝜀 value
of sequential quadratic programming and least squares
obtained by phase unwrapping. Both methods result in
relatively reliable unwrapping. The running time is similar,
indicating that the efficiency of the two algorithms is almost
the same. The RMSE of sequential quadratic programming is
smaller than that of least squares, indicating that sequential
quadratic programming is more precise. 𝜀 indicates the qual-
ity of the wrap; the smaller the 𝜀, the better the unwrapping
quality. Thus, the sequential quadratic programming method
provides better unwrapping than the least squares method.

The experimentwith simulated data shows that sequential
quadratic programming is a feasible method: the model is
effective and has high precision.

4.2.2. Observational Data. Satellite data collected by ENVI-
SAT ASAR, covering the Jining area of Shandong province,
China, were used to test the model’s performance.

Table 3 shows the basic parameters of the data.
The images are 1024 × 1024 pixels, with a resolution of

30m. Figure 4 shows the unwrapping result of each method,𝑒 = 𝜀 = 10−3.
Both unwrapping methods were run successfully. In the

interferogram, the stripe noise is large and the fringes are
unclear. The phase ripple of sequential quadratic program-
ming is smaller than that of least squares, demonstrating that
sequential quadratic programming experiences less interfer-
ence.

Table 4 shows the computation time, RMSE, and 𝜀 value.
The RMSE and 𝜀 values of sequential quadratic program-

ming are smaller than those of the least squares method.This
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(b) Least squares method
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(c) Sequential quadratic programming method

Figure 4: Unwrapping of ASAR images, using least squares and sequential quadratic programming.

Table 4: Unwrapping time, RMSE, and 𝜀 values.
Method computation time (s) RMSE (rad) 𝜀 (rad)
Least squares 725.940 1.7594 0.6214
Sequential quadratic programming 1336.948 0.5393 0.4228

illustrates that the difference between the rewrapped results
and the original wrapped phase is small. The unwrapping
phases of the sequential quadratic programming method are
smoother and more reliable. However, the computation time
of sequential quadratic programming is greater than that of
the least squares method. This is due to high levels of noise
and the penalty function increasing the computation time of
sequential quadratic programming.

5. Conclusions

A direction-controlled nonlinear least squares estima-
tion algorithm using the sequential quadratic programming
method is proposed herein. The least squares model is

transformed into the nonlinear programming model, and
the iteration direction can then be controlled by sequential
quadratic programming. The ill-conditioned matrix and
phase unwrapping are used to verify the method. The
proposed algorithm achieves better results than alternative
approaches in terms of RMSE and 𝜀 values, and its effec-
tiveness is demonstrated using observational satellite data. In
future research, the role change if the inequality constrains
are taken into account will be considered.

Data Availability

The 20050130.slc and 20050306.slc data used to support the
findings of this study are available from the corresponding
author upon request.



Mathematical Problems in Engineering 7

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was supported by the National Natural Science
Foundation of China (Grants nos. 41774002 and 41274007)
and the Scientific Research Fund Project for the Introduction
of Talents of Shandong University of Science and Technology
(Grants nos. 2014RCJJ047 and 2015RCJJ022).

References

[1] C. Han, F. Zheng, T. Guo, and G. He, “Parallel algorithms for
large-scale linearly constrained minimization problem,” Acta
Mathematicae Applicatae Sinica, vol. 30, no. 3, pp. 707–720, 2014.

[2] X. Jin, Y. Liang, D. Tian, and F. Zhuang, “Particle swarm
optimization using dimension selection methods,” Applied
Mathematics and Computation, vol. 219, no. 10, pp. 5185–5197,
2013.

[3] G. Tutz and G. Schauberger, “A penalty approach to differential
item functioning in Rasch models,” Psychometrika, vol. 80, no.
1, pp. 21–43, 2015.

[4] H.-j.Ma andT.Hou, “A separation theorem for stochastic singu-
lar linear quadratic control problem with partial information,”
ActaMathematicae Applicatae Sinica, vol. 29, no. 2, pp. 303–314,
2013.

[5] G. Ma and B. Huang, “Optimization of process parameters of
stamping forming of the automotive lower floor board,” Journal
of Applied Mathematics, vol. 2014, Article ID 470320, 9 pages,
2014.

[6] F. Tramontana, A. A. Elsadany, B. Xin, and H. N. Agiza, “Local
stability of the Cournot solution with increasing heterogeneous
competitors,” Nonlinear Analysis: Real World Applications, vol.
26, pp. 150–160, 2015.

[7] M. Li, X. Kao, and H. Che, “Relaxed inertial accelerated
algorithms for solving split equality feasibility problem,” Journal
of Nonlinear Sciences and Applications, vol. 10, no. 8, pp. 4109–
4121, 2017.

[8] M. Huang and D. Pu, “A line search SQP method without a
penalty or a filter,” Computational & Applied Mathematics, vol.
34, no. 2, pp. 741–753, 2015.

[9] A. F. Izmailov, M. V. Solodov, and E. I. Uskov, “Combining
stabilized SQP with the augmented Lagrangian algorithm,”
Computational Optimization and Applications, vol. 62, no. 2, pp.
405–429, 2015.

[10] J. Gao, B. Shen, E. Feng, and Z. Xiu, “Modelling and optimal
control for an impulsive dynamical system in microbial fed-
batch culture,”Computational and AppliedMathematics, vol. 32,
no. 2, pp. 275–290, 2013.

