Adaptive Backstepping Current Control of Active Power Filter Using Neural Compensator

Yunmei Fang and Juntao Fei

Correspondence should be addressed to Juntao Fei; jtfei@yahoo.com

Received 16 March 2019; Revised 10 April 2019; Accepted 24 April 2019; Published 16 May 2019

1. Introduction

The harmonic distortion of power grid quality is becoming a serious issue with the increasing nonlinear loads in electrical equipment and power systems. Shunt active power filters (SAPF) become the main harmonic treatment way because they can effectively reduce current harmonic distortion and reactive power.

The active power filter (APF) is an intelligent harmonic control device, which detects harmonics and injects compensation current into the grid to improve power quality. There are some current controllers, i.e., hysteresis current control, triangular wave modulation control, and space vector modulation control. With the introduction of the smart grid concept, the control algorithms can achieve more accurate harmonic current tracking control effects. Yue et al. [1] designed a predictive double loop controller in order to increase the robustness and adaptive property of an active filter. Swain et al. [2] improved the robustness and stability of APF with a novel sliding controller. Intelligent control methods were developed in [3–5] to remove the current with harmonics and increase the power grid quality. Carpinelli et al. [6] adopted a multiobjective method in a multiconverter distribution system. Tareen et al. [7] decreased the power switches and improved the properties of grid-connected inverters by reducing the cost, weight, and size.

Backstepping controller can obtain the targets of tracking and stabilization because it is a controller with recursive property, dividing a full system into lower order systems. It can relax the matching condition in the strict feedback system and avoid cancelling the useful existing nonlinearities. The fundamental idea of backstepping is to recursively derive a controller and step back from the subsystem progressively, ensuring stability for each step, until getting to the final step.
Thus, adaptive control is combined with neural control and backstepping approach for dynamic systems [20, 21].

Adaptive neural controller was put forward to treat the harmonics in APF and improve the power grid quality in [22–24]. In this work, an adaptive neural backstepping scheme is designed to guarantee the current tracking and improve the system robustness. The innovative points can be listed as follows:

(1) A backstepping method is incorporated with the adaptive neural control to obtain the desired harmonic suppression related to the current in power grid system. The adaptive neural backstepping controller is used to compensate the nonlinear loads and increase the current tracking property and total harmonic distortion (THD) index.

(2) This control method is realized by neural controller without known accurate model of APF, making the controller simpler and easier to be achieved, strengthening the power supply quality. A robust current compensation controller is added to solve the nonzero issue with respect to the approximation errors existing in the neural system.

2. System Description

The schematic diagram of a three-phase shunt APF discussed in this paper is depicted in Figure 1. The main components are nonlinear loads, source and PWM generator, control system, and harmonic current detector module. The control system aimed to stabilize DC link voltage according to a basic value and track the instruction current so as to generate the compensating current to decrease the distortion current caused by nonlinear loads. In Figure 1, \(V_s1, V_s2, \) and \(V_s3 \) represent the voltages in the grid, \(i_{s1}, i_{s2}, \) and \(i_{s3} \) represent the power currents, \(i_L1, i_L2, \) and \(i_L3 \) represent the loading currents, \(v_1, v_2, \) and \(v_3 \) represent the voltages in the public joint points, \(i_1, i_2, \) and \(i_3 \) represent the compensating current, \(C \) is the capacitor in the DC side, \(v_{dc} \) is the voltage in the capacitance \(C, i_{dc} \) is the current in the capacitance \(C, L_c \) is the inductance in the AC side, and \(R_c \) denotes the equivalent resistance.

The model of an APF system is derived in the next procedure. The circuit relationships

\[
\begin{align*}
V_1 &= L_c \frac{di_1}{dt} + R_c i_1 + v_{1M} + v_{MN} \\
V_2 &= L_c \frac{di_2}{dt} + R_c i_2 + v_{2M} + v_{MN} \\
V_3 &= L_c \frac{di_3}{dt} + R_c i_3 + v_{3M} + v_{MN}
\end{align*}
\]

are obtained by Kirchhoff rules [3], where \(v_{MN} \) is the voltage between \(M \) and \(N \).

Assuming the balanced AC supply voltage, and summing equations in (1), considering the absence of the zero-sequence yield

\[
v_{MN} = -\frac{1}{3} \sum_{m=1}^{3} v_{mMN}.
\]
To indicate the IGBT working status, switch function \(c_k \) is defined as

\[
c_k = \begin{cases}
1, & \text{if } S_k \text{ is On and } S_{k+3} \text{ is Off} \\
0, & \text{if } S_k \text{ is Off and } S_{k+3} \text{ is On},
\end{cases}
\]

(3)

where \(k = 1, 2, 3 \).

