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The analytical model of an axially precompressed cantilever bimorph is established using the Hamilton’s principle in this study, and
the static characteristics are obtained. The dynamic equations of the cantilever bimorph in generalized coordinates are established
using a numerical method, and the dynamic characteristics are analyzed. Finally, simulations are performed and experiments are
conducted to verify the validity of the theory. The results show that increase of axial force has significant amplification effects on
the steady-state response amplitude of the displacement, and it reduces the resonance frequency. The response time is still in the
millisecond range under a large axial force, which indicates that the bimorph has excellent dynamic characteristics as an actuator.

1. Introduction

With the development of microelectromechanical systems
and flight control technology, the miniaturization and intel-
lectualization of unmanned aerial vehicles (UAVs) have
attracted increasing attention from researchers [1]. As an
important part of the aircraft, the actuator determines the
performance of the flight control system [2]. The traditional
electromagnetic actuator has many problems, such as a
narrow control band, low precision, low energy density, and
it has gradually been unable to satisfy the requirements of
design and application [3, 4]. Therefore, a new driving mode
of control surface is required to solve the problem.

With the rapid development of intelligent materials,
researchers are increasingly attempting to apply them to the
design and manufacture of aircraft [5, 6]. The energy density
and control bandwidth are two important criteria for the
actuator of micro air vehicles. Compared with shapememory
alloys andmagnetostrictivematerials, piezoelectricmaterials,
owing to many advantages such as wide band, high energy
density, and high conversion rate ofmechanical and electrical
energy, have become the ideal material for the design of
aircraft actuator [7]. As early as 1998, Wlezien R W of the
NASA Langley Research Center proposed that piezoelectric
materials would be the best choice for the actuator of variant

aircraft, but they must overcome the limitation of their small
deformation [8].

Piezoelectric bimorph has advantages such as low weight,
low power consumption, simple structure, and absence of
electromagnetic interference, which is very suitable for the
actuator of micro aircraft and intelligent ammunition [9–
11]. Owing to the small excitation strain of piezoelectric
materials [12], piezoelectric bimorph has the disadvantage of
small displacement output. In order to solve this problem,
researchers have conducted extensive studies to investigate
the characteristics of the bimorph [13, 14], and have proposed
various solutions, including various kinds of mechanical
magnification mechanisms, such as lever mechanism, planar
four bar mechanism, and triangular displacement amplifi-
cation mechanism [15, 16]. In 1997, Lesieutre proposed the
concept of PBP (postbuckled precompressed) [17, 18], which
showed that the displacement output and electromechani-
cal conversion efficiency will increase upon applying axial
precompression to a piezoelectric bimorph. In theory, the
electromechanical coupling factor can reach 100 percent
when the axial force is equal to the buckling load. Based
on this theory, researchers at Delft University of Technology
successfully applied piezoelectric bimorph to the design and
manufacture of various aircraft, such as morphing wing
UAVs [19] and XQ138 [20]. Moreover, they also used PBP
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actuators to optimize the design of the piezoelectric flight
control surface [21]. In order to analyze the static and
dynamic characteristics of a piezoelectric bimorph under
axial precompression, Giannopoulos et al. of the Civil and
Materials Engineering Department at the Royal Military
Academy used nonlinear mechanics to establish a theoretical
model for bimorphs and verified the validity of the analytical
model through experiments and simulations [22, 23].

For actuators driven by axially precompressed piezoelec-
tric bimorphs, the characteristics of the bimorphs determine
the performance of the actuators. Therefore, it is necessary
to definitively describe the static and dynamic characteristics
of axially precompressed bimorphs. However, the dynamic
expression of the existing precompressed bimorph is not per-
fect, and the established kinetic model has been significantly
simplified. Most of the researchers took the effect of the
piezoelectricity as the bending moment when establishing
the statics model [19, 20]. For the establishment of the
kinetic model, they simplified the bimorph into a single-
degree-of-freedom system to obtain the first-order natural
frequency [21], but this method could not get the output
characteristics of the system at other excitation frequencies.
In this paper, the rigid-flexible coupling dynamics model
of the bimorph is established based on the finite element
method, which can be used to analyze various dynamic
characteristics such as amplitude-frequency characteristics
of the system. The validity of the model is verified through
simulations and experiments, thus providing a theoretical
basis for the application of the piezoelectric bimorph.

