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It is very difficult to process and analyze high-dimensional data directly. +erefore, it is necessary to learn a potential subspace of
high-dimensional data through excellent dimensionality reduction algorithms to preserve the intrinsic structure of high-di-
mensional data and abandon the less useful information. Principal component analysis (PCA) and linear discriminant analysis
(LDA) are two popular dimensionality reduction methods for high-dimensional sensor data preprocessing. LDA contains two
basic methods, namely, classic linear discriminant analysis and FS linear discriminant analysis. In this paper, a newmethod, called
similar distribution discriminant analysis (SDDA), is proposed based on the similarity of samples’ distribution. Furthermore, the
method of solving the optimal discriminant vector is given. +ese discriminant vectors are orthogonal and nearly statistically
uncorrelated.+e disadvantages of PCA and LDA are overcome, and the extracted features are more effective by using SDDA.+e
recognition performance of SDDA exceeds PCA and LDA largely. Some experiments on the Yale face database, FERET face
database, and UCI multiple features dataset demonstrate that the proposed method is effective. +e results reveal that SDDA
obtains better performance than comparison dimensionality reduction methods.

1. Introduction

+e data collected by various sensors (such as visual sensors
and sound sensors) are mostly high-dimensional, which
brings inconvenience to the later processing and analysis of
data. In order to effectively utilize these high-dimensional
data, it is necessary to adopt effective dimensionality re-
duction algorithms. In fact, dimensionality reduction is an
effective data preprocessing method. It reduces the size of
data while retaining the valid data, which brings great
convenience to the later analysis and calculation of data. In
pattern recognition, data dimensionality reduction has a
wide range of applications. KL-based principal component
analysis (PCA) [1, 2] and linear discriminant analysis (LDA)
[3–6] are the two most widely used dimensionality reduction
methods. PCA and LDA have been widely used in the
analysis and processing of various types of data. +ey can be
used in data compression, data preprocessing, data mining,
data retrieval, data classification, and so on. Independent
component analysis (ICA) is a data processing method

developed from solving blind source separation, which de-
composes the original data to obtain independent compo-
nents. ICA is helpful to find the maximal independent
projection direction as the dimensions of data are reduced.
But in ICA, there is a preprocessing process for data, that is,
PCA and whitening. In the pattern recognition field, some
researchers have proven that the overall performance of ICA
is not better than that of PCA by conducting experimental
comparisons between the two methods [7, 8]. At present,
PCA and LDA have a lot of applications in image processing,
voice processing, communication, network, and others.
Many researchers [9–27] have done extensibility research
based on LDA and PCA methods and have made some
progress. But there are some shortcomings in the use of PCA
and LDA. +e disadvantage of PCA is that the data after
dimensionality reduction have no clustering characteristics.
+e classification accuracy is uncertain by using the features
after dimensionality reduction. +e disadvantage of LDA is
that there is a phenomenon of overfitting to training samples.
+e classification accuracy is closely related to the
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characteristics of training samples. PCA is a dimension re-
duction analysis method that maintains the maximum dis-
persion of samples. However, category information is not
introduced into the dimensionality reduction process of
PCA, with the result that the accuracy of using minimum
distance measurement is usually lower than the accuracy of
using nearest neighbor measurement. In contrast, LDA can
obtain the best identifying projection information for clas-
sification. +erefore, the accuracy of LDA by the minimum
distance method is close to the nearest neighbor method.
LDA takes category information into account, so its test
accuracy is better than that of PCA, but on the other side, the
LDA method may overfit the training set, which worsens the
generalization ability. In particular, when there is quite a
difference between the training set and the test set, it is likely
that the test result of LDA will be not ideal [7, 28, 29]. Pattern
recognition for images has high application and research
value, so it has become a hot area of research in the field of
pattern recognition and machine vision, especially for face
recognition [30–42]. Meanwhile, face recognition is also an
important way to verify the effectiveness of pattern recog-
nition methods. +e LDA-based methods are widely used in
face recognition [23–27, 30–42].+e research on LDA can be
traced back to a classic paper [3] by Fisher in 1936. +e basic
idea is to choose the vector that makes the Fisher criterion
function as max as optimal projection vector, so that the
sample can achieve the maximum between-class scatter and
the smallest within-class scatter after being projected in this
direction. Based on the Fisherface method, Wilks and Duda
proposed classic linear discriminant analysis (CLDA), re-
spectively [4, 5]. Foley and Sammon proposed a method
called FS linear discriminant analysis (FSLDA) [6], in which a
set of optimal discriminant vectors satisfying the orthogonal
condition is used for dimensionality reduction. +e specific
algorithm for solving the optimal discrimination vectors of
two-class cases is presented by Foley, and the solution of the
optimal discriminant vectors in multiclass cases is given by
Duchene and Leclercq [43]. Jin et al. proposed the concept of
uncorrelated linear discriminant analysis (ULDA) [44, 45]
for optimal discriminant vectors from the perspective of
statistical irrelevance. A simple algorithm for solving the
optimal set of uncorrelated discriminant vectors is presented
in the literature [45], and it is pointed out that ULDA is equal
to CLDA under the condition that the eigenvalues of the
generalized characteristic equation corresponding to the
Fisher criterion function are not equal.

