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In this paper, a methodology of automatic generation of test scenarios for intelligent driving systems is proposed, which is based on
the combination of the test matrix (TM) and combinatorial testing (CT) methods together. With a hierarchical model of influence
factors, an evaluation index for scenario complexity is designed. Then an improved CT algorithm is proposed to make a balance
between test efficiency, condition coverage, and scenario complexity. This method can ensure the required combinational coverage
and at the same time increase the overall complexity of generated scenarios, which is not considered by CT. Furthermore, the way
to find the best compromise between efficiency and complexity and the bound of scenario number has been analyzed theoretically.
To validate the effectiveness, it has been applied in the hardware-in-the-loop (HIL) test of a lane departure warning system (LDW).
The results show that the proposed method can ensure required coverage with a significantly improved scenario complexity, and
the generated test scenario can find system defects more efficiently.

1. Introduction

In recent years, with the development of intelligent driv-
ing technologies, such advanced driver assistance systems
(ADAS) as auto emergency braking (AEB), forward collision
warning (FCW), lane departure warning (LDW), etc. have
been put into market rapidly [1]. Compared with the tradi-
tional onboard electronic systems, the working condition of
such systems is uncontrolled and indefinable exactly, which
causes the traditional test scenario design approach to be
inapplicable.On the other hand, since these systems influence
the driving safety directly, sufficient and comprehensive tests
are necessary before they go public [2, 3].

At this stage, the approaches of designing the test scenario
for ADAS can be divided into the following five types mainly:
naturalistic field operational test (N-FOT),Monte Carlo sim-
ulation (MCS), accelerated evaluation method (AE), worst-
case scenario evaluation (WCSE), and test matrix approach
(TM). When using N-FOT, vehicles equipped with ADAS
to be tested are driven by multiple drivers in real traffic
for data collection over a quite long period to achieve

enough coverage [4]. It can test the system under the real
working condition, but the occurrence probability of critical
condition is very low and most of the time the system may
be tested under the similar and simple scenarios. Moreover,
the real traffic is uncontrollable, which makes it difficult to
ensure a good test consistency [5]. To improve N-FOT, some
researchers use the data collected from naturalistic traffic to
build a stochastic driving behavior model to generate test
scenarios, which is called MCS. Based on this approach, Yang
et al. developed a car-following drivermodel to evaluate FCW
and AEB [6]. Compared with N-FOT,MCS can partly extend
the test condition by the driving behavior model, ensure a
good consistency with real traffic, and reduce the similar and
simple scenarios to increase test efficiency. Unfortunately, the
critical condition is still hardly to be generated because of the
lack of original traffic data.

To generate more critical scenarios, Zhao et al. [7] and
Huang et al. [8] proposed AE, which applies importance-
sampling theory to speed up the evaluation process by finding
the most critical scenarios. However, this method only takes
limited influence factors into account for some specific
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driving assistance function, which restricts its application
range. In order to directly extract the most critical scenarios,
WCSE was proposed based on the database built up from
the traffic accidents. Andreas validated the emergency lane
assist system based on these most dangerous scenes [9].
These extreme scenarios help to find the faults and achievable
performance of ADAS, but the coverage of all related factors
cannot be measured quantitatively. This makes it difficult
to determine when to stop the validation and evaluation
process.

As a widely used method to construct the standardized
test scenarios, TM has also been applied in the formulation of
test standards for ADAS, e.g., ISO 15622 for ACC [10], AEB
in EuroNCAP [11], etc. TM can take all factors relating to the
tested system into consideration. Therefore compared with
other methods, it can be used to design higher diversity and
complex scenarios with an acceptable testing cost, better con-
trollability, and preferable repeatability. However, the current
TM has the following problems when applied on ADAS test
[12]: (1) the number of test scenarios and considered factors
is too few to achieve the coverage requirement. Otherwise
the mostly used orthogonal experiment method (OE) for TM
leads to “dimensional disaster” when the number of consid-
ered influence factors increases; (2) and its test efficiency is
very low when failures are only triggered by the interaction
of a small number of factors.