2. Establishment of Static and Dynamic Model

2.1. Driving Principle of Piezoelectric Bimorphs as Actuators.
Piezoelectric bimorph consists of two piezoelectric layers and
one substrate layer. As shown in Figure 1, the polarization
direction of the two piezoelectric materials is the same. The
same voltage signal is connected to the upper and lower
surfaces, and the substrate is grounded.The two piezoelectric
layers extend and contract respectively so that the bimorph
can deform in two directions. If a mechanical device is added
at the end of the structure, the bimorph will become an
actuator of the servo system.

2.2. StaticModel of Axially Precompressed Cantilever Bimorph.
The bimorph is simplified to a three-layer Euler beam model
without considering the kinetic energy of infinitesimal rota-
tion [24]. The kinetic energy, potential energy, and the work
done by the axial force and the electric field are calculated.
The following equations can be obtained by considering
variation of the energy functionals.

𝛿𝑇𝑏𝑖 = (𝜌A) ∫𝐿
0
�̇�𝛿�̇�𝑑𝑥

𝜌A = 2𝜌𝑝𝐴𝑝 + 𝜌s𝐴 𝑠,
(1)

where 𝛿𝑇𝑏𝑖 is the variation of the total kinetic energy and 𝜌𝐴
represents the linear density of the bimorph. The subscript 𝑠
and 𝑝 indicate the substrate and piezoelectricity, respectively.

𝜌𝑠 and 𝜌𝑝 are the corresponding density, 𝐴 𝑠 and 𝐴𝑝 are the
corresponding cross-sectional area. L represents the length
of the bimorph. �̇� is the first derivative of the neutral layer
deflection versus time.

𝛿𝑈𝑏𝑖 = 𝐸𝐼∫𝐿
0
𝑤𝛿𝑤𝑑𝑥 + 𝑀𝑒2 ∫𝐿

0
𝛿𝑤𝑑𝑥

𝑀𝑒 = 𝑏𝐸3𝑑31𝐸𝑝ℎ𝑝 (ℎ𝑠 + ℎ𝑝)
𝐸𝐼 = 𝐸s𝐼𝑠 + 2𝐸𝑝𝐼𝑝.

(2)

𝛿𝑈𝑏𝑖 is the variation of the total potential energy and
EI represents the bending stiffness of the bimorph. 𝐸𝑠 and𝐸𝑝 represent the elastic moduli of the substrate and the
piezoelectric layer, respectively. 𝐼𝑠 and 𝐼𝑝 are the correspond-
ing inertias, ℎ𝑠 and ℎ𝑝 are the corresponding thicknesses.
b represents the width of the bimorph, 𝑤 is the second
derivative of the neutral layer deflection versus the x-axis. 𝐸3
represents the electric field strength along the z-axis, 𝑑31 is
the piezoelectric constant in the corresponding direction.The
following conclusion can be obtained from (2).

𝛿𝑈𝑏𝑖 = 𝐸𝐼(𝑤 𝛿𝑤𝐿0 − 𝑤𝛿𝑤𝐿0 + ∫
𝐿

0
𝑤(4)𝛿𝑤𝑑𝑥)

+ 12𝑀𝑒 𝛿𝑤
𝐿

0
.

(3)

Assuming that the beam is not extensible and the axial
pressure 𝐹 is applied to the beam, the total work of the system
can be obtained. The following formula can be achieved by
considering the variation of the total work.

