Research Article

Analysis of Nonlinear Coupled Systems of Impulsive Fractional Differential Equations with Hadamard Derivatives

Usman Riaz,1 Akbar Zada ,1 Zeeshan Ali ,1 Manzoor Ahmad,1 Jiafa Xu ,2 and Zhengqing Fu 3

1Department of Mathematics, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
2School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China
3College of Mathematics and System Sciences, Shandong University of Science and Technology, Qingdao 266590, China

Correspondence should be addressed to Zhengqing Fu; fzhqing@163.com

Received 6 April 2019; Accepted 2 May 2019; Published 11 June 2019

Academic Editor: Francesca Vipiana

Copyright © 2019 Usman Riaz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This work is committed to establishing the assumptions essential for at least one and unique solution of a switched coupled system of impulsive fractional differential equations having derivative of Hadamard type. Using Krasnoselskii’s fixed point theorem, the existence, as well as uniqueness results, is obtained. Along with this, different kinds of Hyers–Ulam stability are discussed. For supporting the theory, example is provided.

1. Introduction

Fractional calculus is the field of mathematical analysis that deals with the investigation and applications of integrals and derivatives of arbitrary order. Fractional differential equations (FDEs) have played a significant role in many engineering and scientific disciplines, e.g., as the mathematical modeling of systems and processes in the fields of physics, chemistry, aerodynamics, electrodynamics of complex medium, polymer rheology, capacitor theory, electrical circuits, electron analytical chemistry, biology, control theory, and fitting of experimental data [1–3]. FDEs also serve as an excellent tool for the description of hereditary properties of various materials and processes [4]. The theory of FDEs, involving different kinds of boundary conditions, has been a field of interest in pure and applied sciences. Nonlocal conditions are used to describe certain features of applied mathematics and physics such as blood flow problems, chemical engineering, thermoelasticity, underground water flow, and population dynamics [5–16].

In the classical text [17], it has been mentioned that Hadamard in 1892 [18] suggested a concept of fractional integro-differentiation in terms of the fractional power of the type \((x(d/dx))^\alpha\) in contrast to its Riemann–Liouville counterpart of the form \((d/dx)^\alpha\). The kind of derivative introduced by Hadamard contains the logarithmic function of the arbitrary exponent in the kernel of the integral appearing in its definition. Hadamard construction is invariant in relation to dilation and is well suited to the problems containing half-axes. Coupled systems of FDEs have also been investigated by many authors. Such systems appear naturally in many real-world situations. Some recent results on the topic can be found in a series of papers [19–40].

Another aspect of FDEs which has very recently got attention of the researchers is concerning the Ulam-type stability analysis of the aforesaid equations. The mentioned stability was first pointed out by Ulam [41] in 1940, which was further explained by Hyers [42], over Banach space. Later on, many researchers have done valuable work on the same task and interesting results were formed for linear and nonlinear integral and differential equations; for details see [43, 44]. This stability analysis is very useful in many applications, such as numerical analysis and optimization, where finding the exact solution is quite difficult. For detailed study of Ulam-type stability with different approaches, we recommend papers [44–52].

Existence and uniqueness of Cauchy problems for fractional differential equations involving the Hadamard
derivatives have been discussed by Kilbas et al. [53]. Using the contraction principle, existence and uniqueness of the solution of sequential fractional differential equations with Hadamard derivative have been explored by Klimek [54]. Recently, Wang et al. [55] discussed the existence, blowing-up solutions, and Ulam–Hyers stability of fractional differential equations with Hadamard derivative by using some classical methods. Further, Ahmad and Ntouyas [20] and Ma et al. [56] studied two-dimensional fractional differential systems with Hadamard derivative. Wang et al. [57] studied the fractional impulsive Cauchy problem of the form

$$\Delta u(t) = I_{\gamma}(u(t)), \quad \mu \ln 2p(2) + v \ln 2p'(2) = \phi(p),$$

$$\mu p(T) + \nu p'(T) = \varphi(q),$$

$$\mu q(T) + \nu q'(T) = \varphi(q),$$

(3)

where $1 < \alpha, \beta \leq 2$, $f, g : \mathcal{J} \times \mathbb{R}^2 \to \mathbb{R}$, and $\phi, \varphi : \mathcal{C}(\mathcal{J}, \mathbb{R}) \to \mathbb{R}$ are continuous functions defined as

$$\phi(p) = \sum_{i=1}^{\tilde{a}} h_i p(\zeta_i),$$

$$\varphi(q) = \sum_{j=1}^{\tilde{b}} g_j q(\eta_j),$$

(4)

$\zeta_i, \eta_j, \xi_j, \eta_j \in (0, 1)$ for $i = 1, 2, \ldots, \tilde{a}, j = 1, 2, \ldots, \tilde{b}$ and

$$\Delta p(t_i) = p(t^+_i) - p(t^-_i),$$

$$\Delta q(t_j) = q(t^+_j) - q(t^-_j),$$

(5)

The notations $p(t^+_i)$, $q(t^+_j)$ are right limits and $p(t^-_i)$, $q(t^-_j)$ are left limits; $I_i, I_{\tilde{i}}, I_p, I_q : \mathbb{R} \to \mathbb{R}$ are continuous functions; $^c\mathcal{D}_{\alpha}^\sigma$, $^c\mathcal{D}_{\beta}^\delta$ are the Hadamard derivative operators of order α and β, respectively. For some other recent results on Hadamard fractional differential equations, we refer the reader to [59–65].

For system (3), we discuss necessary and sufficient conditions for the existence and uniqueness of a positive solution by using the Krasnoselskii’s fixed point and Banach contraction theorems. Further, we investigate various kinds of Hyers–Ulam, generalized Hyers–Ulam, Hyers–Ulam–Rassias, and generalized Hyers–Ulam–Rassias stabilities.

This paper is organized as follows. Section 2 contains basic definitions, auxiliary lemmas, and theorems regarding problem (3). Existence, uniqueness, and at least one solution of the problem (3) are presented in Section 3. Section 4
contains Hyers–Ulam types stability results and Section 5 contains an example, which shows the applicability of our main results.

2. Preliminaries

In this fragment, we are introducing some fundamental descriptions and lemmas, which are used throughout the paper.

Let the norms be \(\|p\| = \max\{|p(t)|, \, t \in J\} \), \(\|q\| = \max\{|q(t)|, \, t \in J\} \) in \(\mathcal{P}(\mathcal{F}, \mathcal{R}_+) \), which is Banach space under these norms, and hence their product is also Banach space with norm \(\|(p, q)\| = \|p\| + \|q\| \).

Let \(\mathcal{E}_1 \) and \(\mathcal{E}_2 \) denote spaces of the piecewise continuous functions defined as

\[
\mathcal{E}_1 = \mathcal{P}(\mathcal{C}_2, a; \mathcal{R}_+) = \left\{ p : J \rightarrow \mathcal{R}_+, \, p(t_i^+) \right\},
\]

\[
p(t_i^+) \quad \text{and} \quad p'(t_i^+), \, p'(t_i^-) \text{ exist for } i = 1, 2, \ldots, m,
\]

\[
\mathcal{E}_2 = \mathcal{P}(\mathcal{C}_2, a; \mathcal{R}_+) = \left\{ q : J \rightarrow \mathcal{R}_+, \, q(t_j) \right\},
\]

\[
q(t_j) \quad \text{and} \quad q'(t_j), \, q'(t_j^-) \text{ exist for } j = 1, 2, \ldots, n,
\]

with norms

\[
\|p\|_{\mathcal{E}_1} = \sup \left\{ |p(t)| \left(\ln \frac{t}{s} \right)^{2-a}, \, t \in J \right\},
\]

\[
\|q\|_{\mathcal{E}_2} = \sup \left\{ |q(t)| \left(\ln \frac{t}{s} \right)^{-2b}, \, t \in J \right\},
\]

respectively. Their product \(\mathcal{E} = \mathcal{E}_1 \times \mathcal{E}_2 \) is also a Banach space with norm \(\|(p, q)\|_{\mathcal{E}} = \|p\|_{\mathcal{E}_1} + \|q\|_{\mathcal{E}_2} \).

We recall the following definitions from [57].

Definition 1. The Hadamard fractional derivative of order \(\alpha \in [a - 1, a) \), \(a \in \mathbb{R}^+ \) of function \(p(t) \) is defined by

\[
\left(H^{\alpha}_D p \right)(t) = \frac{1}{\Gamma(a - \alpha)} \frac{d}{dt} \left(t^{\alpha-1} p(t) \right), \quad 1 < t \leq T,
\]

where \(\Gamma(\cdot) \) is the Gamma function.

Definition 2. The Hadamard fractional integral of order \(\alpha \in \mathbb{R}^+ \) of function \(p(t) \) is defined by

\[
\left(H^\alpha D p \right)(t) = \frac{1}{\Gamma(\alpha)} \int_s^t \left(\ln \frac{t}{\tau} \right)^{\alpha-1} p(\tau) \frac{d\tau}{\tau}, \quad 1 < t \leq T,
\]

where \(\Gamma(\cdot) \) is the well-known Gamma function.

Lemma 3 (see [66]). Let \(\alpha > 0 \) and \(p \) be any functions; then the homogenous differential equation along with Hadamard fractional order \(H^\alpha D p(t) = 0 \) has solution

\[
p(t) = b_1 (\ln t)^{\alpha-1} + b_2 (\ln t)^{\alpha-2} + b_3 (\ln t)^{\alpha-3} + \cdots + b_n (\ln t)^{\alpha-n},
\]

and the following formula holds:

\[
H^\alpha D p(t) = p(t) + b_1 (\ln t)^{\alpha-1} + b_2 (\ln t)^{\alpha-2} + \cdots + b_n (\ln t)^{\alpha-n},
\]

where \(b_j \in \mathcal{R}, \, j = 1, 2, \ldots, n, \), and \(a - 1 < \alpha < a \).