To solve these issues of TM, we introduce the combina-
torial testing method (CT), which has already been widely
used in computer software testing [13]. The motivation of
CT is based on the fact that most of the program errors
are caused by the interaction of multiple influence factors
[14]. The set of test scenarios generated by CT can guarantee
full coverage of the required n-wise combination with as
few scenario number as possible. Cohen et al. proposed
Automatic Efficient Test Generator (AETG) algorithm, which
generates a certain number of test scenarios at each time
by using the greedy algorithm and then picks one that
can cover most of the n-wise combination of factors still
uncovered [15]. Czerwonka developed another CT tool called
Pairwise Independent Combinatorial Testing tool (PICT),
which is unlike AETG algorithm and need not produce
test scenarios to be selected beforehand [16]. Instead it
uses a fixed random seed to ensure the consistency of the
output. To trade off a reduction of the number of test
scenarios, James developed a new tool called Allpairs to
find a reasonably small set of test scenarios to satisfy the
full coverage of arbitrary pairwise combination [17]. Wu
et al. used the particle swarm optimization algorithm to
generate test suites ensuring the coverage criteriawith smaller
test set than other metaheuristic strategies [18]. Garvin et
al. modified the original simulated annealing algorithm to
further improve the efficiency of test suite generation [19].
Gonzalez-Hernandez used the Mixed-Tabu Search to build
the test suite with uniform strength [20].

All the aforementioned CT methods focus on the reduc-
tion of test set while ensuring the combinatorial coverage at
the same time.The complexity of scenario has not been taken
into account when generating combinatorial test scenarios,
which is beneficial to test effectiveness because a system tends
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Figure 1: Tree structure model of influence factors.

to malfunction under more complex conditions. Therefore, a
new method called combinatorial testing based on scenario
complexity (CTBC) is presented in this paper for automatic
generating the test scenarios for intelligent driving system,
which can achieve full coverage of n-wise combination
with a relative compact test set meanwhile increasing the
scenario complexity. The following paper is organized as
follows: Section 2 describes the model of influence factors
and potential problems; Section 3 introduces the procedure
and principle of the proposed CTBC, whose performance is
analyzed theoretically in Section 4; Section 5 validates CTBC
by application and comparative analysis; and finally Section 6
concludes the paper.

2. Problem Description

Before discussing the problem of automatic generation of
test scenario for intelligent driving systems, a mathematical
model is introduced to describe the influence factors of
intelligent driving system, which act as the input of the
automatic generation process of test scenarios.

2.1. Tree Structure Model of Influence Factors. The compo-
nents used to construct the test scenario are called influence
factors in this paper, which are related to the functionality
of intelligent driving system. These factors can be obtained
through a variety ways, such as technical specifications,
naturalistic trafficdata, etc. To ensure the comprehensiveness,
such systematic methods, e.g., classification tree [21], are
suggested to analyze the possible influence factors. In general,
the influence factors of an intelligent driving system can be
divided into three types: environment, self-state, and other
road participants.

To realize automatic generation of test scenarios, the
influence factors should be discretized to get distinct values,
which can be generated by such black box test scenarios
design methods as equivalence class partition and boundary
value processing [12]. Finally, a tree structure model of
influence factors can be derived as shown in Figure 1 as
an example. Table 3 in the Appendix shows the detailed
influence factors of LDW.
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Then the factors and their values can be described by a
general mathematical linguistic form as shown by (1) and (2):

F𝑖,𝑗 = {F𝑖+1,𝑘, 𝑘 ∈ Ω𝑖,𝑗}
𝑖 ∈ [1, ⋅ ⋅ ⋅ , 𝑆 − 1] , 𝑗 ∈ [1, ⋅ ⋅ ⋅ , 𝐿 𝑖]

(1)

where F𝑖,𝑗 is the 𝑗-th factor at the 𝑖-th layer, Ω𝑖,𝑗 is composed
of all subfactors of F𝑖,𝑗, 𝑆 is the number of factor layer, and 𝐿 𝑖
is the number of factors in the 𝑖-th layer.