𝛿𝑊 = −12𝑀𝑒 𝛿𝑤
𝐿

0
+ 𝐹𝑤 𝛿𝑤|𝐿0 − 𝐹∫𝐿

0
𝑤𝛿𝑤𝑑𝑥. (4)

From the Hamilton’s principle, the stationary point of the
functional is obtained by

𝛿∫𝑡2
𝑡1

(𝑇𝑏𝑖 − 𝑈𝑏𝑖 +𝑊)𝑑𝑡 = 0. (5)

According to the partial differential equations obtained
above, it can be observed that the kinetic equation of the
bimorph is consistent with that of the ordinary homogeneous
beam.The converse piezoelectric effect is not reflected in the
equation but in the boundary condition

𝜌𝐴�̈� + 𝐸𝐼𝑤(4) + 𝐹𝑤 = 0. (6)

Assuming that the axial force is always horizontal, the
boundary conditions of the cantilever bimorph can be
obtained as follows:

𝑤 = −𝑀𝑒𝐸𝐼 , 𝑥 = 𝐿
𝐸𝐼𝑤 + 𝐹𝑤 = 0, 𝑥 = 𝐿

𝑤 = 0, 𝑥 = 0
𝑤 = 0, x = 0.

(7)
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Figure 1: Piezoelectric bimorphs (a) Deformation modes; (b) Connection mode; (c) Structure.

The deflection of the cantilever bimorph is obtained by
solving the above formula as follows:

𝑤𝑠 = 𝑀𝑒 [cos (𝜆𝑥) − 1]𝐹 cos (𝜆𝐿)
𝜆 = √ 𝐹𝐸𝐼 .

(8)

When the denominator of formula (8) is zero, the first-
order buckling critical load of the cantilever bimorph is
obtained as

𝐹𝑐𝑟 = 𝐸𝐼 𝜋24𝐿2 . (9)

2.3. Rigid-Flexible Coupling Dynamic Model of Cantilever
Bimorph. For the cantilever bimorph, it is difficult to obtain
the analytical solution. Therefore, the bimorph can be dis-
cretized along the x-axis, and the deflection and rotation
angles at both ends of the beam element can be selected
as the generalized coordinates. The deflection is assumed to
obtain the shape function matrix of the element, and the lin-
ear differential equations and element characteristic matrix
based on the generalized coordinates are obtained using the
Hamilton’s principle. Then the integral characteristic matrix
of the bimorph is obtained.

The bimorph is dispersed along the x-axis into 𝑛 units,
and the length of each unit is �𝑥 = 𝐿/𝑛. The unit deflection
is assumed as [24]

𝑤 = [𝑓]𝑇 [𝑎] = [𝑁] [𝛿] . (10)

Here

[𝑓] = [1 𝑥 𝑥2 𝑥3]𝑇
[𝑎] = [𝑎1 𝑎2 𝑎3 𝑎4]𝑇 ,

(11)

[𝛿] =
[[[[[
[

𝑤1
𝑤1𝑤2
𝑤2

]]]]]
]
=
[[[[[
[

1 0 0 0
0 1 0 0
1 Δ𝑥 Δ𝑥2 Δ𝑥3
0 1 2Δ𝑥 3Δ𝑥2

]]]]]
]

[[[[[
[

𝑎1
𝑎2
𝑎3
𝑎4

]]]]]
]

= [Λ] [𝑎] .