Lemma 4 (see [53]). Let \(0 < \alpha < 1 \) and \(f : J \times h \rightarrow \mathcal{R} \). A function \(p \in \mathcal{C}_{1-a, h}[a, b] \) is a solution of the fractional differential equation

\[
H^\alpha D p(t) = f(t, p(t)), \quad t \in (1, T],
\]

if and only if \(p \) satisfies the following fractional integral equation:

\[
p(t) = \frac{p_0}{\Gamma(a)} \left(\ln t \right)^{a-1} \int_1^t \left(\ln \frac{s}{t} \right)^{a-1} f(s, p(s)) \frac{ds}{s},
\]

Theorem 5 (Altman [67]). Let \(\mathcal{D} \neq \emptyset \) be a convex and closed subset of Banach space \(\mathcal{E} \). Consider two operators \(\mathcal{F}, \mathcal{G} \) such that

(i) \(\mathcal{F}(p, q) + \mathcal{G}(p, q) \in \mathcal{D}, \) where \((p, q) \in \mathcal{D} \).

(ii) \(\mathcal{F} \) is contractive operator.

(iii) \(\mathcal{G} \) is completely continuous operator.

Then the operator system \(\mathcal{F}(p, q) + \mathcal{G}(p, q) = (p, q) \in \mathcal{E} \) has a solution \((p, q) \in \mathcal{D} \).
Denote \(\Psi_{a,\beta} = \max\{\Psi_a, \Psi_{\beta}\} \in \mathbb{E}(\mathbb{F}, \mathbb{R}) \) and \(K_{\Psi_{a,\beta}} = \max\{K_{\Psi_a}, K_{\Psi_{\beta}}\} > 0 \).

Definition 8 (see [45]). The switched coupled impulsive FDE (3) is said to be Hyers–Ulam–Rassias stable with respect to \(\Psi_{a,\beta} \) if there exists a constant \(K_{\Psi_{a,\beta}} \) such that, for any \(\varepsilon > 0 \) and for any approximate solution \((p, q) \in \mathbb{E}\) of the inequality

\[
\|H^{\alpha}p(t) - f(t, p(t), q(t))\| < \varepsilon \quad t \in J,
\]

\[
\|H^{\beta}q(t) - g(t, p(t), q(t))\| < \varepsilon \quad t \in J,
\]

there exists a unique solution \((\hat{p}, \hat{q}) \in \mathbb{E}\) with

\[
\|(p, q) - (\hat{p}, \hat{q})\| \leq K_{\Psi_{a,\beta}} \Psi_{a,\beta} \varepsilon, \quad t \in J.
\]

Definition 9 (see [45]). The switched coupled impulsive FDE (3) is said to be generalized Hyers–Ulam–Rassias stable with respect to \(\Psi_{a,\beta} \) if there exists a constant \(K_{\Psi_{a,\beta}} \) such that, for any approximate solution \((p, q) \in \mathbb{E}\) of inequality (17), there exists a unique solution \((\tilde{p}, \tilde{q}) \in \mathbb{E}\) satisfying

\[
\|(p, q) - (\tilde{p}, \tilde{q})\| \leq K_{\Psi_{a,\beta}} \Psi_{a,\beta} \varepsilon, \quad t \in J.
\]

Remark 10. We say that \((p, q) \in \mathbb{E}\) is a solution of the system of inequalities (14) if there exist functions \(Y_f, Y_g \in \mathbb{E}(\mathbb{F}, \mathbb{R})\) depending upon \(p, q\), respectively, such that

(I) \(\|Y_f(t)\| \leq \alpha \varepsilon, \|Y_g(t)\| \leq \beta \varepsilon, \) \(t \in J\);

(II)

\[
\begin{align*}
H^{\alpha}p(t) &= f(t, p(t), q(t)) + Y_f(t), \\
\Delta p(t_i) &= I_i(p(t_i)) + Y_{f_i}, \\
\Delta p'(t_i) &= \tilde{I}_i(p(t_i)) + Y_{f_i}, \\
H^{\beta}q(t) &= g(t, p(t), q(t)) + Y_g(t), \\
\Delta q(t_j) &= I_j(q(t_j)) + Y_{g_j}, \\
\Delta q'(t_j) &= \tilde{I}_j(q(t_j)) + Y_{g_j};
\end{align*}
\]

3. Existence Results

In this fragment, we present our main results.

Theorem 11. The solution \((p, q) \in \mathbb{E}\) of coupled system

\[
\begin{align*}
H^{\alpha}p(t) &= f(t), \\
H^{\beta}q(t) &= g(t),
\end{align*}
\]

\(t \in J, t \neq t_j, i = 1, 2, \ldots, m,\)

\(t \in J, t \neq t_j, j = 1, 2, \ldots, n,\)

\[
\begin{align*}
\Delta p(t_i) &= I_i(p(t_i)), \\
\Delta p'(t_i) &= \tilde{I}_i(p(t_i)),
\end{align*}
\]

\(i = 1, 2, \ldots, m,\)

\(j = 1, 2, \ldots, n,\)

\[
\begin{align*}
\mu \ln 2p(2) + \nu \ln 2p'(2) &= \phi(p), \\
\mu \ln 2q(2) + \nu \ln 2q'(2) &= \phi(q), \\
\mu q(T) + \nu q'(T) &= \phi(q),
\end{align*}
\]

is given by the integral equations

\[
p(t) = \frac{(\ln t)^{\alpha-2} \varphi(p)}{\alpha} \frac{\bar{\Omega}(t)}{\Omega} + \frac{(\ln t)^{\alpha-2} \varphi(p)}{\alpha} \varphi_{A_{\alpha}}(t) + \sum_{i=1}^{k} \frac{(\ln t)^{\alpha-2} \varphi_{A_{\alpha}}(t)}{\Gamma(\alpha)} \int_{t_{i-1}}^{t_i} \left(\ln \frac{t}{s}\right)^{\alpha-1} f(s) \frac{ds}{s}
\]

\[
+ \sum_{i=1}^{k} \frac{(\ln t)^{\alpha-2} \varphi_{A_{\alpha}}(t)}{\Gamma(\alpha-1)} \int_{t_{i-1}}^{t_i} \left(\ln \frac{t}{s}\right)^{\alpha-2} f(s) \frac{ds}{s}
\]

\[
- \mu \ln 2p(2) + \nu \ln 2p'(2) = \phi(p),
\]

\[
p(t) = \frac{(\ln t)^{\beta-2} \varphi(q)}{\beta} \frac{\bar{\Omega}(t)}{\Omega} + \frac{(\ln t)^{\beta-2} \varphi(q)}{\beta} \varphi_{B_{\beta}}(t) + \sum_{j=1}^{k} \frac{(\ln t)^{\beta-2} \varphi_{B_{\beta}}(t)}{\Gamma(\beta)} \int_{t_{j-1}}^{t_j} \left(\ln \frac{t}{s}\right)^{\beta-1} g(s) \frac{ds}{s}
\]

\[
+ \sum_{j=1}^{k} \frac{(\ln t)^{\beta-2} \varphi_{B_{\beta}}(t)}{\Gamma(\beta-1)} \int_{t_{j-1}}^{t_j} \left(\ln \frac{t}{s}\right)^{\beta-2} g(s) \frac{ds}{s}
\]

\(k = 1, 2, \ldots, m,\)

\(j = 1, 2, \ldots, n,\)

\[
\begin{align*}
\Delta q(t_j) &= I_j(q(t_j)), \\
\Delta q'(t_j) &= \tilde{I}_j(q(t_j)),
\end{align*}
\]
For \(\gamma\) and \(\delta\) to be \(\mathcal{A}\)-stable, \(\text{Re } \omega > 0\) and \(\eta \cdot \omega > 0\) must hold.

This implies

\[
p'(t) = \frac{c_1 (\alpha - 1)}{t} (\ln t)^{\alpha - 2} + \frac{c_2 (\alpha - 2)}{t} (\ln t)^{\alpha - 3} + \frac{1}{\Gamma (\alpha - 1)} \int_t^1 \left(\ln \frac{t}{s} \right)^{\alpha - 2} \left(\ln \frac{t}{s} \right)^{\alpha - 2} f(s) \frac{ds}{s}.
\]