All subfactors belonging to the same parent factor can
appear in one scenario, while the different values of the
same factor at the bottom layer cannot. Therefore, we need
a different formula to describe all possible values of factors
locating at the bottom factor layer:

F𝑖,𝑗 = {V𝑖,𝑘, 𝑘 ∈ Ω𝑖,𝑗} , (𝑖, 𝑗) ∈ Ω𝑒𝑛𝑑, (2)

where V𝑖,𝑘 is the 𝑘-th value of F𝑖,𝑗 andΩ𝑒𝑛𝑑 is composed of the
subscripts of all factors at the bottom layer.

Finally, the test scenario can be built by combining all
the factors at the bottom factor layer with one of their
corresponding values together. To simplify the description,
let |∙| denote the number of elements belonging to a set.Then
the end node factors can be denoted as F𝑞(𝑞 = 1, ⋅ ⋅ ⋅ , 𝑁),
where𝑁 = |Ω𝑒𝑛𝑑|. And each factor’s values can be denoted as
V𝑞,𝑝𝑞(𝑝𝑞 = 1, ⋅ ⋅ ⋅ , |F𝑞|). The mathematical expression of test
scenarios is

T = [𝑡𝑖,𝑗] ∈ R
𝑀×𝑁,

𝑡𝑖,𝑗 ∈ {V𝑗,1, ⋅ ⋅ ⋅ , V𝑗,|F𝑗|, 𝑖 = 1, ⋅ ⋅ ⋅ ,𝑀, 𝑗 = 1, ⋅ ⋅ ⋅ , 𝑁, (3)

where T is a matrix including all test scenarios, 𝑀 is the
number of test scenario, and 𝑡𝑖,𝑗 denotes the value of 𝑗-th
factor in the 𝑖-th scenario. The construction process of a test
scenario is shown in Figure 2 as an example.

2.2. ProblemsAnalysis. Based on the structuremodel of influ-
ence factors of LDW shown in Table 3 in the Appendix, the
problem of generation of effective test scenario is discussed in
this section. There are 16 influence factors at the bottom level,

which have 58 values totally. The number of test scenarios
defined in ISO 17361 is only 8 [22], which is far away to cover
all possibilities and its error detection capability is pretty bad.
Such standard test scenarios only can be used to validate
the primary functionality. On the other hand, the scenarios
generated by OE can ensure the coverage of all influence
factors, but the number of scenarios reaches 349,920,000,
which is unacceptable in practice because of the test cost. By
using the PICT, the number of scenarios ensuring pairwise
combination is reduced to 53 [23]. However, the percentage of
scenarios with higher complexity cannot be improved, under
which LDW may malfunction easily. Therefore in order to
increase the proportion of scenario with higher complexity to
further improve the test efficiency, an improved CT method
called CTBC is to be introduced in the next section.

3. Combinatorial Test Generation Method
Based on Complexity

To control the complexity of the generated test scenarios, we
need an index to measure the contribution of factor value to
the complexity of scenario.

3.1. Complexity Index of Scenario. The contribution of each
factor or value to the complexity of scenario can be deter-
mined by the Analytic Hierarchy Process (AHP), which
is widely used in the field of engineering because of its
ability to make quantitative analysis of subjective evaluation
[24]. The calculation process is based on the tree structure
model of influence factors as shown in Figure 1. According
to their relative contribution, a judgment matrix A𝑖,𝑗 can be
constructed as

A𝑖,𝑗 = [𝑎ℎ,𝑓] ∈ R
|Ω𝑖,𝑗|×|Ω𝑖,𝑗 |

𝑖 ∈ [1, ⋅ ⋅ ⋅ , 𝑆 − 1] , 𝑗 ∈ [1, ⋅ ⋅ ⋅ , 𝐿 𝑖] , ℎ, 𝑓 = 1, ⋅ ⋅ ⋅ , 󵄨󵄨󵄨󵄨󵄨Ω𝑖,𝑗󵄨󵄨󵄨󵄨󵄨
(4)

where 𝑎ℎ,𝑓 represents a comparison of the relative importance
of any two elements in Ω𝑖,𝑗, and it can be determined by
Saaty’s scaling law [24]. It also has the following properties:

𝑎ℎ,𝑓 =
{{{{{

1 ℎ = 𝑓
1
𝑎𝑓,ℎ ℎ ̸= 𝑓 (5)

Then, the normalized eigenvector corresponding to the
maximum positive eigenvalue of A𝑖,𝑗 is

W𝑖,𝑗 = [𝜔𝑖,𝑘] ∈ R
1×|Ω𝑖,𝑗|, 𝑘 ∈ Ω𝑖,𝑗 (6)

where 𝜔𝑖,𝑘 represents the relative importance of influence
factors or its corresponding values according to [24].

However, the relative importance degree is not com-
parable for the factors belonging to different categories.
Therefore to measure the importance of different values
used to construct test scenario uniformly and equally, the
following importance index of value is used:

𝜔̂𝑖,𝑘 = ∏
(𝑎,𝑏)∈Ω̂𝑖,𝑘

𝜔𝑎,𝑏, 𝑘 ∈ Ω𝑖,𝑗, (𝑖, 𝑗) ∈ Ω𝑒𝑛𝑑 (7)
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Table 1: Variables used in pseudocode of CTBC.

Variables Meanings
threshold The threshold value
𝛽 The complexity improvement coefficient, 𝛽 ∈ [0%, 100%]
uncovered The set of combinations that remained uncovered
comb The combination in uncovered
combweight The sum of the values’ importance indices
setofweight The set of combweight
testscenario The new test scenario
best The first chosen combination with max(combweight) in current uncovered in testscenario
nextbest The combination with max(combweight) in current uncovered

where Ω̂𝑖,𝑘 is composed of the subscript of the nodes in
the route from V𝑖,𝑘 to the root node F1,1. Table 3 shows the
importance index of factor values of LDW. Then, with the
importance index, the complexity index C𝑖 of the i-th test
scenario in T is defined as

C𝑖 =
𝑁∑
𝑗=1

𝜔̂𝑖,𝑗, (8)

where 𝜔̂𝑖,𝑗 is the importance index of 𝑡𝑖,𝑗.
3.2. Complex Index Based CT Algorithm. In this section, a
CTBC algorithm is introduced to improve the test scenario
complexity while ensuring required combinational coverage.
An idea to improve the scenario complexity is that the factor
value with higher importance index is preferred to generate
the test scenario. Naturally more complex scenarios can be
found at the beginning of automatic generation process. But
the importance index of the left factor value not covered
becomes very small. It is impossible to construct complex
scenario using these factor values, which is bad for the overall
complexity of all generated scenarios.

To overcome this problem, a threshold is defined to
choose the aspect to be considered when generating test
scenarios. When generating a new scenario, if the summed
importance index of the selected factor values is larger than
this coefficient, the unselected factor values with the most
combinational coverage is preferred. Otherwise, the impor-
tance index is considered preferentially when determining
the value of left factors of a scenario. By this way, a tradeoff
between combinational coverage and scenario complexity is
made.

For a given tree structure model of influence factors
with their importance index (4), there exists a boundary
of achievable maximum or minimum complexity of sce-
nario. If the selected threshold is less than the minimum
complexity, the CTBC algorithm generates scenarios only
considering the combinational coverage requirement like
AETG. In Section 4.1, a complexity improvement coefficient
is proposed to determine a proper threshold.

The CTBC algorithm generates one test scenario at a
time and lasts until the combinations of all possible values
have been covered by at least one scenario. Based on the

aforementioned idea and the variables defined in Table 1, the
pseudocode of CTBC is shown in Algorithm 1.

When programming the executable code, the following
should be noted:

(a) In order to accelerate the searching process, all
uncovered combinations are put in a red-black tree according
to the sum of importance indices in the descending order
[25].

(b) Moreover, the requirement of reproducibility and
certainty is important for the test of ADAS. Therefore the
lexicographical order is used to ensure the consistency of gen-
erated scenarios when there exist multiple choices providing
the same sum of importance indices [26].