(12)

From (11) and (12), the shape function matrix of the unit
can be calculated as

[𝑁] = [𝑓]𝑇 [Λ]−1 . (13)

Therefore, the deflection𝑤 can be expressed as a function
of the generalized coordinates 𝛿, and the bimorph is sim-
plified as a multi-degree-of-freedom system. Subsequently,
the dynamic equation of the unit is built using the Lagrange
equation. The kinetic energy, strain energy, potential energy,
and work done by the axial force are expressed as a function
of the generalized coordinate 𝛿, and themassmatrix, stiffness
matrix, and excitation vector are obtained. Here, the kinetic
energy of the bimorph element is expressed as

𝑇 = 𝑇𝑠 + 2𝑇𝑝 = 12𝜌𝐴∫
Δ𝑥

0

̇𝛿𝑇𝑁𝑇𝑁 ̇𝛿𝑑𝑥. (14)

Here,𝜌A andEI have the same formas formula (6), except
that the length 𝐿 is replaced by �x. The expression of the
strain energy and electric potential energy of the piezoelectric
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material layer can be obtained from the piezoelectric equa-
tion. The total strain energy of the unit is as follows:

𝑈 = 𝑈𝑠 + 2𝑈𝑝
= 12𝐸𝐼∫

Δ𝑥

0
𝛿𝑇𝑁𝑇𝑁𝛿𝑑𝑥 + 𝑀𝑒2 [0 −1 0 1] 𝛿, (15)

where 𝑀𝑒 is the equivalent of 𝑀𝑒 in (2). Subsequently, the
expression of the effect of voltage and axial force on the
generalized coordinates is calculated. The electric potential
energy is

𝑊𝐸 = −𝑀𝑒4 [0 −1 0 1] 𝛿 − 𝑏Δ𝑥ℎ𝑝𝐸𝑝𝐸23𝑑2312
+ 𝑏Δ𝑥ℎ𝑝𝐸23𝜀332 .

(16)

The effect of axial force is

𝑊𝐹 = 𝐹∫Δ𝑥
0

𝑤22 𝑑𝑥 = 𝐹2 ∫
Δ𝑥

0
𝛿𝑇𝑁𝑇𝑁𝛿𝑑𝑥. (17)

The total work is

𝑊 = 𝑊𝐹 + 2𝑊𝐸. (18)

The linear differential equations are established using the
Lagrange equation as follows:

𝑑𝑑𝑡 𝜕𝑇𝜕 ̇𝛿 +
𝜕𝑈𝜕𝛿 = 𝜕𝑊𝜕𝛿 . (19)

The dynamic equation of the element is given by

[𝑀] { ̈𝛿} + [𝐾] {𝛿} = 𝑀𝑒 [0 1 0 −1]𝑇 . (20)

The characteristic matrix of the element is obtained by
calculating the integrals of the shape function, and the mass
matrix is as follows:

[𝑀] = 𝜌𝐴∫Δ𝑥
0
𝑁𝑇𝑁𝑑𝑥

= 𝜌𝐴
[[[[[[[[[[[
[

13Δ𝑥35 11Δ𝑥2210 9Δ𝑥70 −13Δ𝑥242011Δ𝑥2210 Δ𝑥3105 13Δ𝑥2420 −Δ𝑥31409Δ𝑥70 13Δ𝑥2420 13Δ𝑥35 −11Δ𝑥2210−13Δ𝑥2420 −Δ𝑥3140 −11Δ𝑥2210 Δ𝑥3105

]]]]]]]]]]]
]

.
(21)

Thus, the stiffness matrix of the unit can be obtained
according to the above calculation. For the case of additional
elastic elements in the unit (such as springs), this method is

also applicable by simply adding the required stiffness factor
to the corresponding position in the stiffness matrix.

[𝐾] = 𝐸𝐼

[[[[[[[[[[[[
[

12Δ𝑥3 6Δ𝑥2 −12Δ𝑥3 6Δ𝑥26Δ𝑥2 4Δ𝑥 −6Δ𝑥2 2Δ𝑥−12Δ𝑥3 −6Δ𝑥2 12Δ𝑥3 −6Δ𝑥26Δ𝑥2 2Δ𝑥 −6Δ𝑥2 4Δ𝑥

]]]]]]]]]]]]
]

− 𝐹

[[[[[[[[[[[[
[

65Δ𝑥 110 −65Δ𝑥 110110 2Δ𝑥15 −110 −Δ𝑥30−65Δ𝑥 −110 65Δ𝑥 −110110 −Δ𝑥30 −110 2Δ𝑥15

]]]]]]]]]]]]
]

.