Although the discriminant vectors of CLDA have sta-
tistically uncorrelated characteristics, they are not orthog-
onal. In contrast, the discriminant vectors of FSLDA are
orthogonal and statistically correlated. Some researchers
have argued the performance of orthogonal discriminant
vectors is better than that of the statistically uncorrelated
vectors [46, 47], and some researchers hold a contrary
opinion [45, 48]. Actually, both of these characteristics have
certain pertinence. If only one of them is considered, it is
deficient. Firstly, nonorthogonal discriminant vectors are
unfavorable factors for extracting useful features, which
weakens the generalization ability of test samples. Especially
when the number of training samples is small and the

distance between samples is small, the test performance of
CLDA is inferior to that of FSLDA. Secondly, the dis-
criminant vectors of FSLDA are composed of orthogonal
normalized vectors. However, in the case of fewer categories,
more samples per class, and larger intraclass dispersion, the
redundancy between the discriminant features obtained by
each discriminant vector is very large, that is to say, the
statistical uncorrelation characteristics of FSLDA is very
poor. For example, in terms of character recognition, the
performance of FSLDA is significantly worse than that of
CLDA.

In general, statistical uncorrelation is only strictly statis-
tically uncorrelated for training samples but only nearly sta-
tistically uncorrelated for test samples. +erefore, only nearly
statistical uncorrelation is required for the optimal discrimi-
nant vectors. On the other hand, orthogonality is a strict re-
striction, which reflects the perpendicular relation of each axis
in Euclidean space and enhances the generalization ability of
test samples. So we conclude that the discriminant vectors of
the most effective discriminant method should be orthogonal
and nearly statistically uncorrelated.

To solve the above problems, the paper presents a similar
distribution discriminant analysis (SDDA) method from the
similarity of samples’ distribution.+e advantage of the SDDA
is that the projection vector has orthogonal characteristics, and
the data after dimensionality reduction have nearly statisically
uncorrelated characteristics, and the distribution of the pro-
jection vector approximates the distribution of principal
components in the center of the sample class. +e proposed
method uses the statistically uncorrelated characteristics of
PCA to combine PCAwith the class labels of samples and gives
the solution of the optimal discriminant vectors. +ese dis-
criminant vectors have orthogonal characteristics and nearly
statisically uncorrelated characteristics. +e SDDA algorithm
requires that the data distribution after the dimensionality
reduction of samples is similar to the distribution of the
principal component of the original samples. +at is to say, in
the process of dimensionality reduction, the principal com-
ponent characteristics of the original sample are better pre-
served.+e SDDA algorithm requires that the data distribution
after the dimensionality reduction of the sample is similar to
the distribution of the principal component of the original
sample. +e principal component property can suppress
overfitting well, which solves the problem of overfitting of
LDA. +e proposed SDDA method overcomes the disad-
vantages of the two basicmethods of LDA and concentrates the
advantages of the basic methods of LDA together, so the
extracted distinguishing features are more effective, which
improves the recognition performance and adaptability. Fi-
nally, the effectiveness is validated through some experiments
on the Yale face database, FERET face database, and UCI
multiple features dataset. +e results of these experiments
indicate that the recognition accuracy of SDDA is superior to
the two basic methods of PCA and LDA.