4. Performance Analysis of CTBC

The generated test scenarios are evaluated mainly by two
aspects: (a) test cost measured by the number of scenarios (b)
and test effectiveness evaluated by the overall scenario com-
plexity in this paper. To make an optimal tradeoff between
these two aspects, a complexity improvement coefficient is
proposed, by which the best test scenarios can be found with
a statistical method.

4.1. Optimization by Complexity Improvement Coefficient.
The purpose of introducing this complexity improvement
coefficient 𝛽 is to improve the overall scenario complexity:

𝛽 = 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 − C

C − C
× 100% (9)

where C and C are the minimum and maximum achievable
scenario complex indexes. From the fundamental of CTBC,
a more complex scenario can be obtained by increasing 𝛽,
but the number of needed scenarios ensuring combinational
coverage may also increase. To make a balance between the
test cost and effectiveness to find the best test scenarios, the
overall complexity of test scenarios is defined firstly:

C̃ (𝛽) = ∑𝑀(𝛽)𝑖=1 C𝑖 (𝛽)𝑀 (𝛽) (10)

where C̃(𝛽),𝑀(𝛽), and C𝑖(𝛽) are the overall complexity, the
number of test scenarios, and the 𝑖-th scenario’s complexity
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1: Input: F𝑞(𝑞 = 1, ⋅ ⋅ ⋅ ,𝑁), V𝑞,𝑝𝑞 (𝑝𝑞 = 1, ⋅ ⋅ ⋅ , |F𝑞|), 𝜔̂𝑞,𝑝𝑞 , 𝑛, 𝛽
2: Output: T
3: Obtain uncovered
4: for all comb in uncovered do:
5: 𝑐𝑜𝑚𝑏𝑤𝑒𝑖𝑔ℎ𝑡 = ∑

𝜔̂𝑞,𝑝𝑞∈comb
𝜔̂𝑞,𝑝𝑞

6: Add combweight to setofweight
7: end for

8: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝛽 𝑁∑
𝑞=1

max(𝜔̂𝑞,𝑝𝑞)
9: while uncovered ̸= 0 do
10: best = combination with max(combweight) in uncovered
11: for all 𝑖 in 𝑛 do
12: Assign factors and values from combination that corresponding to best to testscenario
13: Remove best from uncovered
14: end for
15: if best > threshold then
16: while ((length of testscenario) < 𝑁) do
17: nextbest = combination with max(combweight) in uncovered
18: Comparing values of the same factors between nextbest and testscenario
19: if there exist conflicting values then
20: continue to select the next combination corresponding to nextbest in the descending order of combweight
21: end if
22: Factors and values that corresponding to nextbest but not exist in testscenario are assigned to testscenario
23: Remove nextbest from uncovered
24: end while
25: else
26: Assign factor F𝑞 that are not contained in testscenario with the value of max(𝜔̂𝑞,𝑝𝑞)
27: end if
28: Add testscenario to T
29: end while

Algorithm 1: Pseudocode for CTBC.

index, which all are functions of the complexity improvement
coefficient 𝛽.

Here the AHP method is used again to determine the
weighting of test cost and effectiveness [24]. Then the opti-
mization problem can be described by

max
𝛽

𝑍,
𝑍 = 𝑆1C̃∗ − 𝑆2𝑀∗,
C̃∗ = C̃ (𝛽) − C

C − C
,

𝑀∗ = 𝑀(𝛽) −𝑀
𝑀 −𝑀

(11)

where 𝑍 denotes the composite test effect, 𝑆1 and 𝑆2 are
the normalized weight for scenario complexity and test cost
determined by AHPmethod, C̃∗ and𝑀∗ are the normalized
value of complexity and test cost, and 𝑀 and 𝑀 are the
maximum and minimum number of scenarios. In (8), the
“min-max scaling” process is used to put C̃(𝛽) and 𝑀(𝛽) in
the same scale to avoid the challenge of selecting a proper
weight.