In the meantime, considering \(v_{km} = c_k v_{dc} \), thus (1) is expressed as

\[
\frac{di_1}{dt} = -\frac{R_c}{L_c}i_1 + \frac{v_1}{L_c} - \frac{v_{dc}}{L_c} \left(c_1 - \frac{1}{3} \sum_{m=1}^{3} c_m \right)
\]

(4)

\[
\frac{di_2}{dt} = -\frac{R_c}{L_c}i_2 + \frac{v_2}{L_c} - \frac{v_{dc}}{L_c} \left(c_2 - \frac{1}{3} \sum_{m=1}^{3} c_m \right)
\]

(5)

\[
\frac{di_3}{dt} = -\frac{R_c}{L_c}i_3 + \frac{v_3}{L_c} - \frac{v_{dc}}{L_c} \left(c_3 - \frac{1}{3} \sum_{m=1}^{3} c_m \right).
\]

Denote the switching state as

\[
d_{nk} = \left(c_k - \frac{1}{3} \sum_{m=1}^{3} c_m \right)_n.
\]

(5)

Equation (5) shows the relation between \(d_{nk} \) and \(c_k \); then, (5) with the consideration of eight permissible IGBT switching states generates

\[
\begin{bmatrix}
 d_{n1} \\
 d_{n2} \\
 d_{n3}
\end{bmatrix} = \frac{1}{3} \begin{bmatrix}
 2 & -1 & -1 \\
 -1 & 2 & -1 \\
 -1 & -1 & 2
\end{bmatrix} \begin{bmatrix}
 c_1 \\
 c_2 \\
 c_3
\end{bmatrix}.
\]

(6)

Then, (4) can be written in simplified form as

\[
\frac{di_1}{dt} = -\frac{R_c}{L_c}i_1 + \frac{v_1}{L_c} - \frac{v_{dc}}{L_c} d_{n1}
\]

(7)

\[
\frac{di_2}{dt} = -\frac{R_c}{L_c}i_2 + \frac{v_2}{L_c} - \frac{v_{dc}}{L_c} d_{n2}
\]

\[
\frac{di_3}{dt} = -\frac{R_c}{L_c}i_3 + \frac{v_3}{L_c} - \frac{v_{dc}}{L_c} d_{n3}.
\]

Define two state variables

\[
x_1 = i_k
\]

(8)

\[
x_2 = \dot{x}_1 = i_k.
\]

Differentiating \(x_1 \) and \(x_2 \) with respect to time yields

\[
\dot{x}_1 = i_k = \frac{R_c}{L_c}i_k + \frac{v_k}{L_c} - \frac{v_{dc}}{L_c} d_{nk}
\]

(9)

\[
\dot{x}_2 = \dot{i}_k = d \left(-\frac{(R_c/L_c)i_k + v_k/L_c - (v_{dc}/L_c) d_{nk}}{dt} \right)
\]

(10)

Considering the external disturbances, the model of the APF system is rewritten as

\[
\dot{x}_1 = x_2
\]

(11)

\[
\dot{x}_2 = \frac{R_c^2}{L_c^2}i_k - \frac{R_c}{L_c}v_k + \frac{1}{L_c} \frac{dv_k}{dt} + u \left(\frac{R_c}{L_c} v_{dc} - \frac{1}{L_c} \frac{dv_{dc}}{dt} \right)
\]

where \(f(x) = \left(\frac{R_c^2}{L_c^2} \right) i_k - \left(\frac{R_c}{L_c} \right) v_k + \left(\frac{1}{L_c} \right) \frac{dv_k}{dt} \), \(b = \left(\frac{R_c}{L_c} \right) v_{dc} - \left(\frac{1}{L_c} \right) \frac{dv_{dc}}{dt} \), \(u = d_{nk} \), \(f_d \) is an unknown, bounded external disturbance satisfying \(\| f_d \| < D, D > 0 \).

3. Adaptive Backstepping Control

The design of backstepping method consists of two steps. Firstly, a “virtual” controller is designed. Secondly, the real backstepping controller is derived. The detailed procedure with respect to the backstepping method is introduced as follows.

Step 1. The ideal current is denoted as \(i_d \) with continuous second-order derivatives. The tracking error is

\[
e_1 = x_1 - y_d.
\]

(12)

Then,

\[
e_1 = \dot{x}_1 - y_d = x_2 - \dot{y}_d.
\]

(13)

The virtual control is designed as

\[
\alpha_1 = -c_1 e_1 + \dot{y}_d,
\]

(14)

where \(c_1 > 0 \).

Define current tracking error as

\[
e_2 = x_2 - \alpha_1.
\]

(15)

We choose the first Lyapunov function candidate as

\[
V_1 = \frac{1}{2} e_1^2.
\]

(16)
Differentiating (16) yields
\[\dot{V}_1 = e_1 (x_2 - \dot{y}_d) = e_1 (e_2 + \alpha_1 - \dot{y}_d) = e_1 (e_2 - c_1 e_1 + \dot{y}_d - \dot{y}_d) = -c_1 e_1^2 + e_1 e_2. \] (17)

If \(e_2 = 0 \), then \(\dot{V}_1 = -c_1 e_1^2 \leq 0 \). So we need to take the second step.