2. Related Work

+eN samples in the training set x(j)
i  come from c categories:

ω1,ω2, . . . ,ωc, where i � 1, 2, . . . , c and j � 1, 2, . . . , ni. ni is
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the number of samples in the ith class, and x(j)
i is the jth sample

that comes from the ith class. All samples are m dimension
column vectors. +us, the within-class scatter matrix, the be-
tween-class scatter matrix, and the total scatter matrix are de-
fined as Sw, Sb, and St, respectively, with the following
expressions:

Sw � 
c

i�1
P ωi( 

1
ni



ni

j�1
x(j)

i − xi  x(j)

i − xi 
T
, (1)

Sb � 
c

i�1
P ωi(  xi − x(  xi − x( 

T
, (2)

St � Sw + Sb � 
c

i�1
P ωi( 

1
ni



ni

j�1
x(j)

i − x  x(j)
i − x 

T
, (3)

where xi � E(x |ωi) � (1/ni)
ni

j�1x
(j)

i denotes the mean vec-
tor of all samples in the ith class and x � E(x) � 

c
i�1P(ωi)xi is

the expected mean vector of all samples. P(ωi) is a prior
probability of the samples in the ith class, which is generally
taken as P(ωi) � ni/N. +en, the mean vector of all samples
can be represented as x � (1/N)

c
i�1

ni

j�1x
(j)
i .

2.1. Classical Principal Component Analysis. +e criterion
function of PCA is defined as (4). +e vectors in the optimal
projection vectors a1, a2, . . . , ad make (4) reach the maxi-
mum, and they are a group of normal orthogonal vectors. Its
physical significance can be interpreted as maximizing the
total dispersion of the projected features:

Jp(a) � aTSta. (4)

Actually, vectors a1, a2, . . . , ad in the optimal projection
vectors are normal orthogonal eigenvectors corresponding
to d largest eigenvalues. +e criterion function of PCA can
be also represented as follows:

Jp(A) � tr ATStA . (5)

And the best projecting matrix is Aopt � argmax
A

Jp
(A) � (a1, a2, . . . , ad).

2.2. LinearDiscriminantAnalysis (LDA). LDA was proposed
by Fisher firstly.+e basic idea is to select the vector φopt that
maximizes the Fisher criterion function and take φopt as the
optimal projection direction, which is also called optimal
discriminant vector. +en, the ratio of the interclass dis-
persion to the intraclass dispersion reaches the maximum
after the samples projected in this direction. Fisher dis-
crimination criterion function is defined as

Jf(φ) �
φTSbφ
φTSwφ

, (6)

where Sw is the within-class scatter matrix, Sb is the between-
class scatter matrix, and φ is a nonzero column vector of any
number of dimensions.

+e Fisher criterion function combines the between-
class and within-class dispersion of samples skillfully and

provides a perfect criterion for determining the optimal
projection direction.

2.2.1. Classic Linear Discriminant Analysis. Inspired by
LDA, Wilks and Duda extended the two-class classification
problem of finding one optimal projection direction to the
multiclass classification problem of finding multiple optimal
projection directions. +eir idea is called the classic Fisher
linear discriminant analysis, and the classical Fisher dis-
criminant criterion function is (7) or (8):

Jc(A) �
ATSbA




ATSwA



, (7)

Jc(A) � tr ATSwA 
− 1

ATSbA  . (8)

In fact, the column vectors a1, a2, . . . , ad in the optimal
projection matrix Aopt of classic Fisher linear discriminant
analysis are taken from the eigenvectors corresponding to d

largest eigenvalues of the generalized characteristic equation
SbA � λSwA.

2.2.2. FS Linear Discriminant Analysis. FSLDA aims at
finding a set of optimal discriminating vectors φ1, . . . ,φd.
+ey maximize the Fisher criterion function and satisfy the
following orthogonal condition:

φT
i φj � 0, ∀i≠ j. (9)

+e first vector of the FS optimal discriminant vectors is
the Fisher optimal discriminating direction, that is, the unit
eigenvector φ1 corresponding to themaximum eigenvalue of
the generalized characteristic equation SbU � λSwU. After
the first k discriminant vectors φ1, . . . ,φk are found, the
k + 1th discriminant vector φk+1 is obtained by solving the
following optimization problem:

max Jf(φ)( ,

φT
j φ � 0, j � 1, . . . , k,

φ ∈ Rn.

⎧⎪⎪⎨

⎪⎪⎩
(10)

In fact, φk+1 is the eigenvector corresponding to the
maximum eigenvalue of the generalized characteristic
equation:

BkSbφ � λSwφ, (11)

where Bk � I − DT
k (DkS− 1

w DT
k )− 1DkS− 1

w and Dk �

(φ1,φ2, . . . ,φk)T.