For a given tree structure model of influence factors
and its importance index values, the achievable maximum
or minimum complex index of scenario can be derived by
selecting the factor value with highest or lowest importance
index. Unfortunately the range of scenario number cannot
be obtained from the previously known information of the
tested system, which is used to normalize the test cost in
(8). In the following section, an approximated method is
presented to estimate the range of scenario number.

4.2. Estimation of Test Scenario Number. The test scenario
number in T can be discussed in two situations: (a) T is a
Covering Array (CA) and (b) T is a Mixed Covering Array
(MCA). The difference between CA and MCA is whether
the number of each factor value is the same, i.e., in CA|F1|=|F2|=⋅ ⋅ ⋅ =|FN|=𝑢, and in MCA the number of values is
different [27].

Firstly, the simpler condition is considered, i.e., T is a
CA. At this condition, if each factor value is only required
to appear at least once, then 𝑢 test scenarios are needed. If
all combinations of values for any 𝑛 factors are required to
be covered, the lower bound of scenario can be found by
the orthogonal table [28]. And Bush proposed a construction
method of the orthogonal table forCA,which has the smallest
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Figure 3: Hardware-in-loop test system.

number of scenarios [29]. At the condition 𝛽 = 0, CTBC
algorithm gives priority to test cost and the number of its
generated scenario is no less than that of the orthogonal table
[29]:

𝑀 = 𝑢𝑛 (12)

The maximum number of scenarios is reached when 𝛽 =100%.This means that when a new test scenario is generated,
it can only cover one combination in the set of uncovered
combinations and the upper bound of scenario number can
be estimated by

𝑀 = (𝑁𝑛)𝑢𝑛 = 𝑁!𝑢𝑛
(𝑛! (𝑁 − 𝑛)!) (13)

where (𝑁𝑛 ) denotes the number of options for selecting any𝑛(𝑛 ≤ 𝑁) factors from𝑁 ones.
Based on the aforementioned analysis, the condition that

T is aMCA is discussed next. Firstly all factors are rearranged
according to the number of their values from large to small,
and we get F∗1 , F∗2 , ⋅ ⋅ ⋅ , F∗𝑁 satisfying |F∗1 | ≥ |F∗2 | ≥ . . . ≥ |F∗𝑁|.
Similar to CA, the lower bound of scenario number may
happen when 𝛽 = 0 and can be estimated by

𝑀 = 󵄨󵄨󵄨󵄨F∗1 󵄨󵄨󵄨󵄨𝑛 (14)

Analogously, when 𝛽 = 100% the maximum number of
scenarios may be reached, which is calculated by

𝑀 = ∑
C𝑖∈C(𝑁,𝑛)

∏
𝑗∈C𝑖

󵄨󵄨󵄨󵄨󵄨F𝑗󵄨󵄨󵄨󵄨󵄨 (15)

where C(𝑁, 𝑛) denotes the set of combinations for selecting
any 𝑛(𝑛 ≤ 𝑁) factors from 𝑁 factors, and C𝑖 is the 𝑖-th
combination of factors in C(𝑁, 𝑛).
5. Application and Analysis

In this section, the proposed test scenario generation method
is applied to evaluate an LDW system to validate its effective-
ness by hardware-in-the-loop test as shown in Figure 3.

In Figure 3, “A” is a workstation where the virtual reality
simulation software “Prescan” runs, “B” is the external driver
input device, “C” is a host computer that can configure and
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Figure 4: Optimization process of test effect.

monitor the real-time simulator, “D” is the MicroLabBox
produced by Dspace and acting as a real-time simulator to
run the vehicle dynamical model, and “E” is the tested LDW
system.

5.1. Optimization of Complexity Improvement Coefficient.
With this application, the strength of combination coverage
is selected to be 𝑛 = 2 to find the optimal complexity
improvement index.The judgment matrix A = [ 1 61/6 1 ] is used
to determine the normalized weights of scenario complexity
and test cost:

S = [𝑆1 𝑆2]T = [0.8333 0.1667]T . (16)

The optimization process of test effect 𝑍(𝛽) is shown in
Figure 4. The best test effect is 0.0042 when 𝛽 = 4%. At this
condition, M(𝛽) = 324 and C̃(𝛽) = 0.4769. A tradeoff
between the test cost and the scenario complexity is success-
fully made by the proposed approach to achieve better test
effectiveness.