Step 2. From (15), we can get
\[\dot{e}_2 = x_2 - \dot{\alpha}_1 = f(x) + bu - \dot{\alpha}_1 = f(x) + bu - \dot{y}_d + c_1 \dot{e}_1. \] (18)

The second Lyapunov function is selected as
\[V_2 = V_1 + \frac{1}{2} e_2^2. \] (19)

and the derivative of \(V_2 \) is
\[\dot{V}_2 = -c_1 e_1^2 + e_1 e_2 + e_2 \left[f(x) + bu - \dot{y}_d + c_1 \dot{e}_1 \right]. \] (20)

To make \(\dot{V}_2 \leq 0 \), backstepping controller is proposed as
\[u = \frac{1}{b} \left[-\hat{f}(x) + \dot{y}_d - c_1 \dot{e}_1 - c_2 e_2 - e_1 \right], \] (21)

where \(c_2 > 0 \).

Then,
\[\dot{V}_2 = -c_1 e_1^2 - c_2 e_2^2 \leq 0. \] (22)

Based on Lyapunov stability theory, the asymptotic stability is ensured.

4. Adaptive Neural Backstepping Controller

Figure 2 is a block diagram of a three-layer RBF neural network structure, which mainly includes input layer, hidden layer, and output layer. The hidden layer maps the signal from the input space to a higher-dimensional space, and the output layer performs a weighted summation operation to generate an RBF network output value.

RBF network can approach any nonlinear function over a compact set with arbitrary precision. The block diagram of adaptive neural backstepping system is designed in Figure 3. Since \(f(x) \) in (11) is unknown, a RBF neural estimator is used to approach \(f(x) \). Because there is minimum approximation error in the neural network system, in order to guarantee the stability of the closed-loop system, a compensation controller \(u_c \) is added to the controller (21). The detailed reason why the compensation controller is incorporated in the control will be discussed in the next derivation steps. As shown in Figure 3, based on (21), the new controller is proposed as
\[u = \frac{1}{b} \left[-\hat{f}(x) + \dot{y}_d - c_1 \dot{e}_1 - c_2 e_2 - e_1 - u_c \right], \] (23)

where
\[\hat{f}(x) = \theta^T \varphi(x) \] (24)

In (27), radial basis \(\varphi(x) = \exp(-\|x - k_j^2/2b_j^2) \), \(j = 1, 2, ..., m, b_j \) is the base width of the node, \(k_j \) is the centric vector of the node, \(\theta_j \) denotes the weight of the neural structure:
\[\dot{\theta}_j = r e_2 \varphi(x), \] (25)

where \(r \) is a positive constant.

Define optimal parameter
\[\theta_j^* = \arg \min_{\theta_j \in \Omega_j} \left[\sup_{x \in \mathbb{R}^n} \left| \int f(x \theta_j^*) - f(x) \right| \right], \] (26)

where \(\Omega_j \) is an assemble for \(\theta_j \).

Define minimum approximation error:
\[\omega = f(x) - \hat{f}(x \theta_j^*), \] (27)

where \(|\omega| \leq \omega_{\max} \).
Define the third Lyapunov function candidate as

$$V_3 = V_2 + \frac{1}{2r} \varphi_f^T \varphi_f,$$ \hspace{1cm} (28)

where $\varphi_f = \theta_f^* - \theta_f$.

The derivative of V_3 is calculated as

$$\dot{V}_3 = \dot{V}_2 + \frac{1}{r} \varphi_f^T \dot{\varphi}_f$$

$$= -c_1 e_1^2 + c_2 e_2^2 + e_2 \left[f(x) + bu - \ddot{y}_d + c_1 e_1 \right]$$

$$+ \frac{1}{r} \varphi_f^T \dot{\varphi}_f$$

$$= -c_1 e_1^2 + c_2 e_2^2 + e_2 \left[\dot{f}(x\theta_f^*) - \dot{f}(x) + \omega - u_s \right]$$

$$+ \frac{1}{r} \varphi_f^T \dot{\varphi}_f$$

$$= -c_1 e_1^2 + c_2 e_2^2 + e_2 \left[\dot{\varphi}_f^T \varphi_f(x) + \omega - u_s \right] + \frac{1}{r} \varphi_f^T \dot{\varphi}_f$$

$$= -c_1 e_1^2 + c_2 e_2^2 + \frac{1}{r} \varphi_f^T \left(r e_2 \varphi_f(x) + \dot{\varphi}_f \right)$$

$$+ e_2 \left(\omega - u_s \right),$$ \hspace{1cm} (29)

where $\varphi_f = -\dot{\theta}_f$.