Applying the initial condition, we obtain \(c_1 = (\phi (p) (\ln 2)^{2-\alpha} - c_2 (\ln 2^\mu + \nu (\alpha - 2)/2))/\ln 2^{\mu + \nu (\alpha - 1)/2}\). Therefore (25) becomes

\[
p(t) = \frac{\phi (p) (\ln 2)^{2-\alpha} (\ln t)^{\alpha - 2}}{\ln 2^{\mu + \nu (\alpha - 1)/2}} + c_2 \left((\ln t)^{\alpha - 2} - (\ln t)^{\alpha - 1} \ln 2^\mu + \nu (\alpha - 2)/2 \right) \ln 2^{\mu + \nu (\alpha - 1)/2} + \frac{1}{\Gamma (\alpha)} \int_t^1 \left(\ln \frac{t}{s} \right)^{\alpha - 1} f(s) \frac{ds}{s}.
\]
Using impulsive conditions, we get

\[b_1 = \frac{\phi (p) (\ln 2)^2 \ln \nu}{\ln 2^{\ln 2^\nu + \nu ((\alpha - 2) / 2)}} - c_2 \frac{\ln 2^\nu + \nu ((\alpha - 2) / 2)}{\ln 2^{\ln 2^\nu + \nu ((\alpha - 2) / 2)}} \]

\[- (\alpha - 2) (\ln 1)^{1-x} I_1 (p(t_1)) \]

\[+ t_1 (\ln t_1)^{2-x} T_1 (p(t_1)) - (\alpha - 2) (\ln 1)^{1-x} I_1 (p(t_1)) \]

\[+ t_1 (\ln t_1)^{2-x} T_1 (p(t_1)) \]

\[+ \frac{t_1 (\ln t_1)^{2-x}}{\Gamma (\alpha - 1)} \int_{t_1}^{t_1} \left(\frac{\ln t_i}{s} \right)^{a-2} f(s) \frac{ds}{s} \]

\[b_2 = c_2 + (\alpha - 1) (\ln 1)^{1-x} I_1 (p(t_1)) - t_1 (\ln t_1)^{3-x} T_1 (p(t_1)) \]

\[+ \frac{(\ln t_1)^{2-x}}{\Gamma (\alpha - 1)} \int_{t_1}^{t_1} \left(\frac{\ln t_i}{s} \right)^{a-2} f(s) \frac{ds}{s} \]

\[- \frac{t_1 (\ln t_1)^{3-x}}{\Gamma (\alpha - 1)} \int_{t_1}^{t_1} \left(\frac{\ln t_i}{s} \right)^{a-2} f(s) \frac{ds}{s}. \]

Substituting the values of \(b_1, b_2 \) in (28), we have

\[p(t) = \frac{\phi (p) (\log, t)^{a-2}}{\ln 2^\nu + \nu ((\alpha - 1) / 2)} + c_2 (\ln t)^{a-2} \]

\[- t_1 (\ln t_1)^{3-x} T_1 (p(t_1)) + \frac{(\ln t_1)^{2-x}}{\Gamma (\alpha - 1)} \int_{t_1}^{t_1} \left(\frac{\ln t_i}{s} \right)^{a-2} f(s) \frac{ds}{s} \]

\[+ \frac{t_1 (\ln t_1)^{2-x}}{\Gamma (\alpha - 1)} \int_{t_1}^{t_1} \left(\frac{\ln t_i}{s} \right)^{a-2} f(s) \frac{ds}{s}. \]

Similarly for \(t \in (t_k, T) \), we get

\[p(t) = \frac{\phi (p) (\log, t)^{a-2}}{\ln 2^\nu + \nu ((\alpha - 1) / 2)} + c_2 (\ln t)^{a-2} \]

\[+ \frac{t_1 (\log, t)^{a-2}}{\Gamma (\alpha - 1)} \int_{t_1}^{t_1} \left(\frac{\ln t_i}{s} \right)^{a-2} f(s) \frac{ds}{s} + \frac{1}{\Gamma (\alpha)} \]

\[\int_{t_1}^{t_1} \left(\frac{\ln t_i}{s} \right)^{a-2} f(s) \frac{ds}{s}. \]

This implies

\[p'(t) = \frac{\phi (p) (p - 1) (\log, t)^{a-2}}{\ln 2^\nu + \nu ((\alpha - 1) / 2)} + \frac{\sum_{i=1}^{k} (\alpha - 1) (\alpha - 2) (\log, e - \log, e) (\log, t)^{a-2}}{t} I_1 (p(t_1)) + c_2 \]

\[- \frac{(\alpha - 2 - \log, e)^{a-1} ((\ln 2^\nu + \nu ((\alpha - 2) / 2)) / (\ln 2^\nu + \nu ((\alpha - 1) / 2))) (\ln t)^{a-2}}{t} \]

\[+ \sum_{i=1}^{k} \frac{t_1 (\log, t^{a-1} / t_i^{a-2}) (\log, t)^{a-2}}{t} I_1 (p(t_1)) + \frac{(\alpha - 1) (\alpha - 2) (\log, e - \log, e) (\log, t)^{a-2}}{t} \]

\[+ \frac{\sum_{i=1}^{k} t_1 (\log, t^{a-1} / t_i^{a-2}) (\log, t)^{a-2}}{t} \int_{t_1}^{t_1} \left(\frac{\ln t_i}{s} \right)^{a-2} f(s) \frac{ds}{s} + \frac{1}{t \Gamma (\alpha - 1)} \]

\[\int_{t_1}^{t_1} \left(\frac{\ln t_i}{s} \right)^{a-2} f(s) \frac{ds}{s}. \]
Corollary 12. In view of Theorem II, our coupled system (3) has the following solution:

\[
p(t) = \frac{(\ln t)^{\alpha - 2}}{a \bar{\Omega}^2(t)} \phi(p) + \frac{(\ln t)^{\alpha - 2}}{a \bar{\Omega}^3(t)} \phi(p) + \sum_{j=1}^{k} \left(\frac{(\ln t)^{\alpha - 2}}{a \bar{\Omega}^j(t)} \right) t_j(p(t_j)) + \sum_{j=1}^{k} \left(\frac{(\ln t)^{\alpha - 2}}{a \bar{\Omega}^j(t)} \right) t_j(p(t_j)) + \frac{(\ln t)^{\alpha - 2}}{\Gamma(\alpha)} \int_{t_{j-1}}^{t_j} \left(\frac{\ln s}{s} \right)^{\alpha - 1} f(s, p(s), q(s)) \frac{ds}{s} + \frac{1}{\Gamma(\alpha)} \int_{t_{j-1}}^{t_j} \left(\frac{\ln s}{s} \right)^{\alpha - 1} f(s, p(s), q(s)) \frac{ds}{s}
\]

for \(k = 1, 2, \ldots, m\),

\[
q(t) = \frac{(\ln t)^{\beta - 2}}{\beta \bar{\Omega}^2(t)} \phi(q) + \frac{(\ln t)^{\beta - 2}}{\beta \bar{\Omega}^3(t)} \phi(q) + \sum_{j=1}^{k} \left(\frac{(\ln t)^{\beta - 2}}{\beta \bar{\Omega}^j(t)} \right) I_j(q(t_j)) + \sum_{j=1}^{k} \left(\frac{(\ln t)^{\beta - 2}}{\beta \bar{\Omega}^j(t)} \right) I_j(q(t_j)) + \frac{(\ln t)^{\beta - 2}}{\Gamma(\beta)} \int_{t_{j-1}}^{t_j} \left(\frac{\ln s}{s} \right)^{\beta - 1} f(s, p(s), q(s)) \frac{ds}{s} + \frac{1}{\Gamma(\beta)} \int_{t_{j-1}}^{t_j} \left(\frac{\ln s}{s} \right)^{\beta - 1} f(s, p(s), q(s)) \frac{ds}{s}
\]

for \(k = 1, 2, \ldots, m\).
To convert the considered problem into a fixed point problem, we define the operators $\mathbb{F} : \mathcal{Y} \to \mathcal{Y}$ by $\mathbb{F} = (\mathbb{F}_1, \mathbb{F}_2)$ and $\mathbb{G} : \mathcal{Y} \to \mathcal{Y}$ by $\mathbb{G} = (G_1, G_2)$ such that

\[
\mathbb{F} = \mathbb{F}_1 \left(p \left(t \right) \right) = \frac{\left(\ln t \right)^{\alpha_2} \Omega \left(t \right) \phi \left(p \right)}{\alpha \Omega} + \left(\ln t \right)^{\alpha_2} \alpha \phi \left(t \right) \phi \left(p \right) + \sum_{j=1}^{k} \left(\ln t \right)^{\alpha_2} \alpha \phi \left(t \right) \phi \left(p \left(t_j \right) \right) + \sum_{j=1}^{k} \left(\ln t \right)^{\alpha_2} \alpha \phi \left(t \right) \phi \left(p \left(t_j \right) \right) \left(t_j \right),
\]

\[
\mathbb{F} = \mathbb{F}_2 \left(q \left(t \right) \right) = \frac{\left(\ln t \right)^{\beta_2} \Omega \left(t \right) \phi \left(q \right)}{\beta \Omega} + \left(\ln t \right)^{\beta_2} \beta \phi \left(t \right) \phi \left(q \right) + \sum_{j=1}^{k} \left(\ln t \right)^{\beta_2} \beta \phi \left(t \right) \phi \left(q \left(t_j \right) \right) + \sum_{j=1}^{k} \left(\ln t \right)^{\beta_2} \beta \phi \left(t \right) \phi \left(q \left(t_j \right) \right) \left(t_j \right),
\]

\[
G = G_1 \left(p \left(t \right), q \left(t \right) \right) = \sum_{j=1}^{k} \left(\ln t \right)^{\alpha_2} \alpha \phi \left(t \right) \phi \left(p \left(t_j \right \right) \left(t_j \right) \right) \left(q \left(t_j \right) \right),
\]

\[
G = G_2 \left(p \left(t \right), q \left(t \right) \right) = \sum_{j=1}^{k} \left(\ln t \right)^{\beta_2} \beta \phi \left(t \right) \phi \left(q \left(t_j \right) \right) \left(t_j \right) \right) \left(q \left(t_j \right) \right),
\]

respectively.