5.2. Fundamental Validation of CTBC. The fundamental of
the CTBC algorithm is that the ADAS under test is easier to
malfunction under more complex scenarios. The scenarios
are generated by using 𝑛 = 2 and 𝛽 = 4%, which is
optimized in Section 5.1. The number of scenarios generated
by CTBC is 324, among which 10 scenarios, whose complex
index distributes uniformly, are selected to test the LDW.
These scenarios are numbered from 1 to 10 in descending
order according to their complex index. The fault detection
rate under different scenarios is shown in Figure 5.

As can be seen from Figure 5, scenario No. 1 has a fault
detection rate of 42.20%, while that of scenario No. 10 is only
5.9%. The fault detection rate fluctuates between 35.65% and
43.80% as the complexity index falls from 0.4729 of scenario
No. 1 to 0.4334 of scenario No. 7. And the fault detection
rate reduces dramatically from scenario No. 7 to No. 10. The
results show that overall the bigger the complex index of
scenario is, the easier it is to find the malfunctions of tested
system.This fact can be used not only to guide the automatic
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Figure 5: Relationship between complexity and fault detection rate.
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Figure 6: Number of test scenarios designed by different TM
methods.

generation algorithm of test scenario, but also to evaluate the
effectiveness of test scenarios generated by other algorithms.

5.3. Performance Analysis. In this section, CTBC algorithm
is compared with other TM methods to validate its improve-
ment of test effect. The number of test scenarios defined in
ISO 17361, designed by the OE method, and generated by
CTBC algorithm with the strength of combination coverage𝑛 = 2, 3, 4 is shown in Figure 6. Being similar to the optimiza-
tion process in Section 5.1, the best complexity improvement
coefficient is selected to be 𝛽 = 3% when 𝑛 = 3, 4.

It can be seen clearly that the number of the test scenario
defined in ISO 17361 is too few to test the LDW adequately
and throughly as there are only 8 scenarios. Moreover, these
scenarios are quite simple.Thenumber of scenarios generated
by OE far exceeds others, which is almost impossible to
undertake because of test costs. The scenarios generated by

Table 2: complexity index distribution.

PICT Allpairs AETG CTBC
Min 0.1360 0.0993 0.1094 0.1109
Lower quartile 0.2115 0.2142 0.1439 0.4509
Median 0.2546 0.2475 0.1935 0.4769
Upper quartile 0.2997 0.3101 0.2760 0.4884
Max 0.3699 0.4128 0.4190 0.5071
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Figure 7: Comparison of the complexity index of test scenario.

CTBC are more reasonable by synthetically considering the
test effectiveness. Furthermore from the previous studies it is
known that a quite small 𝑛 can reveal most of potential errors
[26].

Moreover the bound of scenario number is the basis
of the optimization process of test scenario introduced in
Section 4.1. From the results in Figure 6, it is found that the
number of scenarios generated by CTBC lies in the estimated
range under different coverage strength, which implies that
the proposed estimation of bound of scenario number in
Section 4.2 is effective.

5.4. Scenario Complexity Index Improvement. The best
advantage of CTBC algorithm is its improvement of
scenario complexity index, which is beneficial to finding
fault validated in Section 5.2. The primary focus of this
experiment is to set comparison with the test set generated
by other CT algorithms which does not consider the
complexity of scenario and is the basis of CTBC. Therefore,
choosing such methods can highlight the superiority of the
proposed algorithm. Moreover, PICT, Allpairs, and AETG
have already been widely applied in engineering applications.
Therefore, they are used to validate the effectiveness of CTBC
in increasing the overall complexity index of test scenarios.
The comparative results are shown in Figure 7 and Table 2.
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Table 3: Influence factors of LDW system.