3. Similar Distribution Discriminant
Analysis (SDDA)

By reducing the dimensions, the proposed SDDAmethod in
this paper makes the total distribution of extracted features
closest to the principal component distribution and the
extracted features satisfy the minimization of within-class
dispersion. In other words, the extracted features not only
have a good performance in discrimination, but also retain
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the principal component characteristics. At the same time,
the optimal discriminant vectors are composed of orthog-
onal and nearly statistically uncorrelated vectors, which
makes the extracted discriminant features more effective and
improves the performance of classification and recognition.

3.1.-eoretical Framework of SDDA. Supposing there are two
points α and β in m-dimensional space, which represent the
vector (α1, α2, . . . , αm) and the vector (β1, β2, . . . , βm), re-
spectively. For the similarity between α and β, a similarity
measurement is usually adopted, whose formula is as follows:

s �
αβ

T

‖α‖2 · ‖β‖2
�

αβ
T

�����
ααT 


×

����
ββ

T
 , (12)

where vector α is α � (α1 − α, α2 − α, . . . , αm − α) and vector β
is β � (β1 − β, β2 − β, . . . , βm − β), in which α and β represent
the mean of all elements in α and β, respectively. +e larger the
value of s is, the more similar the two vectors are, and s � 1
means that the two vectors are completely similar.

Extend the similarity measurement from two vectors to two
sets of vectors. Supposing one set of vectors is X � [x1, x2,
. . . , xn] and the other set of vectors is Y � [y1, y2, . . . , yn],
where xj and yj are both m-dimensional column vectors. Set
X � (x1, x2, . . . , xn) and Y � (y1, y2, . . . , yn), the columns of
which are represented as xj � xj − x and yj � yj − y, and
where vectors x and y represent the mean of all column vectors
inX andY, respectively. Let xi and yi be row vectors of X and Y,
then the similarity measurement formula of X and Y can be
defined as (13) or (14):

S �
1
m



m

i�1

xi yi 
T

������

xi xi 
T

 ������

yi yi 
T

 , (13)

S �
1
m



m

i�1

xi yi 
T
yi xi 

T

xi xi 
T
yi yi 

T, (14)

where xi(xi)T � yi(yi)T. Equation (14) is easier to analyze, so
it is adopted in this paper. S � 1 indicates that the distri-
bution of the two sets of vectors is completely consistent,
which is called distribution equivalence.

For a given matrix Y, in other words, Y is a matrix with
certain distribution, and the dimension of xj is larger than
that of yj (the dimension of yj is m). If the discriminative
feature of the samples can be extracted by dimension re-
duction, then the distribution of the overall discrimination
features is closest to the expected distribution. In other
words, we need to find an optimal projection matrix Aopt to
satisfy the condition Aopt � argmax

A
(J(A)):

J(A) �
1
m



m

i�1

aTi X yi 
T
yi XTai

aTi XXTai yi yi 
T
,

aTi XXTai � yi yi 
T
,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(15)

where a1, a2, . . . , am are column vectors of A.
Given a set of n samples X � xj  from c class, where xj

is an l-dimensional column vector. Set X � xj , in which
xj � (xj − x) and x is the mean vector of all the samples.

Because the principal components of samples are sta-
tistically uncorrelated, using the principal components to
construct the expected matrix Y, and then solving the
projection matrix with orthogonal characteristics, the dis-
criminant vectors can have both orthogonal and nearly
statistically correlated characteristics. In addition, the ob-
tained discriminant vectors should be helpful for classifi-
cation, that is to say, the expected matrix should have the
characteristics of the smallest distance within the class, so the
expected matrix is established by using the principal com-
ponents of the sample class mean, and the expected vectors
belonging to each class are the same.

Let Z � zk  be the set of the principal components of the
sample class mean in the total samples X, where
zk � PT(xk − x). xk(k � 1, . . . , c) is the mean vector for each
class. P is the projection matrix of the principal component
of the class mean, which consists of c − 1 standard or-
thogonal column vectors p1,p2, . . . ,pc− 1 for nonzero
eigenvalues.

+e principal component extension matrix can be de-
fined as

Y �

y1

⋮

yc− 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� y1, y2, . . . , yn  � Z1,Z2, . . . ,Zc , (16)

where Zk � [zk, . . . , zk]
√√√√√√√√

dk

in which dk is the number of
samples for the kth class.