(22)

The characteristicmatrix of the bimorph can be described
using an iterative method. When n=i+1, the mass matrix of
the bimorph is

[𝑀]𝑏𝑖 = [[𝑀𝑖]2(𝑖+1)×2(𝑖+1) 02(𝑖+1)×202×2(𝑖+1) 02×2 ]

+ [02𝑖×2𝑖 02𝑖×4
04×2𝑖 [𝑀]4×4] .

(23)

For the cantilever boundary conditions, the first two rows
and the first two columns in the above matrix are removed
and the final mass matrix is obtained. The stiffness matrix
is homogeneous. Moreover, the external excitation vector
induced by the voltage is in the following form:

𝑏𝐸3𝑑31𝐸𝑝ℎ𝑝 (ℎ𝑠 + ℎ𝑝) [0 1 0 ⋅ ⋅ ⋅ 0 −1]1×2(𝑛+1)𝑇. (24)

3. Establishment of Finite Element Simulation

Combining the dynamics equation of the bimorph given by
the finite element method, the characteristic matrix of the
unit is assembled into the totalmatrix.Then the first two rows
and the first two columns are removed from the total matrix.
Therefore, the first-order natural frequency of the bimorph
can be achieved, which is shown in Figure 2. The parameters
of the bimorph can be obtained from [25].

Figure 3 shows the first-order natural frequency of
the cantilever bimorph under different axial forces. In the
numerical method, the bimorph is equally divided into 5
elements. The ANSYS simulation results are consistent with
the numerical results.

In order to get the amplitude-frequency characteristics
of the cantilever bimorph, the total characteristic matrix is
constructed. For the cantilever condition, the final stiffness
matrix [𝐾]𝑏𝑖 and themassmatrix [𝑀]𝑏𝑖 are obtainedwhen the
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Figure 2: Convergence of first-order natural frequency.
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Figure 3: First-order natural frequency under different axial forces.

first two rows and the first two columns of the characteristic
matrix are removed. Similarly, the first two rows in the
excitation vector are removed.Thus, the following expression
is achieved.

{𝑀e}bi = 𝑏𝐸3𝑑31𝐸𝑝ℎ𝑝 (ℎ𝑠 + ℎ𝑝) [0 ⋅ ⋅ ⋅ 0 −1]𝑇 . (25)

The vibration equation of the cantilever bimorph is as
follows:

[𝑀]𝑏𝑖 { ̈𝛿} + [𝐾]𝑏𝑖 {𝛿}
= 𝑏𝑑31𝐸𝑝𝑉(ℎ𝑠 + ℎ𝑝) [0 ⋅ ⋅ ⋅ 0 −1]𝑇 .

(26)

Suppose the voltage is 𝑉 = V sin(𝜔𝑡), the steady-state
response can be obtained by solving (26).

{𝛿} = 𝑏𝑑31𝐸𝑝𝑉(ℎ𝑠 + ℎ𝑝) [𝐻] [0 ⋅ ⋅ ⋅ 0 −1]𝑇 . (27)
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Figure 4: Amplitude-frequency characteristics under different axial
forces.

The frequency response function is as follows:

[𝐻] = (−𝜔2 [𝑀]𝑏𝑖 + [𝐾]𝑏𝑖)−1 . (28)

Finally, the amplitude of the cantilever bimorph is
achieved.

𝐴 = [0 ⋅ ⋅ ⋅ 0 1 0 ] 𝑏𝑑31𝐸𝑝V (ℎ𝑠 + ℎ𝑝)
⋅ [𝐻] [0 ⋅ ⋅ ⋅ 0 −1]𝑇 . (29)

From formulae (27), (28), and (29), the amplitude of the
free end at the voltage of 1 V is calculated. The results are
compared with the ANSYS simulation results, as shown in
Figure 4. It can be observed from the diagram that the first
natural frequency of the bimorph decreases with the increase
of axial force, whereas the amplitude gradually increases.