Influence factor Value Importance index

Traffic environment
parameters Lightning environments

Weather

Sunny 0.0126
Cloudy 0.0475
Rainy 0.1101
Foggy 0.1419

Time
Day (8:00-17:00) 0.0101

Dusk/Dawn (17:00-19:30/5:30-8:00) 0.0403
Night (19:30-5:30) 0.0807

Rapid changes in light
Pass through tunnel 0.0098
Pass under footbridge 0.0162

None 0.0015

Traffic environment
parameters Lane lines parameters

Lane line clarity

Few fade and holes 0.0023
Intermediate fade and holes 0.0088

Much fade and holes 0.026
No fade and holes 0.0009

Lane line integrity Lane line on one side 0.0038
Lane line on both sides 0.0268

Lane line number Single 0.0148
double 0.0049

Lane line color White 0.0007
Yellow 0.0033

Lane line type Dashed 0.0276
Solid 0.003

Traffic environment
parameters Road parameters

Curvature

Straight road (0) 0.0039
Bend road (1/750) 0.0083
Bend road (1/500) 0.0186
Bend road (1/250) 0.0401

Lane number
1 0.0043
2 0.001
3 0.0007

Lane marks

One mark 0.002
Combination of two marks 0.0039
Combination of three marks 0.008
Combination of four marks 0.0157

None 0.001

Slope
Uphill (Slope of +5%) 0.0068

Downhill (Slope of -5%) 0.0044
None 0.0011

Roadside facilities

One facility 0.0062
Combination of two facilities 0.0103
Combination of three facilities 0.0176
Combination of four facilities 0.0277
Combination of five facilities 0.052

None 0.0038

Subject vehicle
driver's behavior Longitudinal speed

40 km/h 0.0016
55 km/h 0.018
60 km/h 0.0148
80 km/h 0.0148
90 km/h 0.0111
100 km/h 0.0094
120 km/h 0.0072
140 km/h 0.0014
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Table 3: Continued.

Influence factor Value Importance index

Subject vehicle
driver's behavior Lateral speed

0 m/s 0.0013
0.1 m/s 0.0071
0.4 m/s 0.0092
0.8 m/s 0.0114
1.0 m/s 0.0102

Other traffic
participants' state Road congestion

0 lane lines missing 0.0016
25% lane lines missing 0.0043
50% lane lines missing 0.009
75% lane lines missing 0.015
90% lane lines missing 0.0215

53 60 61
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Figure 8: Comparison of test scenario number.

It can be seen that compared with other CT algorithms,
though the maximum value of complexity index is only
increased slightly, the number of scenarios with higher
complexity index is increased significantly, which implies that
the scenarios generated by CTBC can find more errors.

The number of test scenario generated by these methods
is compared in Figure 8. The number of scenarios generated
by CTBC is increased by 6.1132, 5.4 and 5.3115 times, respec-
tively. It is still greatly reduced compared with that of ET (as
shown in Figure 6). Besides, an appropriate increase of test
cost is acceptable in order to give priority to detect the hidden
errors of ADAS systems, which have respect with the driving
security.

6. Conclusions

Considering the high security of intelligent driving systems,
this paper proposes a new approach to automatically generate
more effective test scenarios to improve the test effectiveness.
The theoretical analysis and application results show the
following:

(1) The larger the complexity index of scenario is, the
easier it is to find out the malfunctions of tested systems.

(2) The proposed CTBC algorithm can generate
more complex scenarios compared with the traditional

CT method, while ensuring the required combinational
coverage.

(3) Compared to the widely used ETmethod, the number
of test scenarios generated by CTBC algorithm is reduced
greatly, which leads to a dramatically cut down of test cost.

Appendix

See Table 3.

Data Availability

The tree structure model of LDW and the importance
index of each factor are listed in the appendix. The ATEG
algorithm is an online program, which can be found at
http://alarcostest.esi.uclm.es/CombTestWeb/combinat orial
.jsp. The Allpairs and PICT algorithms are free software,
which are available from the corresponding author upon
request. The program of CTBC algorithm programed by
Python and its input file are available from the corresponding
author upon request.
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