+e set of the class mean principal components Z has
statistically uncorrelated characteristics, whichmeans ZZT �


c
i�1zkzTk � Λ andmatrixΛ is diagonal. For the same number

of samples per class dk � d, we get YYT
� 

c
k�1(dkzkzTk ) �

d
c
i�1zkzTk . +erefore, the principal component extension

matrix also has the property of statistical uncorrelation.

3.2. Solution to the Projection Matrix Aopt. Due to the sta-
tistically uncorrelated characteristics of the principal com-
ponent extension matrix of the projection matrix,
Aopt � argmax

A
(J(A)) makes AoptX statistically un-

correlated to some extent, so the discriminant vectors
a1, a2, . . . , am to be solved only need to be mutually or-
thogonal. +at is to say, after the first k discriminant vectors
are solved, the k + 1th discriminant vector ak+1 is obtained
by solving the following optimization problem:

max J ak+1( ( ,

aTi ak+1 � 0, i � 1, . . . , k,

ak+1 ∈ Rn.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(17)

In order to obtain the k + 1th discriminant vector ak+1,
we define the following function:
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f ak+1(  �
aTk+1

X yk+1 
T
yk+1 XTak+1

aTk+1
XXTak+1 yk+1 yk+1 

T
, (18)

where yk+1 is a given vector, so yk+1(yk+1)T has no effect on
the solution of ai, and thus f(ak+1) is rewritten as

f ak+1(  �
aTk+1

X yk+1 
T
yk+1 XTak+1

aTk+1
XXTak+1 yk+1 yk+1 

T
�
aTk+1Sk+1ak+1

aTk+1Stak+1
.

(19)
According to Lagrange multipliers, ak+1 makes (20)

achieve the maximum value:

L ak+1(  � aTk+1Sk+1ak+1 − λ aTk+1Stak+1 − θ  − 
k

i�1
ηia

T
k+1ai.

(20)

Taking the derivative of ak+1 and setting it to zero, then
we have

2Sk+1ak+1 − 2λStak+1 − 
k

i�1
ηiai � 0. (21)

We define Ak � [a1, . . . , ak] and η � [η1, . . . , ηk]T, thus

2Sk+1ak+1 − 2λStak+1 − AT
kη � 0. (22)

Multiply aTk+1 on both sides of (21), and according to (17),
the third term is zero. +us, we obtain

λ � f ak+1( . (23)

+e solution to the problem is tomaximize the value of λ.
Multiply aTj S

− 1
t (j � 1, . . . , k) on both sides of (21), and

according to (17), the second term is zero. +en, we get

2aTj S
− 1
t Sk+1ak+1 − 

k

i�1
ηia

T
j S

− 1
t ai � 0, (24)

which can be rewritten as

2

aT1
⋮

aTk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
S− 1
t Sk+1ak+1 −

aT1
⋮

aTk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
S− 1
t

aT1
⋮

aTk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T η1
⋮

ηk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 0. (25)

And (22) is rewritten as

2AT
kS

− 1
t Sk+1ak+1 � AT

kS
− 1
t Akη. (26)

So, the updating rule of η is presented as

η � 2 AT
kS

− 1
t Ak 

− 1
AT

kS
− 1
t Sk+1ak+1. (27)

By combining formulas (27) and (22), we have

2Sk+1ak+1 − 2λStak+1 − 2AT
k AT

kS
− 1
t Ak 

− 1
AT

kS
− 1
t Sk+1ak+1 � 0.

(28)

After some rearrangement, we obtain

Sk+1 − AT
k AT

kS
− 1
t Ak 

− 1
AT

kS
− 1
t Sk+1 ak+1 � λStak+1, (29)

where a1 is the eigenvector corresponding to the largest
eigenvalue of S1ak+1 � λStak+1. ak+1 is the eigenvector cor-
responding to the largest eigenvalue of generalized char-
acteristic of (29). In order to satisfy aTi XXTai � yi(yi)T, ai

needs to be adjusted to ωiai after being calculated, where

ωi �

�����������������

(yi(yi)T)/(aTi XXTai)



.
Remarkably, all the samples xj have to be compressed by

K-L transform to reduce the original samples from high-
dimensional to low-dimensional ones if the matrix St is not
invertible, so it can be ensured that St is reversible after
dimensionality reduction.