The following assumptions will be helpful for our results.
(H₁) \(f, g : \mathcal{J} \times \mathcal{R} \times \mathcal{R} \to \mathcal{R}^+ \) are continuous; for all \((p, q), (\bar{p}, \bar{q}) \in \mathcal{E} \), and \(t \in \mathcal{J} \), there exist \(\mathcal{L}_f, \mathcal{L}_g > 0 \) such that

\[
\begin{align*}
|f(t, p(t), q(t)) - f(t, \bar{p}(t), \bar{q}(t))| & \leq \mathcal{L}_f |(p - \bar{p})|, \\
|g(t, p(t), q(t)) - g(t, \bar{p}(t), \bar{q}(t))| & \leq \mathcal{L}_g |(p - \bar{p})|.
\end{align*}
\]

(39)

(\(H_2 \)) \(I, \bar{I} : \mathcal{R} \to \mathcal{R} \) are continuous and there exist \(\mathcal{L}_I, \mathcal{L}_{\bar{I}}, \mathcal{L}'_I > 0 \) such that for any \((p, q), (\bar{p}, \bar{q}) \in \mathcal{E} \)

\[
\begin{align*}
|I(p(t)) - I(\bar{p}(t))| & \leq \mathcal{L}_I |p - \bar{p}|, \\
|\bar{I}(p(t)) - \bar{I}(\bar{p}(t))| & \leq \mathcal{L}_{\bar{I}} |p - \bar{p}|, \\
|I_j(q(t)) - I_j(\bar{q}(t))| & \leq \mathcal{L}'_I |q - \bar{q}|, \\
|\bar{I}_j(q(t)) - \bar{I}_j(\bar{q}(t))| & \leq \mathcal{L}'_{\bar{I}} |q - \bar{q}|,
\end{align*}
\]

(40)

(\(H_3 \)) \(\phi, \varphi : \mathcal{R} \to \mathcal{R} \) are continuous, and there exist \(\mathcal{L}_\phi, \mathcal{L}_\varphi, \mathcal{L}'_\phi, \mathcal{L}'_\varphi, \mathcal{M}_\phi, \mathcal{M}_\varphi, \mathcal{M}'_\phi, \mathcal{M}'_\varphi > 0 \), for any \((p, q), (\bar{p}, \bar{q}) \in \mathcal{E} \) such that

\[
\begin{align*}
|\phi(p) - \phi(\bar{p})| & \leq \mathcal{L}_\phi |p - \bar{p}|, \\
|\phi(p) - \varphi(p)| & \leq \mathcal{L}_\phi |p - \bar{p}|, \\
|\phi(q) - \phi(\bar{q})| & \leq \mathcal{L}'_\phi |q - \bar{q}|, \\
|\varphi(q) - \varphi(\bar{q})| & \leq \mathcal{L}'_\phi |q - \bar{q}|, \\
|\phi(p)| & \leq \mathcal{M}_\phi, \\
|\varphi(p)| & \leq \mathcal{M}_\varphi, \\
|\phi(q)| & \leq \mathcal{M'}_\phi, \\
|\varphi(q)| & \leq \mathcal{M'}_\varphi.
\end{align*}
\]

(41)

(H₄) \(f, g : \mathcal{J} \times \mathcal{R} \times \mathcal{R} \to \mathcal{R}^+ \) are continuous; for all \((p, q) \in \mathcal{E} \) and \(t \in \mathcal{J} \), there exist \(\mathcal{M}_f, \mathcal{M}_g > 0 \) such that

\[
\begin{align*}
|f(t, p(t), q(t))| & \leq \mathcal{M}_f |p| + |q|, \\
|g(t, p(t), q(t))| & \leq \mathcal{M}_g |p| + |q|.
\end{align*}
\]

(42)

Theorem 13. Under the hypothesis \((H_1) - (H_3)\), and

\[
\Lambda_f + \Lambda_g < \frac{1}{\mathcal{L}_f},
\]

(44)

has unique solution.

Proof. Define an operator \(\Phi = (\Phi_1, \Phi_2) : \mathcal{E} \to \mathcal{E} \), i.e.,

\[
\Phi(p, q)(t) = (\Phi_1(p, q), \Phi_2(p, q))(t),
\]

where

\[
\begin{align*}
\Phi_1(p, q)(t) &= \frac{\varphi(p) (\ln t)^{\alpha-2} \alpha \Omega(t)}{\alpha \Omega' \Omega'(\alpha - 1)} + \phi(p) \\
&\quad \cdot (\ln t)^{\alpha-2} a \alpha_1(t) + \sum_{i=1}^{k} (\ln t)^{\alpha-2} a \alpha_2(i) I_i(p(t)) \\
&\quad + \sum_{i=1}^{k} (\ln t)^{\alpha-2} a \alpha_3(i) \bar{I}_i(p(t)) \\
&\quad + \sum_{i=1}^{k} (\ln t)^{\alpha-2} a \alpha_4(t) \bar{I}_i(p(t)) \\
&\quad + \sum_{i=1}^{k} (\ln t)^{\alpha-2} a \alpha_5(t) \bar{I}_i(p(t)) \\
&\quad + \sum_{i=1}^{k} (\ln t)^{\alpha-2} a \alpha_6(i) \bar{I}_i(p(t)) \\
&\quad \cdot \int_{t_i}^{t} \left(\ln \frac{t_i}{s} \right)^{\alpha-1} f(s, p(s), q(s)) \frac{ds}{s} \\
&\quad - \frac{\mu \alpha \Omega(t) (\ln t)^{\alpha-2}}{a \Omega' \Omega'(\alpha - 1)} \\
&\quad \cdot \int_{t_i}^{t} (\ln \frac{T_i}{s})^{\alpha-1} f(s, p(s), q(s)) \frac{ds}{s} \\
&\quad + \sum_{i=1}^{k} (\ln t)^{\alpha-2} a \alpha_3(i) \bar{I}_i(p(t)) \\
&\quad \times f(s, p(s), q(s)) \frac{ds}{s} + \frac{\nu \alpha \Omega(t) (\ln t)^{\alpha-2}}{a \Omega' \Omega'(\alpha - 1)} \\
&\quad \cdot \int_{t_i}^{T_i} (\ln \frac{T_i}{s})^{\alpha-2} f(s, p(s), q(s)) \frac{ds}{s} + \frac{1}{\Gamma(\alpha)}
\end{align*}
\]
\[
\Phi_2 (p, q) (t) = \frac{\varphi (q) (\ln t)^{\beta - 2}}{\beta \Omega} \Phi_1 (t) + \varphi (q) \cdot (\ln t)^{\beta - 2} + \sum_{j=1}^{k} (\ln t)^{\beta - 2} \frac{\beta c_2' (t)}{\Gamma (\beta)} \left(q (t_j) \right) \\
\cdot \Phi_2 (p, q) (t) = \frac{\varphi (q) (\ln t)^{\beta - 2}}{\beta \Omega} \Phi_1 (t) + \varphi (q) \cdot (\ln t)^{\beta - 2} + \sum_{j=1}^{k} (\ln t)^{\beta - 2} \frac{\beta c_2' (t)}{\Gamma (\beta)} \left(q (t_j) \right) \\
+ \frac{k}{\Gamma (\beta)} (\ln t)^{\beta - 2} \frac{\beta c_2' (t)}{\Gamma (\beta)} \int_{t_j}^{t} \left(\ln s \right)^{\beta - 2} g (s, p(s), q(s)) \frac{ds}{s}
\]

In view of Theorem 13, we have

\[
\left| \Phi_1 (p, q) - \Phi_1 (\bar{p}, \bar{q}) \right| (\ln t)^{2 - \alpha} \leq \mathcal{L} \left[\left\| \frac{a \bar{\Omega} (t)}{a \Omega} \right\| \left\| \frac{a c_2' (t)}{a \Omega} \right\| \left\| \frac{a c_2' (t)}{a \Omega} \right\| \right] \left| p - \bar{p} \right|
\]

Taking sup, we achieve

\[
\left\| \Phi_1 (p, q) - \Phi_1 (\bar{p}, \bar{q}) \right\|_{\mathcal{E}_1} \leq \mathcal{L} \left[\left\| \frac{a \bar{\Omega} (t)}{a \Omega} \right\| + \left\| \frac{a c_2' (t)}{a \Omega} \right\| + m \left\| a c_2' \right\| + m \left\| a c_3' \right\| \right] \left\| p - \bar{p} \right\|
\]

\[
\left\| \Phi_1 (p, q) - \Phi_1 (\bar{p}, \bar{q}) \right\|_{\mathcal{E}_1} \leq \mathcal{L} \left[\left\| \frac{a \bar{\Omega} (t)}{a \Omega} \right\| + \left\| \frac{a c_2' (t)}{a \Omega} \right\| + m \left\| a c_2' \right\| + m \left\| a c_3' \right\| \right] \left\| p - \bar{p} \right\|
\]
where }\Lambda_{f} = \max\{\Lambda_{1}, \Lambda_{2}\}, \text{ such that }

\begin{align*}
\Lambda_{1} &= \left\| a_{\Omega} \right\| + \left\| a_{\Omega} \right\| + m \left\| a_{\mathcal{F}} \right\| \left(\ln \left(t_{m}/t_{m-1} \right) \right)^{\alpha-1} \left\| a_{\Omega} \right\| + \left\| a_{\Omega} \right\| \Gamma(\alpha) \\
&+ m \left\| a_{\mathcal{F}} \right\| \left(\ln \left(t_{m}/t_{m-1} \right) \right)^{\alpha} \left\| a_{\Omega} \right\| + \left(\ln t \right)^{2-\alpha} \left(\ln \left(t/t_{m} \right) \right)^{\alpha} \left\| a_{\Omega} \right\| + m \left\| a_{\mathcal{F}} \right\| + m \left\| a_{\mathcal{F}} \right\|
\end{align*}

\begin{align*}
\Lambda_{2} &= m \left\| a_{\mathcal{F}} \right\| \left(\ln \left(t_{m}/t_{m-1} \right) \right)^{\alpha} \left\| a_{\Omega} \right\| + \left(\ln t \right)^{2-\alpha} \left(\ln \left(t/t_{m} \right) \right)^{\alpha} \left\| a_{\Omega} \right\| + m \left\| a_{\mathcal{F}} \right\| \left(\ln \left(T/t_{m} \right) \right)^{\alpha} \left\| a_{\Omega} \right\|
\end{align*}