In order to analyze the transient characteristics of the
bimorph, it is assumed that the voltage is a step signal.

𝑉 = {{{
0, 𝑡 < 0
V, 𝑡 > 0. (30)

The bimorph starts moving from the static state, and
the unit impulse response of (26) can be obtained from the
vibration theory as follows:

[ℎ (𝑡)] = [Φ] diag( sin𝜔𝑟𝑡𝜔𝑟 ) [Φ]𝑇 ̇𝛿0. (31)

where [B] is the mode matrix normalized by the main mass
and𝜔𝑟 is the rth natural frequency of the bimorph. If damping
is added, the unit impulse response can be expressed as
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Figure 5: Step response of the bimorph under different axial forces.

[ℎ (𝑡)] = [Φ] diag(𝑒−𝜁𝜔𝑟𝑡 sin√1 − 𝜁2𝜔𝑟𝑡𝜔𝑟√1 − 𝜁2 ) [Φ]𝑇 ̇𝛿0, (32)

where 𝜁 is the damping ratio. The zero-initial state step
response of the undamped bimorph can be obtained using
Duhamel’s integral.

{𝛿 (𝑡)} = ∫𝑡
0
[ℎ (𝑡)] {𝑀𝑒}𝑏𝑖 𝑑𝑡

= 𝑏𝑑31𝐸𝑝V (ℎ𝑠 + ℎ𝑝) [Φ] diag(1 − cos𝜔𝑟𝑡𝜔2𝑟 )
⋅ [Φ]𝑇 [0 ⋅ ⋅ ⋅ 0 −1]𝑇 .

(33)

Further, the step response of a damped zero-initial state
is

{𝛿 (𝑡)} = 𝑏𝑑31𝐸𝑝V (ℎ𝑠 + ℎ𝑝) [Φ] diag (𝑉𝑟)
⋅ [Φ]𝑇 [0 ⋅ ⋅ ⋅ 0 −1]𝑇 , (34)

where

𝑉𝑟 (𝑡) = √1 − 𝜁
2 − 𝑒−𝜁𝜔𝑟𝑡 (𝜁 sin (√1 − 𝜁2𝜔𝑟𝑡) + √1 − 𝜁2 cos (√1 − 𝜁2𝜔𝑟𝑡))

𝜔2𝑟√1 − 𝜁2 . (35)

By solving the diagonal matrix diag(𝜔𝑟) constructed
using generalized eigenvalues and the characteristic matrix[B], the following equations are established. Subsequently,[B] is normalized by the main mass, and the unit matrix[B]𝑇[𝑀]𝑏𝑖[B] is obtained.

[𝐾]𝑏𝑖 [Φ] = [𝑀]𝑏𝑖 [Φ] diag (𝜔𝑟) . (36)

The step response of the bimorph at different axial forces
is calculated from (34). The transient dynamic analysis with
precompression is performed using ANSYS software, and the
equivalent torque is added in the simulation.

𝑀𝑒 = 𝑏𝑑31𝐸𝑝V (ℎ𝑠 + ℎ𝑝) . (37)

The voltage is set to 1 V and the amplitude of the free
end can be obtained under different axial forces, as shown
in Figure 5. It can be seen that the ANSYS simulation
results are consistent with the numerical calculation results,
and the response time in the no-load state is of the order
of milliseconds. The axial force can apparently enlarge the
displacement output but has little effect on the response time
of the bimorph.

4. Experiments of Piezoelectric Bimorph

4.1. Static Experiment of Piezoelectric Bimorph. As shown in
Figure 6, a clamping device is designed for the installation

of the piezoelectric bimorph. The axial force was changed
by increasing or decreasing the weights in the experiment.
The deflection of the bimorph was tested using the laser
displacement sensor.