+e SDDA method proposed in this manuscript mainly
solves the adaptability problem in various applications of
two basic methods of LDA.+e architecture of the proposed
SDDA starts from the classic PCA and the classic LDA, so
SDDA itself is also a basic method, which is in the same level
as the comparison methods and can be used as a supplement
to the classic PCA and the classic LDA. So in this manu-
script, SDDA is only used as a basic method and compared
with the existing classical methods. Actually, some tech-
niques for improving PCA and improving LDA can also be
used in the proposed SDDA method. For example, we can
learn from the construction process of KPCA, KFSLDA, and
KFDA to use nuclear techniques to construct KSDDA.

4. Experiment Results and Analysis

We conduct some experiments on the Yale face database,
FERET face database, and UCI multiple features dataset to
demonstrate the adaptability and effectiveness of the proposed
algorithm to different objects. +e proposed algorithm is
compared with SDDA, PCA, and two basic methods of LDA
(CLDA and FSLDA), and we analyze the comparison results.

4.1.Experimenton theYaleFaceDatabase. Yale face database
[49] is taken from 15 volunteers with each one having 11
images. Different images of each person are quite different in
expression changes and light changes. Figure 1 is 11 images
of one person in the Yale face database.

Since the discriminant vectors of SDDA are obtained by
the orthonormal constraint, it is not necessary to carry out the
experiment on its orthogonal characteristics. We have only
done the experiment to verify the statistically uncorrelated
characteristic and show it intuitively with the statistical
uncorrelation diagrams. +e elements in the diagrams of
statistical uncorrelation are pi,j � aTi Staj, where pi,j means the
element that comes from the ith row and the jth column. As
shown in Figure 2, in addition to the diagonal element values,
the closer the element values of other locations are to 0 (black),
the better the statistically uncorrelated characteristics between
the discriminant vectors are. Comparing the statistical
uncorrelation diagrams of SDDA, CLDA, FSLDA, and PCA, it
is showed that the discriminant vectors obtained by SDDA are
almost completely statistically uncorrelated while FSLDA has
poorly statistically uncorrelated characteristics.

In order to evaluate the performance of the proposed
SDDA, we conduct two sets of experiments on the Yale face
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database. One set selects the odd number (6 samples) of each
person as the training set and the even number (5 samples)
of each person as the test set, and the other set of experi-
ments selects the even number (5 samples) of each person as
the training set and the odd number (6 samples) of each
person as the test set. +e final results are averaged from the
results of the two sets of experiments. Minimum distance
and nearest neighbor are adopted as the measurement
method in this paper.

Because of the small number of samples in the Yale face
database, the lower dimension is taken in the experiment,
that is to say, only a few projection vectors are used to extract
features. In this experiment, the number of features is the
dimension of sample reduction.+e dimension of samples is
reduced by various algorithms. Table 1, aimed at the number
of features from 4 to 11, shows the experimental results of
various algorithms. With the increase of the number of
features, the experimental accuracy of each algorithm is
improved. When the dimension of samples is reduced to
nine, the test accuracy of the SDDA algorithm is higher than
the maximum accuracy of other algorithms. Under the
condition of the same number of features, the experimental
results of SDDA are better than LDA and PCA in both
minimum distance and nearest neighbor measurements.
FSLDA is similar to CLDA, while the PCA method has the
worst performance because it ignores category information.
+e results of our experiment demonstrate that the dis-
criminant vectors of SDDA not only have principal com-
ponent characteristics, but also have orthogonal and nearly
statisically uncorrelated characteristics, so its performance is
the best.

4.2. Experiment on the FERET Database. To validate the
effect of SDDA on a dataset with large categories, we choose
the FERET face database [50]. +e FERET face database
contains 1400 images of 200 persons. For each person, there

are 7 images and whose file names contain the identification
string “ba,” “bj,” “bk,” “be,” “bf,” “bd,” and “bg” to indicate
the change of each image. Changes in posture (±15° and
±25°), illumination, and expression are all contained in the
samples. In the experiment, the face in each original image is
acquired according to the position of the eyes and then
adjusted to 80 × 80 and preprocessed with histogram
equalization. Figure 3 shows 7 images of one person in the
database.

We also conducted two sets of experiments on the
FERET human face database: images with file names contain
the identification string ba, bd, be, and bf for training and the
rest images for testing, and ba, be, bg, and bk for training and
the rest for testing. We calculate the mean of the two results
as the final results. Minimum distance and nearest neighbor
measurement methods are both used.