Similarly

\begin{align*}
\Phi_{2}(p, q) - \Phi_{2}(\bar{p}, \bar{q}) \leq \mathcal{L}_{1} \lambda \left\| C_{\beta} \right\|, \quad (49)
\end{align*}

\begin{align*}
\Lambda_{3} &= \left\| \beta_{\Omega} \right\| \left. \left(\ln \left(t_{m}/t_{m-1} \right) \right)^{\beta-1} \left\| \beta_{\Omega} \right\| + \left\| \beta_{\Omega} \right\| \Gamma(\beta) \\
&+ m \left\| \beta_{\mathcal{F}} \right\| \left(\ln \left(t_{m}/t_{m-1} \right) \right)^{\beta} \left\| \beta_{\Omega} \right\| + \left(\ln t \right)^{2-\beta} \left(\ln \left(t/t_{m} \right) \right)^{\beta} \left\| \beta_{\Omega} \right\| + m \left\| \beta_{\mathcal{F}} \right\| + m \left\| \beta_{\mathcal{F}} \right\|
\end{align*}

\begin{align*}
\Lambda_{4} &= m \left\| \beta_{\mathcal{F}} \right\| \left(\ln \left(t_{m}/t_{m-1} \right) \right)^{\beta} \left\| \beta_{\Omega} \right\| + \left(\ln t \right)^{2-\beta} \left(\ln \left(t/t_{m} \right) \right)^{\beta} \left\| \beta_{\Omega} \right\| + m \left\| \beta_{\mathcal{F}} \right\| + m \left\| \beta_{\mathcal{F}} \right\| + m \left\| \beta_{\mathcal{F}} \right\| \left(\ln \left(T/t_{m} \right) \right)^{\beta} \left\| \beta_{\Omega} \right\|
\end{align*}

From (47) and (49), we have

\begin{align*}
\left\| \Phi(p, q) - \Phi(\bar{p}, \bar{q}) \right\| \leq \mathcal{L} \left(\Lambda_{f} + \Lambda_{g} \right) \left\| (p, q) - (\bar{p}, \bar{q}) \right\|,
\end{align*}

where }\mathcal{L} = \max\{\mathcal{L}_{\alpha}, \mathcal{L}_{\beta}, \mathcal{L}_{\gamma}, \mathcal{L}_{\delta}, \mathcal{L}_{\epsilon}, \mathcal{L}_{\xi}, \mathcal{L}_{\eta}, \mathcal{L}_{\zeta}\}, \text{ which implies that the operator } \Phi \text{ is contraction due to (44). Therefore, \ref{equation:5} has a unique solution.}

\begin{align*}
\mathcal{C}_{\alpha} + \mathcal{C}_{\beta}
\end{align*}

where

\begin{align*}
r \geq \frac{\mathcal{M} \left(\left\| a_{\Omega} \right\| + \left\| a_{\Omega} \right\| + \left\| a_{\Omega} \right\| + \left\| a_{\Omega} \right\| + m \left\| a_{\mathcal{F}} \right\| + m \left\| a_{\mathcal{F}} \right\| + n \left\| a_{\mathcal{F}} \right\| + m \left\| a_{\mathcal{F}} \right\| + m \left\| a_{\mathcal{F}} \right\| + m \left\| a_{\mathcal{F}} \right\| \right) - \mathcal{M} \left(\mathcal{C}_{\alpha} + \mathcal{C}_{\beta} \right)}{1 - \mathcal{N} \left(m \left\| a_{\mathcal{F}} \right\| + m \left\| a_{\mathcal{F}} \right\| + m \left\| a_{\mathcal{F}} \right\| + m \left\| a_{\mathcal{F}} \right\| \right)}.
\end{align*}
Theorem 14. If the assumptions (H₁) – (H₃) are true and \(a \mathcal{A}^j = \sup_{1 \leq j \leq k} a \mathcal{A}^j \), then (3) has at least one solution.

Proof. For any \((p, q) \in \mathcal{S}_r\), we have

\[
\| F_1 (p) \|_{\mathcal{S}_r} \leq \| F_1 (p) \|_{\mathcal{S}_r} + \| F_2 (q) \|_{\mathcal{S}_r} + \| G_1 (p, q) \|_{\mathcal{S}_r},
\]

(54)

From (37a) and (37b), we get

\[
\| F_1 p (t) (\ln t)^{2-\alpha} \| \leq \frac{\| \varphi (p) \|_{\mathcal{S}_r}}{\alpha \Omega} + \frac{\| \phi (p) \|_{\mathcal{S}_r}}{\alpha A} \bar{\Omega} (t)
\]

\[
+ \sum_{i=1}^{k} \left| a \mathcal{A}_1^i (t) \right| I_i (p (t_i))
\]

\[
+ \sum_{i=1}^{k} \left| a \mathcal{A}_2^i (t) \right| I_2 (p (t_i)),
\]

(55)

\[\text{for } k = 1, 2, \ldots, m,\]

Taking \(\sup_{t \in \mathcal{F}} \), we get

\[
\| F_1 (p) \|_{\mathcal{S}_r} \leq \frac{\mathcal{M}_f \| \bar{\Omega} (t) \|}{\alpha \Omega} + \mathcal{M}_f \| a \mathcal{A}_1 \| \]

\[
+ m (\mathcal{M}_1 + N_1 \| p \|) \| a \mathcal{A}_2 \|
\]

\[
+ m (\mathcal{M}_1 + N_1 \| p \|) \| a \mathcal{A}_3 \|.
\]

(56)

Similarly, we can obtain

\[
\| F_2 (q) \|_{\mathcal{S}_r} \leq \frac{\mathcal{M}_f \| \beta \Omega \|}{\beta \Omega} + \mathcal{M}_f \| \beta \mathcal{A}_1 \|
\]

\[
+ m (\mathcal{M}_1 + N_1 \| q \|) \| \beta \mathcal{A}_2 \|
\]

\[
+ m (\mathcal{M}_1 + N_1 \| q \|) \| \beta \mathcal{A}_3 \|.
\]

Taking \(\sup_{t \in \mathcal{F}} \), we obtain

\[
\| G_1 (p, q) \|_{\mathcal{S}_r} \leq \mathcal{M}_f \left\{ \frac{\| \ln (t/t_m) \alpha \| \| \alpha \Omega \|}{\alpha \Omega} + m (\ln (m/m-1) \alpha \| \alpha \mathcal{A}_2 \| \| \alpha \Omega \| - \| \mu (\ln (T/t_k) \alpha \| \alpha \bar{\Omega} \| \}
\]

\[
+ m (\ln (t/t_m) \alpha \| \alpha \mathcal{A}_3 \| \| \alpha \Omega \| - \| \mu (\ln (T/t_k) \alpha \| \alpha \bar{\Omega} \| \}
\]

\[
\| (p, q) \| \leq \mathcal{M}_f C_\alpha \| (p, q) \|.
\]

(59)
where

\[
C_\alpha = \frac{(\ln t)^{2-\alpha} (\ln (t/t_m))^{\alpha} \|_\alpha \Omega^1 + m (\ln (t_m/t_{m-1}))^{\alpha} \|_\alpha \Omega^2 \|_\alpha \Omega^1 - |\lambda| (\ln (T/t_m))^{\alpha} \|_\alpha \Omega^3 \|_\alpha \Omega^1}{|\alpha\Omega^1| \Gamma (\alpha + 1)}
+ \frac{m (\ln (t_m/t_{m-1}))^{\alpha} \|_\alpha \Omega^3 \|_\alpha \Omega^1 - |\lambda| (\ln (T/t_m))^{\alpha-1} \|_\alpha \Omega^3 \|_\alpha \Omega^1}{|\alpha\Omega^1| \Gamma (\alpha)}.
\]

(60)

Also

\[
\| G_2 (p, q) (t) \|_{\mathcal{E}_1} \leq M \| C_\beta \| (p, q),
\]

(61)

\[
C_\beta = \frac{(\ln t)^{2-\beta} (\ln (t/t_m))^{\beta} \|_\beta \Omega^1 + n (\ln (t_m/t_{m-1}))^{\beta} \|_\beta \Omega^2 \|_\beta \Omega^1 - |\lambda| (\ln (T/t_m))^{\beta} \|_\beta \Omega^3 \|_\beta \Omega^1}{|\beta\Omega^1| \Gamma (\beta + 1)}
+ \frac{m (\ln (t_m/t_{m-1}))^{\beta} \|_\beta \Omega^3 \|_\beta \Omega^1 - |\lambda| (\ln (T/t_m))^{\beta-1} \|_\beta \Omega^3 \|_\beta \Omega^1}{|\beta\Omega^1| \Gamma (\beta)}.
\]

(62)

Substituting all inequalities from (59) to (61) in (54), we get

\[
\| F (p, q) + G (p, q) \|_{\mathcal{E}} \leq M \left(\frac{\| \alpha \Omega^1 \|_\alpha \Omega^1 + \| \beta \Omega^1 \|_\beta \Omega^1}{\| \alpha \Omega^1 \|_\alpha \Omega^1 + \| \beta \Omega^1 \|_\beta \Omega^1} \right)
+ \| \alpha \Omega^1 \| + \| \beta \Omega^1 \| + m \| \alpha \Omega^2 \| + n \| \beta \Omega^2 \|
+ m \| \alpha \Omega^3 \| + n \| \beta \Omega^3 \| + \mathcal{N} \left(m \| \alpha \Omega^2 \| + n \| \beta \Omega^2 \| \right) + \mathcal{M} (C_\alpha
+ C_\beta) r \leq r,
\]