[11] J. Zhu and B. Hao, “A new class of smoothing functions and
a smoothing Newton method for complementarity problems,”
Optimization Letters, vol. 7, no. 3, pp. 481–497, 2013.

[12] M. Huang and D. Pu, “A trust-region SQP method without
a penalty or a filter for nonlinear programming,” Journal of
Computational and Applied Mathematics, vol. 281, pp. 107–119,
2015.

[13] B. Sachsenberg and K. Schittkowski, “A combined SQP–IPM
algorithm for solving large-scale nonlinear optimization prob-
lems,” Optimization Letters, vol. 9, no. 7, pp. 1271–1282, 2015.

[14] J. Tang, G. He, and L. Fang, “A new non-interior continua-
tion method for second-order cone programming,” Journal of
Numerical Mathematics, vol. 21, no. 4, pp. 301–324, 2013.

[15] C. Shen, W. Shao, and W. Xue, “On the local convergence of
a penalty-function-free SQP method,” Numerical Functional
Analysis and Optimization, vol. 35, no. 5, pp. 623–647, 2014.

[16] S. Pang, T. Li, F. Dai, and M. Yu, “Particle swarm optimization
algorithm for multi-salesman problem with time and capacity
constraints,” Applied Mathematics & Information Sciences, vol.
7, no. 6, pp. 2439–2444, 2013.

[17] Z. Z. Feng, L. Fang, and G. He, “An O Nl iteration primal- dual
path- following method, based on wide neighbourhood and
large update for second- order cone programming,” Optimiza-
tion. A Journal of Mathematical Programming and Operations
Research, vol. 63, no. 5, pp. 679–691, 2014.

[18] C. Han, T. Feng, G. He, and T. Guo, “Parallel variable distribu-
tion algorithm for constrained optimizationwith nonmonotone
technique,” Journal of AppliedMathematics, vol. 2013, Article ID
295147, 7 pages, 2013.

[19] J.Wang, K. Liang, X.Huang, Z.Wang, andH. Shen, “Dissipative
fault-tolerant control for nonlinear singular perturbed systems
withMarkov jumping parameters based on slow state feedback,”
Applied Mathematics and Computation, vol. 328, pp. 247–262,
2018.

[20] J. B. Jian, Y. L. Lai, and K. C. Zhang, “A feasible method for
superlinearly and quadratically convergent sequential systems
of equations,” Acta Mathematica Sinica, vol. 45, no. 6, pp. 1137–
1146, 2002.

[21] J. Che and K. Su, “A modified SQP method and its global
convergence,” Applied Mathematics and Computation, vol. 186,
no. 2, pp. 945–951, 2007.

[22] P.-y. Nie, “Sequential penalty quadratic programming filter
methods for nonlinear programming,” Nonlinear Analysis: Real
World Applications, vol. 8, no. 1, pp. 118–129, 2007.

[23] J. Yu, M. Li, Y. Wang, and G. He, “A decomposition method for
large-scale box constrained optimization,”AppliedMathematics
and Computation, vol. 231, no. 12, pp. 9–15, 2014.

[24] M. Chen and G. Li, “Forming mechanism and correction of CT
image artifacts caused by the errors of three system parameters,”
Journal of Applied Mathematics, vol. 2013, Article ID 545147, 7
pages, 2013.

[25] T. Jiang, Z. Jiang, and S. Ling, “An algebraic method for
quaternion and complex least squares coneigen-problem in
quantum mechanics,” Applied Mathematics and Computation,
vol. 249, pp. 222–228, 2014.

[26] Z. Pang, G. Liu, D. Zhou, and D. Sun, “Data-based predictive
control for networked nonlinear systems with packet dropout
andmeasurement noise,” Journal of Systems Science &Complex-
ity, vol. 30, no. 5, pp. 1072–1083, 2017.

[27] F. Liu, Z. Fu, Y. Zheng, and Q. Yuan, “A rough Marcinkiewicz
integral along smooth curves,” Journal of Nonlinear Sciences and
Applications, vol. 9, no. 6, pp. 4450–4464, 2016.

[28] S. Ding, H. Huang, X. Xu, and J. Wang, “Polynomial smooth
twin support vector machines,” Applied Mathematics & Infor-
mation Sciences, vol. 8, no. 4, pp. 2063–2071, 2014.

[29] C. H. Liu, Y. L. Shang, and P. Han, “A new infeasible-interior-
point algorithm for linear programming over symmetric cones,”
ActaMathematicae Applicatae Sinica, vol. 33, no. 3, pp. 771–788,
2017.

[30] N. T. Hang, “The penalty functionsmethod andmultiplier rules
based on the Mordukhovich subdifferential,” Set-Valued and
Variational Analysis, vol. 22, no. 2, pp. 299–312, 2014.



8 Mathematical Problems in Engineering

[31] Y. Zhang and D. Shen, “Estimation of semi-parametric varying-
coefficient spatial panel data models with random-effects,”
Journal of Statistical Planning and Inference, vol. 159, pp. 64–80,
2015.

[32] S. Salman and H. S. Dawood, “Approximate solution of the
linear programming problems by ant system optimization,”
Engineering & Technology Journal, no. 16, pp. 2978–2995, 2009.



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