Because the number of faces in the FERET database is
large and the number of classes is 200, we use various al-
gorithms to reduce the dimension of samples from 9 to 99. In
order to reflect the trend of each algorithm when the di-
mension changes, we add line charts to reflect the accuracy
change of each algorithm in different dimensions. Experi-
mental results are shown in Figures 4 and 5 and Table 2.
From the experimental results, we can see that the SDDA
algorithm is much better than other algorithms when the
dimension is the lowest. With the increase of the dimension,
the test accuracy of the SDDA algorithm reaches the
maximum effect quickly. When the dimension is 29, it has
exceeded the maximum accuracy of all algorithms. When
the dimension is 59, the test accuracy of the SDDA algorithm
has reached its maximum. Due to the large difference be-
tween the training samples and the test samples, the training
sample space cannot contain the test sample space well.
Experimental results are shown in Figures 4 and 5. +e
CLDA method is statistically irrelevant, which fits the data
too tight, resulting in the worst test results.+e PCAmethod
maintains certain test accuracy although the category

1 2 3 4 5 6

7 8 9 10 11

Figure 1: Eleven images of one person in the Yale face database.

(a) (b) (c) (d)

Figure 2: Statistical uncorrelation diagrams: (a) SDDA, (b) CLDA, (c) FSLDA, and (d) PCA.
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information is not considered. +e test result of FSLDA is
second, which has orthogonal characteristics and good
generalization ability. +e proposed SDDA method is or-
thogonal and nearly statistically uncorrelated. +e test result
of SDDA is the best, and the recognition accuracy is sig-
nificantly improved compared with the other three methods.

4.3. Experiment on the UCIMultiple Features Dataset. In the
previous two experiments, the number of samples per
person is small. To further evaluate the performance of
SDDA, the UCI multiple features dataset [51] is used for
experiments. +e UCI multiple features dataset contains six
feature structures of handwritten numbers 0 to 9. Each
feature structure is divided into 10 categories, each of which
has 200 samples and a total of 2000 samples.

+e 240-dimensional pixel average feature of the sample
data is selected to reflect the dimensionality reduction effect
of these algorithms. +e minimum distance measurement
method is used to verify the effectiveness of the feature. We
also conduct two experiments.

+e first experiment randomly selects 100 samples as the
training set, and the remaining 100 samples are used for
testing. +e experiments are repeated 10 times, and the
average results are given in Table 3. SDDA algorithm still has
the best experimental effect. Because of the large number of
samples selected for each class, CLDA algorithm’s superi-
ority is reflected. +e effect has been greatly improved,
ranking second, and FSLDA performance has been greatly
reduced, ranking fourth. We can see that the results of

Table 1: +e comparison of experimental results on the Yale face database.

Number of features
Minimum distance measurement Nearest neighbor measurement

SDDA CLDA FSLDA PCA SDDA CLDA FSLDA PCA
4 88.44 85.44 81.78 64.33 86.00 85.44 81.78 74.22
5 92.44 87.89 86.00 71.67 91.67 87.89 86.00 77.33
6 93.56 92.22 90.89 76.11 93.44 92.22 90.33 77.78
7 93.44 92.89 92.33 82.78 93.44 92.89 91.78 80.22
8 94.67 92.11 92.22 82.89 93.44 92.11 92.22 81.56
9 95.89 94.56 93.89 84.67 95.22 94.56 93.33 83.78
10 95.89 93.89 94.00 84.67 95.33 94.00 92.89 84.56
11 96.56 94.44 94.56 86.44 96.00 95.00 94.56 85.78

ba bd be bf

bg bj bk

Figure 3: Seven images of one person in the FERET human face
database.
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Figure 4: Experimental results on the FERET face database using
minimum distance measurement.
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Figure 5: Experiment results on the FERET face database using
nearest neighbor measurement.
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SDDA and CLDA are similar, SDDA is significantly better
than PCA and FSLDA, and the performance of PCA is better
than that of FSLDA.

In the second experiment, only 20 samples were selected
from each class as the training set. +e experiment was
repeated 10 times, and the average results are obtained.
Figure 6 is the line chart of the results with the dimension of
the extracted feature on the horizontal and the percentage of
test accuracy on the vertical axis. As the line chart shows, the
results of CLDA are the worst and the performance declined
greatly. +e experimental results of PCA and FSLDA are
similar, and the performance of SDDA is still the best.