(63)

where

\[
\mathcal{M} = \max \{ \mathcal{M}_\phi, \mathcal{M}_\psi, \mathcal{M}_\varphi, \mathcal{M}_\theta, \mathcal{M}_\rho, \mathcal{M}_1, \mathcal{M}_1, \mathcal{M}_1, \mathcal{M}_1, \mathcal{M}_1, \mathcal{M}_1, \mathcal{M}_1 \}
\]

and

\[
\mathcal{N} = \max \{ N_1, N_1, N_1, N_1 \}.
\]

Hence, \(F (p, q) + G (p, q) \in \mathcal{E}_r \). Next, for any \(t \in \mathcal{F}, (p, q), (\bar{p}, \bar{q}) \in \mathcal{E} \)

\[
\| F (p, q) - F (\bar{p}, \bar{q}) \|_{\mathcal{E}_1} \leq \| F_1 (p) - F_1 (\bar{p}) \|_{\mathcal{E}_1}
+ \| F_2 (q) - F_2 (\bar{q}) \|_{\mathcal{E}_1} \leq \left(\frac{\mathcal{L}_1 \| \alpha \Omega^1 \|_\alpha \Omega^1 + \mathcal{L}_1 \| \beta \Omega^1 \|_\beta \Omega^1}{\| \alpha \Omega^1 \|_\alpha \Omega^1 + \| \beta \Omega^1 \|_\beta \Omega^1} \right)
+ \mathcal{L}_1 \| \alpha \Omega^2 \| + \mathcal{L}_1 \| \beta \Omega^2 \| \| p - \bar{p} \|
+ \left(\frac{\mathcal{L}_1 \| \alpha \Omega^3 \|_\alpha \Omega^3 + \mathcal{L}_1 \| \beta \Omega^3 \|_\beta \Omega^3}{\| \alpha \Omega^3 \|_\alpha \Omega^3 + \| \beta \Omega^3 \|_\beta \Omega^3} \right) n \| \alpha \Omega^2 \| + n \| \beta \Omega^2 \|
\]

where

\[
\xi^* = \frac{\| \alpha \Omega^1 \|_\alpha \Omega^1 + \| \beta \Omega^1 \|_\beta \Omega^1}{\| \alpha \Omega^1 \|_\alpha \Omega^1 + \| \beta \Omega^1 \|_\beta \Omega^1} + \mathcal{L}_1 \| \alpha \Omega^2 \| + \mathcal{L}_1 \| \beta \Omega^2 \| + m \| \alpha \Omega^3 \| + m \| \beta \Omega^3 \| + n \| \alpha \Omega^2 \| + n \| \beta \Omega^2 \|.
\]

Therefore, \(F \) is contraction mapping.

Now, we are proving the continuity and compactness of \(G \) and, for this reason, construct a sequence \(T_r = (p_r, q_r) \) in \(\mathcal{E}_r \) such that \((p_r, q_r) \rightarrow (p, q) \) for \(s \rightarrow \infty \) in \(\mathcal{E}_s \). Thus, we have

\[
\| G (p, q) - G (p_r, q_r) \|_{\mathcal{E}} \leq \| G_1 (p, q) - G_1 (p_r, q_r) \|_{\mathcal{E}}
+ \| G_2 (p, q) - G_2 (p_r, q_r) \|_{\mathcal{E}}
\leq \mathcal{L}_f \left(\frac{\| \alpha \Omega^3 \|_\alpha \Omega^3}{\| \alpha \Omega^3 \|_\alpha \Omega^3 + \| \beta \Omega^3 \|_\beta \Omega^3} \right)
+ \mathcal{L}_f \left(\frac{\| \alpha \Omega^3 \|_\alpha \Omega^3}{\| \alpha \Omega^3 \|_\alpha \Omega^3 + \| \beta \Omega^3 \|_\beta \Omega^3} \right)
\]

where

\[
\mathcal{L}_f = \max \{ \mathcal{L}_\phi, \mathcal{L}_\psi, \mathcal{L}_\varphi, \mathcal{L}_\theta, \mathcal{L}_\rho, \mathcal{L}_1, \mathcal{L}_1, \mathcal{L}_1, \mathcal{L}_1, \mathcal{L}_1, \mathcal{L}_1, \mathcal{L}_1 \}
\]

and

\[
\mathcal{L}_f = \max \{ N_1, N_1, N_1, N_1 \}.
\]

Therefore, \(F \) is contraction mapping.

Now, we are proving the continuity and compactness of \(G \) and, for this reason, construct a sequence \(T_r = (p_r, q_r) \) in \(\mathcal{E}_r \) such that \((p_r, q_r) \rightarrow (p, q) \) for \(s \rightarrow \infty \) in \(\mathcal{E}_s \). Thus, we have

\[
\| G (p_r, q_r) - G (p, q) \|_{\mathcal{E}} \leq \| G_1 (p_r, q_r) - G_1 (p, q) \|_{\mathcal{E}}
+ \| G_2 (p_r, q_r) - G_2 (p, q) \|_{\mathcal{E}}
\]

and

\[
\mathcal{L}_f \left(\frac{\| \alpha \Omega^3 \|_\alpha \Omega^3}{\| \alpha \Omega^3 \|_\alpha \Omega^3 + \| \beta \Omega^3 \|_\beta \Omega^3} \right)
\]

where

\[
\mathcal{L}_f = \max \{ \mathcal{L}_\phi, \mathcal{L}_\psi, \mathcal{L}_\varphi, \mathcal{L}_\theta, \mathcal{L}_\rho, \mathcal{L}_1, \mathcal{L}_1, \mathcal{L}_1, \mathcal{L}_1, \mathcal{L}_1, \mathcal{L}_1, \mathcal{L}_1 \}
\]

and

\[
\mathcal{L}_f = \max \{ N_1, N_1, N_1, N_1 \}.
\]

Therefore, \(F \) is contraction mapping.
Thus, \(\left\| G \right\| \leq \left\| G_1 \right\|_{\mathcal{G}_1} + \left\| G_2 \right\|_{\mathcal{G}_2} \leq (\mathcal{M}_f C^* + \mathcal{M}_g C^{**}) r. \)

This implies \(\| G(p, q) \|_{\mathcal{G}} \to 0 \) as \(n \to \infty; \) therefore \(G \) is continuous.

Next, we show that \(G \) is uniformly bounded on \(\mathcal{E}_r. \) From (59) and (61), we have

\[
\| G(p, q)(t) \|_{\mathcal{G}} \leq \| G_1(p, q)(t) \|_{\mathcal{G}_1} + \| G_2(p, q)(t) \|_{\mathcal{G}_2}
\leq (\mathcal{M}_f C^* + \mathcal{M}_g C^{**}) r.
\]

Thus, \(G \) is uniformly bounded on \(\mathcal{E}_r. \)

For equi-continuity, take \(t_1, t_2 \in \mathcal{J} \) with \(t_1 < t_2 \) and for any \((p, q) \in \mathcal{E}_r \), \(\mathcal{E}_r \) is clearly bounded, we have

\[
\left[G_1(p, q)(t_1) - G_1(p, q)(t_2) \right] \geq \left(\frac{m!}{\Gamma(\alpha + 1)} \right)^a \left(\ln \left(\frac{t_1}{t_m} \right) \right) - \frac{m}{\Gamma(\alpha + 1)} \left(\ln \left(\frac{t_1}{t_m} \right) \right)^{a-1}
\]

This implies that \(\| G_1(p, q)(t_1) - G_1(p, q)(t_2) \|_{\mathcal{G}_1} \to 0 \) as \(t_1 \to t_2. \) In the same way, we have \(\| G_2(p, q)(t_1) - G_2(p, q)(t_2) \|_{\mathcal{G}_2} \to 0 \) as \(t_1 \to t_2. \) Hence \(\| G(p, q)(t_1) - G(p, q)(t_2) \|_{\mathcal{G}} \to 0 \) as \(t_1 \to t_2. \) Therefore, \(G \) is relatively compact on \(\mathcal{E}_r. \) By Arzelà-Ascoli theorem, \(G \) is compact and hence completely continuous operator, so (3) has at least one solution.

\section*{4. Ulam Stability Analysis}

In this portion, we analyze different kinds of stability like Hyers–Ulam, generalized Hyers–Ulam, Hyers–Ulam–Rassias, and generalized Hyers–Ulam–Rassias stability of the proposed system.

\textbf{Theorem 15.} If assumptions \((H_1) - (H_3)\) and inequality (44) are satisfied and

\[
\Gamma = 1 - \frac{\mathcal{L}^2 \Lambda_2 \Lambda_3}{\left(\ln t \right)^{a-2} - \mathcal{L} \Lambda_1} > 0,
\]

then the unique solution of the coupled system (3) is Hyers–Ulam stable and consequently generalized Hyers–Ulam stable.