Substituting (25) into (29) yields

$$\dot{V}_3 = -c_1 e_1^2 + c_2 e_2^2 + e_2 \left(\omega - u_s \right)$$

$$\leq -c_1 e_1^2 + c_2 e_2^2 + e_2 \left(\sup_{t \geq 0} |\omega| - u_s \right).$$ \hspace{1cm} (30)

If we choose $u_s \geq \sup_{t \geq 0} |\omega|$, then

$$\dot{V}_3 \leq -c_1 e_1^2 + c_2 e_2^2 \leq 0.$$ \hspace{1cm} (31)

This implies that \dot{V} is negative semidefinite, and e_1, e_2, and φ_f are bounded signals. From Barbalat’s Lemma [25], that is, if a scalar function $g(t)$ is uniformly continuous such that

$$\lim_{t \to \infty} \int_0^t g(\tau) d\tau$$

exists and is finite, then $\lim_{t \to \infty} g(t) = 0$.

Then, we can conclude $\lim_{t \to \infty} e_1(t) = 0$, $\lim_{t \to \infty} e_2(t) = 0$.

5. Simulation Discussion

Simulation studies using Matlab/Simulink and SimPower Toolbox are conducted to verify the performance of the proposed controller. The APF controller starts to work at 0.05 s, and load shock is introduced at 0.12 s. Table 1 shows the simulation parameters adopted in the APF control system:

The parameters of APF: inductance L on the AC side is selected $L = 5\text{mH}$; capacitor voltage v_{dc} on the DC side is $v_{dc} = 100\text{uF}$.

Figures 4 and 5 show the source current and harmonics spectrum, giving that A phase current contains harmonic

Table 1: Simulation Parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>neural output nodes, hidden layer neuron, hidden nodes</td>
<td>3, 6, 3</td>
</tr>
<tr>
<td>centric vectors k, base width b</td>
<td>-3 : 1 : 2, 1</td>
</tr>
<tr>
<td>adaptive gain r</td>
<td>1000</td>
</tr>
<tr>
<td>parameters of backstepping c_1, c_2, c_3</td>
<td>10000, 10000, 10000</td>
</tr>
<tr>
<td>u_s</td>
<td>2.5</td>
</tr>
<tr>
<td>PI control parameters K_p, K_i</td>
<td>0.05, 0.01</td>
</tr>
</tbody>
</table>
who's THD value is 24.71%. Figure 6 is the source current harmonic graph at the beginning. After 0.05 s, APF begins to work to make the current close to sine wave in no more than 0.01 s. The load shock is added at 0.12. Figures 4, 7, and 9 plot the source current and harmonics spectrum using backstepping method, and Figures 5, 8, and 10 show the source current and harmonics spectrum using the proposed method. The source current is close to sine waveform after adaptive neural backstepping compensation even with load shock. The THD values are decreased to 2.96% and 3.81% with the backstepping method, whereas the THD values are decreased to 1.63% and 2.08% with the proposed method. The proposed method has better compensation property in the presence of the load shock than the backstepping control.

Figure 11 is the current compensation using the designed method where the tracking performance is well in the presence of nonlinear load shock. For the voltage control, we add the loads in a ladder-type increase. Specifically speaking, we add the same loads to the system at the time 0.1s and 0.2s to see the performance of the controlled system. PI controller is used in the voltage control. DC capacitor voltage is shown in Figure 12, indicating that it is in the range of the reference.
Figure 7: Source current harmonic graph when $t = 0.05s$ with the backstepping controller.

Figure 8: Source current harmonic analysis when $t = 0.05s$ with the designed controller.

Figure 9: Source current harmonic when $t = 0.13s$ with the backstepping controller.

Figure 10: Source current harmonic graph when $t = 0.13s$ with the designed controller.
voltage, and tends to be steady state quickly under the load shock.

6. Conclusion

An adaptive NN backstepping controller is designed for the harmonic suppression of a three-phase APF. A RBF NN controller is used to adaptively estimate and compensate the system nonlinearities, enhancing the robust performance. A compensation control u_c is added to the controller to guarantee the stability. Simulation studies demonstrated that the proposed control strategy can reduce THD values effectively, improving the electric quality.

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

The authors thank the anonymous reviewers for their useful comments that improved the quality of the paper. This work is supported by National Science Foundation of China under Grant no. 61873085 and Natural Science Foundation of Jiangsu Province under Grant no. BK20171198. The Fundamental Research Funds for the Central Universities under Grant no. 2017B20014.

References

[1] Y. Yue and Y. Chen, “Robust predictive dual-loop control method based on Lyapunov function stability and energy equilibrium though double-core processors for active power filter,”