+e experiment on the UCI multiple features dataset
shows that the dispersion of the samples is large when the
number of training samples of each class is large, so that the
accuracy of the identification method with statistical uncor-
relation characteristics is obviously superior to that of the
orthogonal one.+at is to say, in the case of larger samples, the
performance of CLDA is much better than that of FSLDA.+e
performance of FSLDA is significantly better than that of
CLDA when the number of training samples of each class is
small. With the orthogonal characteristics and nearly statisi-
cally uncorrelated characteristics, the discriminant vectors of
SDDA maintain the best performance regardless of the
number of training samples. As can be seen from Figure 6, the
accuracy of SDDA is higher than the comparison algorithms
under the same number of features, and the curve shows a
smooth upward trend.+e increasing gradient of the accuracy
is decreasing, which means the increase rate is large at first,
while as the number of features increases, the increase rate
gradually decreases.+e proposedmethod can obtain superior
performance under a small number of features, and the curve

is rising smoothly, which means the overall performance of
SDDA is stable and reliable.

Analyzing the experimental results on different data-
bases synthetically, we can conclude that the SDDA method
has the best performance in all databases, while the two basic
methods of LDA have unstable performance. In contrast, the
SDDA method has stronger adaptability than CLDA and

Table 2: +e comparison of experimental results on the FERET face database.

Number of features
Minimum distance measurement Nearest neighbor measurement

SDDA CLDA FSLDA PCA SDDA CLDA FSLDA PCA
9 54.17 16.02 14.96 31.85 53.35 16.04 15.02 36.02
19 70.27 36.54 27.56 51.69 71.27 36.31 27.46 54.90
29 75.33 49.27 33.77 58.79 75.79 48.88 33.52 61.44
39 77.46 55.63 36.23 62.54 77.63 55.52 35.71 64.08
49 78.42 61.54 38.46 64.69 78.50 61.98 38.06 65.27
59 78.79 65.29 36.60 65.52 79.06 66.00 36.83 66.58
69 78.92 67.73 35.40 66.60 78.85 67.15 36.29 67.10
79 79.13 70.42 35.10 66.71 78.73 70.60 35.23 68.42
89 79.00 72.38 34.67 67.23 78.85 73.81 35.63 68.38
99 78.98 72.58 33.23 67.65 78.69 74.19 34.69 68.81

Table 3: Experimental results on the UCI multiple features dataset.

Number of features SDDA CLDA FSLDA PCA
1 45.58 41.75 42.38 39.10
2 73.43 69.7 47.65 57.01
3 80.61 82.52 50.28 68.44
4 87.42 89.49 57.80 75.27
5 91.28 92.16 67.47 77.39
6 93.59 93.40 73.94 82.18
7 94.38 94.21 79.35 85.89
8 94.64 94.75 82.44 87.93
9 94.81 94.79 84.56 88.54
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Figure 6: Experimental results on the UCI multiple features
dataset.
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FSLDA, which not only retains the principal component
characteristics, but also overcomes the shortcomings of
CLDA and FSLDA, and can extract more outstanding
identification features. In addition, under the same sample
conditions, CLDA has the fastest training speed, while
FSLDA and SDDA have similar training speed. +e training
speed of CLDA is about 1.5 times that of SDDA and FSLDA.
When testing, all algorithms have the same test speed be-
cause they use the same dimension projection vector.

5. Conclusions

For a large number of collected high-dimensional data,
the proposed method can effectively reduce information
overload and improve data transmission and processing,
so the importance of this study is more prominent. In
view of the shortcomings of the two basic methods of
LDA, the paper proposes a similar distribution dis-
criminant analysis method (SDDA) and presents the
solutions of the optimal discriminant vectors. +e opti-
mal discriminant vectors are mutually orthogonal and
nearly statistically uncorrelated. +e proposed SDDA
method in this manuscript mainly aims at two basic
methods of LDA. One is FSLDA whose projection vectors
are orthogonal, and the other is CLDA which is statis-
tically uncorrelated after dimensionality reduction. +e
performance of the two algorithms is different under
different data. +e FSLDA with orthogonal characteristics
has stronger generalization ability, but with the increase
of training sample size, the performance of statistically
unrelated CLDA is improved. Taking both the two
characteristics into consideration, SDDA performs well
regardless of sample size. SDDA actually takes advantage
of both PCA and LDA methods to maintain optimal
performance and better adaptability in each experiment.
A large number of experiments on the Yale face database,
FERET face database, and UCI handwritten digits mul-
tiple features database confirm that SDDA is a more
effective and adaptable dimensionality reduction method,
which can extract better identification feature than
CLDA, FSLDA, and PCA. Many theories and applications
based on LDA can also be extended on the basis of the
method proposed in this paper.
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