\textbf{Proof.} Let \((p, q) \in \mathcal{E}_r\) be an approximate solution of inequality (14) and let \((\bar{p}, \bar{q}) \in \mathcal{E}_r\) be the unique solution of the coupled system given by

\[
\mathcal{H}^\mathcal{\Delta} p(t) = f(t, \bar{p}(t), \bar{q}(t)), \quad t \in \mathcal{J}, \quad t \neq t_i, \quad i = 1, 2, \ldots, m,
\]

\[
\mathcal{H}^\mathcal{\Delta} \bar{q}(t) = g(t, \bar{p}(t), \bar{q}(t)), \quad t \in \mathcal{J}, \quad t \neq t_i, \quad j = 1, 2, \ldots, n,
\]

\[
\Delta \bar{p}(t_i) = l_i(\bar{p}(t_i)), \quad \Delta \bar{q}(t_i) = l_i(\bar{q}(t_i)), \quad i = 1, 2, \ldots, m,
\]

\[
\Delta \bar{p}'(t_i) = \bar{l}_i(\bar{p}(t_i)), \quad \Delta \bar{q}'(t_i) = \bar{l}_i(\bar{q}(t_i)), \quad j = 1, 2, \ldots, n.
\]
By Remark 10 we have

\[H \mathcal{D}^\alpha p(t) = f(t, p(t), q(t)) + Y_f(t), \quad t \in J, \quad t \neq t_i, \quad i = 1, 2, \ldots, m, \]
\[\Delta p(t_i) = I_i(p(t_i)) + Y_{f_i}, \]
\[\Delta p'(t_i) = \tilde{I}_i(p(t_i)) + Y_{f_i}, \quad i = 1, 2, \ldots, m, \]

\[H \mathcal{D}^\beta q(t) = g(t, p(t), q(t)) + Y_g(t), \quad t \in J, \quad t \neq t_j, \quad j = 1, 2, \ldots, n, \]
\[\Delta q(t_j) = I_j(q(t_j)) + Y_{g_j}, \]
\[\Delta q'(t_j) = \tilde{I}_j(q(t_j)) + Y_{g_j}, \quad j = 1, 2, \ldots, n. \]

Therefore, the solution of problem (71) is

\[
p(t) = \frac{(\ln t)^{\alpha-2} a \cdot \Omega(t) \cdot \phi(p)}{\omega \Omega} \\
+ \sum_{i=1}^{k} (\ln t)^{\alpha-2} a \cdot \omega f_i(t) \left(I_i(p(t_i)) + Y_{f_i} \right) \\
+ \sum_{i=1}^{k} (\ln t)^{\alpha-2} a \cdot \omega f_2(t) \left(\tilde{I}_i(p(t_i)) + Y_{f_i} \right) \\
+ (\ln t)^{\alpha-2} a \cdot \omega f_1(t) \left(\phi(p) + \frac{\sum_{i=1}^{k} (\ln t)^{\alpha-2} a \cdot \omega f_3(t)}{\Gamma(\alpha)} \right) \\
\cdot \int_{t_i}^{t} \left(\ln \frac{t}{s} \right)^{\alpha-1} \left(f(s, p(s), q(s)) + Y_f(s) \right) \frac{ds}{s} \\
+ \frac{\sum_{i=1}^{k} (\ln t)^{\alpha-2} a \cdot \omega f_3(t)}{\Gamma(\alpha - 1)} \\
\cdot \int_{t_i}^{t} \left(\ln \frac{t}{s} \right)^{\alpha-2} \left(f(s, p(s), q(s)) + Y_f(s) \right) \frac{ds}{s} \\
- \frac{\mu (\ln t)^{\alpha-2} a \cdot \Omega(t)}{\omega \Omega} \\
\cdot \int_{t_i}^{T} \left(\ln \frac{T}{s} \right)^{\alpha-1} \left(f(s, p(s), q(s)) + Y_f(s) \right) \frac{ds}{s} \\
+ \frac{1}{\Gamma(\beta)} \int_0^t \left(\ln \frac{t}{s} \right)^{\beta-1} \left(g(s, p(s), q(s)) + Y_g(s) \right) \frac{ds}{s} \\
+ \sum_{j=1}^{k} (\ln t)^{\beta-2} \cdot \omega f_1(t) \left(\phi(q) + \frac{\sum_{i=1}^{k} (\ln t)^{\beta-2} \cdot \omega f_4(t)}{\Gamma(\beta - 1)} \right) \\
\cdot \int_{t_{j-1}}^{t} \left(\ln \frac{t}{s} \right)^{\beta-1} \left(g(s, p(s), q(s)) + Y_g(s) \right) \frac{ds}{s} \\
- \frac{\mu (\ln t)^{\beta-2} a \cdot \Omega(t)}{\omega \Omega} \\
\cdot \int_{t_{j-1}}^{T} \left(\ln \frac{T}{s} \right)^{\beta-1} \left(g(s, p(s), q(s)) + Y_g(s) \right) \frac{ds}{s} \\
+ \frac{1}{\Gamma(\beta - 1)} \int_0^t \left(\ln \frac{t}{s} \right)^{\beta-1} \left(g(s, p(s), q(s)) + Y_g(s) \right) \frac{ds}{s} \\
+ \sum_{j=1}^{k} (\ln t)^{\beta-2} \cdot \omega f_1(t) \left(\phi(q) + \frac{\sum_{i=1}^{k} (\ln t)^{\beta-2} \cdot \omega f_4(t)}{\Gamma(\beta - 1)} \right) \\
\cdot \int_{t_{j-1}}^{t} \left(\ln \frac{t}{s} \right)^{\beta-1} \left(g(s, p(s), q(s)) + Y_g(s) \right) \frac{ds}{s} \\
+ \frac{1}{\Gamma(\beta)} \int_0^t \left(\ln \frac{t}{s} \right)^{\beta-1} \left(g(s, p(s), q(s)) + Y_g(s) \right) \frac{ds}{s} \\
\cdot k = 1, 2, \ldots, n. \]
We consider
\[
\left| (p(t) - \tilde{p}(t)) (\ln t)^{\alpha-2} \right| \leq \frac{\left| \alpha \tilde{\Omega}(t) \right|}{\left| \alpha \Omega \right|} \left| \varphi(p) - \varphi(\tilde{p}) \right| + \sum_{i=1}^{k} \left| \alpha \mathcal{A}_i(t) \right| \left| \tilde{I}_i(p(t)) - \tilde{I}_i(\tilde{p}(t)) \right|
\]
\[
+ \sum_{i=1}^{k} \left| \alpha \mathcal{A}_2(t) \right| \left| I_i(p(t)) - I_i(\tilde{p}(t)) \right| + \left| \alpha \mathcal{A}_3(t) \right|
\]
\[
\cdot \varphi(p) - \varphi(\tilde{p}) + \sum_{i=1}^{k} \left| \alpha \mathcal{A}_2(t) \right| \Gamma(\alpha) \int_{t_i}^{T} \left(\ln \frac{t}{s} \right)^{\alpha-1} \|Y_f(s)\| \frac{ds}{s} + \frac{\left(\ln t \right)^{2-\alpha}}{\Gamma(\alpha)} \int_{t_i}^{T} \left(\ln \frac{t}{s} \right)^{\alpha-1} \|Y_f(s)\| \frac{ds}{s}.
\]
(73)

As in Theorem 13, we get
\[
\|p - \tilde{p}\|_{\mathscr{E}_i} \leq \mathcal{L}_1 (\ln t)^{2-\alpha} \|p - \tilde{p}\|_{\mathscr{E}_i}
\]
\[
+ \mathcal{L}_2 (\ln t)^{2-\alpha} \|q - \tilde{q}\|_{\mathscr{E}_i}
\]
\[
+ \left[\mathcal{L}_2 + m \| \alpha \mathcal{A}_2 \| + m \| \alpha \mathcal{A}_3 \| \right] \| \Omega \|_{\mathscr{E}_i}
\]
\[
\|q - \tilde{q}\|_{\mathscr{E}_i} \leq \mathcal{L}_3 (\ln t)^{2-\beta} \|p - \tilde{p}\|_{\mathscr{E}_i}
\]
\[
+ \mathcal{L}_4 (\ln t)^{2-\beta} \|q - \tilde{q}\|_{\mathscr{E}_i}
\]
(74)
(75)

From (74) and (75) we have
\[
\|p - \tilde{p}\|_{\mathscr{E}_i} \leq \mathcal{L}_1 (\ln t)^{2-\alpha} - \mathcal{L}_2
\]
\[
\|q - \tilde{q}\|_{\mathscr{E}_i} \leq \mathcal{L}_3 (\ln t)^{2-\beta} - \mathcal{L}_4
\]
(76)

respectively. Let \(\mathscr{G}_\alpha = (\mathcal{L}_2 + m \| \alpha \mathcal{A}_2 \| + m \| \alpha \mathcal{A}_3 \|)/(1 - \mathcal{L}_1 (\ln t)^{2-\alpha}) \) and \(\mathscr{G}_\beta = (\mathcal{L}_4 + n \| \beta \mathcal{A}_2 \| + n \| \beta \mathcal{A}_3 \|)/(1 - \mathcal{L}_3 (\ln t)^{2-\beta}) \). Then the last two inequalities can be written in matrix form as
\[
\begin{bmatrix}
1 \\
\mathcal{L}_2 \\
\mathcal{L}_3 \\
\mathcal{L}_4
\end{bmatrix}
\leq \begin{bmatrix}
\mathscr{G}_\alpha & 0 \\
0 & \mathscr{G}_\beta
\end{bmatrix}
\begin{bmatrix}
\|p - \tilde{p}\|_{\mathscr{E}_i} \\
\|q - \tilde{q}\|_{\mathscr{E}_i}
\end{bmatrix}
\]
(77)