In the experiment, the voltage of the upper and lower sur-
faces was supplied by the DC power, and the substrate layer
was grounded. The buckling critical load of the cantilever
bimorph was calculated to be 36 N by using formula (9). The
maximum static deflection under the axial forces of 0 N and
16 N are shown in Figure 7.

The analytical solution in Figure 7 is obtained from
(8). It can be seen that when the axial force is constant,
the deformation is linear with the voltage. The axial force
can evidently amplify the displacement output, and the
maximum deflection of the bimorph under an axial force of
16 N has increased by approximately 30%. The experimental
results and the numerical results obtained using formula (8)
are very close when no axial force is applied. Even under
large axial force, the theoretical and experimental results are
basically the same.

4.2. Modal Experiment of Piezoelectric Bimorph. The modal
experiment of the piezoelectric bimorph mainly tests its
amplitude-frequency characteristics, natural frequencies, and
natural modes under different axial forces. The amplitude of
the piezoelectric material is in the micron range, and the
one-dimensional out-of-plane vibration is often measured
using a laser Doppler vibrometer.Therefore, the PSV-300F-B
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Figure 6: Static experiment of precompressed cantilever piezoelectric bimorph: (a) experiment system; (b) clamping device; (c) experimental
devices.

Table 1: First-order natural frequency of the cantilever bimorphs
with different axial forces.

Axial force (N) 0 2 10
Numerical results (Hz) 144 138 125
Experimental results (Hz) 150 129 96

laser scanning Doppler vibration measurement was used to
conduct the modal experiments on the bimorph.

In the experiment, the excitation voltage amplitude was
30 V and the axial forces were 0 N, 2 N, and 10 N. The
experimental and numerical results are shown in Table 1.
As the damping of the bimorph cannot be ignored, the
proportional dampingmatrix (calculated using (38)) is added
to the numerical calculation, and the damping ratio is set to𝜁=0.02.

[𝐶]𝑏𝑖 = ([Φ]𝑇𝑏𝑖)−1 diag (2𝑀𝑟𝜔𝑟𝜁) [Φ]−1𝑏𝑖 . (38)

From the experimental results, it can be observed that the
natural frequency of the bimorph gradually decreases with
the increase in the axial force, but its bandwidth can still
reach 96Hz with an axial prepressure of 10 N, which has
a significant advantage over the traditional electromagnetic
actuator.

The resonant frequency of the bimorph calculated using
the numerical method is very similar to the experimental

result when the axial force is not applied. With the increase
of the axial force, the experimental results of the first-order
natural frequency are relatively smaller than the numerical
calculation results, whichmay be related to additional factors
generated by the instruments in the experiment.However, the
trends in the results are the same.

5. Conclusion

In this study, the rigid-flexible coupling dynamic model of
the piezoelectric bimorph is established by using the the-
oretical tools of analytical mechanics, structural dynamics,
and finite element method. The force-displacement charac-
teristics under different axial forces are analyzed, and the
frequency response function is given. The steady-state and
transient responses of the bimorph are analyzed. Simul-
taneously, according to the theoretical analysis above, the
corresponding code is written using MATLAB software.
Finally, the experimental platform is set up to study the static
and dynamic characteristics of the axially precompressed
bimorph. The results show that increase of axial force has a
significant amplification effect on the steady-state response
amplitude of the displacement, and it reduces the resonance
frequency. However, the resonance frequency can still reach
60Hz and the displacement output is amplified by nearly
30% while 0.6 times the buckling critical load is applied. The
response time is still in the millisecond range under a large
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Figure 7: Deflection of bimorph under different voltages and axial
forces.

axial force, which indicates that the bimorph has excellent
dynamic characteristics as an actuator.This article provides a
solid theoretical basis for the design of the PBP servo system.
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