where
\[
F = 1 - \frac{\mathcal{L}_2 \mathcal{L}_4}{(\ln t)^{2-\alpha} - \mathcal{L}_1} > 0.
\]
(78)
From system (77) we have
\[
\|p - \bar{p}\|_{\mathcal{E}_x} \leq \frac{G_{\alpha\beta}}{F} + \frac{\mathcal{L}_2 \mathcal{L}_2^2 \mathcal{L}_2}{(\ln t)^{\alpha^2 - \mathcal{L}_1} F}, \\
\|q - \bar{q}\|_{\mathcal{E}_x} \leq \frac{G_{\alpha\beta}}{F} + \frac{\mathcal{L}_3 \mathcal{L}_2^2 \mathcal{L}_2}{(\ln t)^{\beta^2 - \mathcal{L}_3} F},
\]
which implies that
\[
\|p - \bar{p}\|_{\mathcal{E}_x} + \|q - \bar{q}\|_{\mathcal{E}_x} \\
\leq \frac{G_{\alpha\beta}}{F} + \frac{\mathcal{L}_2 \mathcal{L}_2^2 \mathcal{L}_2}{(\ln t)^{\alpha^2 - \mathcal{L}_1} F} + \frac{\mathcal{L}_3 \mathcal{L}_2^2 \mathcal{L}_2}{(\ln t)^{\beta^2 - \mathcal{L}_3} F}, \tag{79}
\]
If \(\max\{\alpha, \beta\} = \gamma\) and \(G_{\alpha\beta}/F + G_{\alpha\beta}/F + \mathcal{L}_2 \mathcal{L}_2/(\ln t)^{\alpha^2 - \mathcal{L}_1} F + \mathcal{L}_3 \mathcal{L}_2^2 \mathcal{L}_2/(\ln t)^{\beta^2 - \mathcal{L}_3} F = G_{\alpha\beta},\) then
\[
\|(p, q) - (\bar{p}, \bar{q})\|_{\mathcal{E}_x} \leq G_{\alpha\beta}\eta. \tag{80}
\]
This shows that system (3) is Hyers–Ulam stable. Also, if
\[
\|(p, q) - (\bar{p}, \bar{q})\|_{\mathcal{E}_x} \leq G_{\alpha\beta}\Phi(q), \tag{82}
\]
with \(\Phi(0) = 0,\) then the solution of system (3) is generalized Hyers–Ulam stable.

For the upcoming result, we suppose the following:

\((H_6)\) There exist two nondecreasing functions \(\overline{\mathcal{H}}_{\alpha}, \overline{\mathcal{H}}_{\beta} \in C(\mathcal{F}, \mathbb{R}^+)\) such that
\[
\mathcal{H}_{\alpha} \overline{\mathcal{H}}_{\alpha}(t) \leq \mathcal{L}_{\alpha} \overline{\mathcal{H}}_{\alpha}(t), \tag{83}
\]
\[
\mathcal{H}_{\beta} \overline{\mathcal{H}}_{\beta}(t) \leq \mathcal{L}_{\beta} \overline{\mathcal{H}}_{\beta}(t),
\]
where \(\mathcal{L}_{\alpha}, \mathcal{L}_{\beta} > 0.\)

Theorem 16. If assumptions \((H_1) - (H_6)\) and \((H_8)\) and inequality (44) are satisfied and
\[
F = 1 - \frac{\mathcal{L}_2^2 \mathcal{L}_2^2 \mathcal{L}_2}{(\ln t)^{\alpha^2 - \mathcal{L}_1}(\ln t)^{\beta^2 - \mathcal{L}_3} > 0}, \tag{84}
\]
then the unique solution of the coupled system (3) is Hyers–Ulam–Rassias stable and consequently generalized Hyers–Ulam–Rassias stable.

Proof. By using Definitions 9 and 8, we can gain our result to perform the same steps as in Theorem 15.

\(\square\)

5. Example

To testify our results established in the previous section, we provide an adequate problem.

Example 1. Consider
\[
\mathcal{H}D^{3/2}p(t) = \frac{t^2 + \sin(|p(t)|) + \cos(|q(t)|)}{50},
\]
\(t \in \mathcal{F}, \ t \neq \frac{5}{2},\)
\[
\mathcal{H}D^{3/2}q(t) = \frac{|q(t)| + \cos(|p(t)|)}{70 + t^2}, \tag{85}
\]
\(t \in \mathcal{F}, \ t \neq \frac{7}{3},\)
\[
\ln 2p(2) - \ln 2p'(2) = \sum_{i=1}^{10} h_i p(\zeta_i),
\]
\[
\ln 2q(2) - \ln 2q'(2) = \sum_{i=1}^{10} h_i q(\eta_j),
\]
\(2 < \eta_j, \zeta_i < 3, \ h_i > 0\)
\[
P(\alpha - p'(e)) = \sum_{i=1}^{10} p_i \rho(\zeta_i), \tag{86}
\]
\[
Q(\alpha - q'(e)) = \sum_{j=1}^{10} q_j \varphi(\eta_j),
\]
\(2 < \eta_j, \zeta_j < 3, \ \varphi_j > 0,\)
\[
\Delta p\left(\frac{5}{2}\right) = I_{1}\left(p\left(\frac{5}{2}\right)\right) = \frac{|p(5/2)|}{75 + |p(5/2)|},
\]
\[
\Delta p'\left(\frac{5}{2}\right) = I_{1}\left(p'\left(\frac{5}{2}\right)\right) = \frac{|p(5/2)|}{25 + |p(5/2)|},
\]
\[
\Delta q\left(\frac{7}{3}\right) = I_{1}\left(q\left(\frac{7}{3}\right)\right) = \frac{|q(7/3)|}{75 + |q(7/3)|},
\]
\[
\Delta q'\left(\frac{7}{3}\right) = I_{1}\left(q'\left(\frac{7}{3}\right)\right) = \frac{|q(7/3)|}{25 + |q(7/3)|}.
\]
In system (85), we see that \(\alpha = \beta = 3/2\) and \(\rho(\alpha) = \sum_{i=1}^{10} h_i |p(\zeta_i)|, \ \varphi(p) = \sum_{i=1}^{10} \varphi_j |p(\zeta_i)|, \ \phi(q) = \sum_{j=1}^{10} h_j |q(\eta_j)|,\) and \(\varphi(q) = \sum_{j=1}^{10} \varphi_j |q(\eta_j)|,\) where \(\sum_{i=1}^{10} h_i < 1/25\) and \(\sum_{j=1}^{10} \varphi_j < 1/75.\)

For \(t \in \mathcal{F} = (2, e),\) and \((p, q), (\bar{p}, \bar{q}) \in \mathcal{E},\) we gain
\[
\left|f(t, p(t), q(t)) - f(t, \bar{p}(t), \bar{q}(t))\right| \\
\leq \frac{1}{50} \left|(p, q) - (\bar{p}, \bar{q})\right|,
\]
\[
\left|g(t, p(t), q(t)) - g(t, \bar{p}(t), \bar{q}(t))\right| \\
\leq \frac{1}{70} \left|(p, q) - (\bar{p}, \bar{q})\right|,
\]
From this we get \(\mathcal{L}_{f} = 1/50\) and \(\mathcal{L}_{g} = 1/75.\) Also,
\[
\left|\mathcal{I}_{f}(p(t)) - \mathcal{I}_{f}(\bar{p}(t))\right| \leq \frac{1}{75} \left\|(p - \bar{p})\right\|,
\]
\[
\left|\mathcal{I}_{g}(p(t)) - \mathcal{I}_{g}(\bar{p}(t))\right| \leq \frac{1}{25} \left\|(p - \bar{p})\right\|,
\]
From this we get that

\[
\left| \phi(p(t)) - \phi(\tilde{p}(t)) \right| \leq \frac{1}{25} \|p - \tilde{p}\|, \\
\left| \phi(p(t)) - \phi(\tilde{p}(t)) \right| \leq \frac{1}{75} \|p - \tilde{p}\|.
\]

From this we get that \(\mathcal{L}_t = \mathcal{L}'_t = 1/75, \mathcal{L} = \mathcal{L}'_t = 1/25, \mathcal{L}_\phi = 1/25, \mathcal{L}'_\phi = 1/75, \mathcal{L}_\psi = 1/25, \mathcal{L}'_\psi = 1/75, \) and \(m = n = 1. \) Finding \(\Lambda_1 = 0.51282, \Lambda_2 = 0.18059, \Lambda_3 = 0.12899, \) and \(\Lambda_4 = 0.46122, \) it is clear that \(\Lambda_f = 0.51282 \) and \(\Lambda_g = 0.46122. \) By the help of Theorem 13, the following inequality is true

\[
\Lambda_f + \Lambda_g < \frac{1}{\mathcal{L}},
\]

and hence (85) has a unique solution. Also,

\[
F = 1 - \frac{\mathcal{L}^2 \Lambda \Lambda_4}{(\ln t)^{\mu - 2} - \mathcal{L} \Lambda_4} \approx 0.02280 > 0,
\]

and hence by Theorem 15 the coupled system (85) is Hyers–Ulam stable and thus generalized Hyers–Ulam stable. Similarly, we can verify the condition of Theorems 16 and 14.

6. Conclusion

In this manuscript, we used the Arzelà-Ascoli theorem, Banach contraction principle, and Krausnoselskii’s fixed point theorem to achieve the necessary criteria for the existence and uniqueness of the solution of considered switched coupled impulsive fractional differential systems given in (3). Similarly, under particular assumptions and conditions, we have established the Hyers–Ulam stability results of different kinds for the solution of the considered problem in (3). From the obtained results, we conclude that such a method is very powerful, effectual, and suitable for the solution of nonlinear fractional differential equations.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

The work is supported by the National Natural Science Foundation of China (Grant No. 11601048), Natural Science Foundation of Chongqing (Grant No. cstc2016jcyjA0181), the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN201800533), and Natural Science Foundation of Chongqing Normal University (Grant No. I6XYY24).

References

