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During the last decade, Rapidly-exploring RandomTree star (RRT∗) algorithm based on sampling has been widely used in the field
of unmanned aerial vehicle (UAV) path planning for its probabilistically complete and asymptotically optimal characteristics.
However, the convergence rate of RRT∗as well as B-RRT∗and IB-RRT∗ is slow for these algorithms perform pure exploration. To
overcome the weaknesses above, Biased Sampling Potentially Guided Intelligent Bidirectional RRT∗ (BPIB-RRT∗) algorithm is
proposed in this paper, which combines the bidirectional artificial potential field method with the idea of bidirectional biased
sampling. .e proposed algorithm flexibly adjusts the sampling space, greatly reduces the invalid spatial sampling, and improves
the convergence rate. Moreover, the deeply theoretical analysis of the proposed BPIB-RRT∗ algorithm is given regarding its
probabilistic completeness, asymptotic optimality, and computational complexity. Finally, compared to the latest UAV path
planning algorithms, simulation comparisons are demonstrated to show the superiority of our proposed BPIB-RRT∗ algorithm.

1. Introduction

Nowadays, Unmanned Aerial Vehicles (UAV) are being
widely applied to military or civilian fields, e.g., mining
surveillance [1], search and rescue operations [2], image
recognition [3], cropland assessment [4], and so on. .e
increasing demands have brought in focus on reducing
dependencies on human operators. Path planning plays an
important role in enhancing the ability of autonomous and
intelligent flight of UAV. In general, given the start and
target locations, the goal of path planning is defined as
planning a feasible path while satisfying certain criteria, such
as distance, smoothness, and obstacle avoidance. Various
methods for solving the path planning problem have been
raised, such as Rapidly-exploring Random Tree (RRT) [5],
Rapidly-exploring Random Tree star (RRT∗) [6], ant colony
optimization [7], particle swarm optimization [8], simulated
annealing method [9], and neural network method [10].

In recent years, RRT and RRT∗ algorithms have been
widely applied to solve the problem of path planning, such as
[11, 12], as they performed very well without the information

of obstacle configuration in high-dimensional spaces. Dif-
ferent from the traditional RRT algorithm, RRT∗ algorithm
obtains the local optimal path by updating the old parent
node constantly, which makes the global path tend to be
optimal. Moreover, RRT∗ can provide a probabilistically
complete and asymptotically optimal path. However, RRT
and RRT∗ algorithms perform pure exploration, which can
cause it to have very slow rate of convergence in highly
dimensional environment. Moreover, the randomly sampled
characteristics of RRT and RRT∗ algorithms make the
generated path not smooth enough.

In order to improve the convergence rate, variant im-
provements on RRT and RRT∗ algorithms have been ex-
tensively explored [13–15]. In [13], the D∗ Lite Rapidly-
exploring Random Tree star (DL-RRT∗) algorithm has been
proposed for path replanning in dynamic radioactive en-
vironments, which uses the expansion strength of grid
search strategy from D∗ Lite to quickly find a high-quality
initial path to accelerate the convergence rate in RRT∗.
However, the path planning method used in [13] was based
on single-tree version, so that there is still limitation in the
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convergence rate. In the work [14], the authors proposed the
Bidirectional RRT (B-RRT) to build two trees rooted at the
start and goal configurations, respectively. Reference [15]
has extended B-RRT to exploit the possibilities of dynam-
ically dividing up the whole map into four submaps and
growing the random tree in every submap using Graphic
Processing Unit (GPU) threads. In the other words, Quad-
RRT [15] computed four random trees instead of two trees
built by bidirectional approaches. .e bidirectional tree
version of RRT∗ known as Bidirectional RRT∗ (B-RRT∗) has
been presented in [16], which employed a greedy connect
heuristic for the connection of two directional trees.
However, above-mentioned multiple tree versions of RRT
and RRT∗ performed pure space exploration without using
biased sample to guide random trees. Meanwhile, afore-
mentioned algorithms are mainly effective for path planning
in 2D environment.

It is well known that a feasible path of UAV should be
planned in 3D environment, for 3D environment is more
applicable to low-altitude and terrain-following flight. .e
3D environment path planning problem has been widely
investigated in [17–20]. A bidirectional spline-RRT∗ path
planning algorithm has been proposed in [17] for fixed-wing
UAVs that can find paths in highly constrained planning
environments. .e proposed algorithm can improve the
smoothness of the generated path, but does nothing to
accelerate the convergence rate. .e Intelligent Bi-
directional-RRT∗ (IB-RRT∗) algorithm has been proposed
in [18] for complex cluttered environments, which in-
troduces an intelligent sample insertion heuristic for fast
convergence to the optimal path solution by using uniform
sampling heuristics. However, aforementioned variants of
the RRT∗ algorithm still perform pure exploration without
guide for sampling, which should make the path planning
algorithm to have slow convergence rate and suffer in highly
cluttered environments. Reference [19] presented the Po-
tential Function Based-RRT∗ (P-RRT∗) algorithm for better
convergence properties by introducing a Random Gradient
Descent (RGD) heuristic. .e RGD heuristic guides the
randomly sampled states incrementally downhill in the
direction of decreasing potential so that the convergence rate
is improved. .en, the new bidirectional potential gradient
heuristics was presented in [20] to potentially guide two
rapidly-exploring random trees towards each other in the
bidirectional sampling-based motion planning, and hence
the two algorithms called Potentially Guided Bidirectional
RRT∗ (PB-RRT∗) and Potentially Guided Intelligent Bi-
directional RRT∗ (PIB-RRT∗) greatly improved the sam-
pling efficiency, resulting in faster convergence rate and
excellent performance in highly cluttered environment.
However, the biased sampling technique was not introduced
in the PIB-RRT∗ and PB-RRT∗ algorithms [20]. Moreover,
the fixed attractive pole may give misleading information
that points the random trees in the wrong direction. By
introducing the idea of target gravity, the tGSRT algorithm
was presented in [5]. .e speed of the initial path search was
increased, and the path was optimized by the genetic al-
gorithm (GA) and smooth processing. Nevertheless, there

are some limitations in the sampling procedure, and the path
generated with jags is inevitable.

In this paper, we present the concept of Biased Sampling
Potentially Guided Intelligent Bidirectional RRT∗ (BPIB-
RRT∗) for path planning of UAV, guiding two random trees
towards each other by incorporating the proposed bi-
directional biased sampling and bidirectional potential field
heuristics. .is paper presents the bidirectional biased
sampling heuristic to provide a higher deviation for sam-
pling in the right direction based on the relative position
relation between the target trees with the sampling. Also,
dynamic attractive pole based on the growth trend of the
target trees as the bidirectional potential field heuristic is
introduced into BI-RRT∗, which pulls the random trees
towards each other fast. .e idea of the BPIB-RRT∗ algo-
rithm reduces the invalid nodes generated by random
sampling in state space and enhances the guidance, which
can improve the sampling efficiency of the algorithm.
Moreover, the generated path is smoothed by B-spline to
meet the path constraint conditions of UAV, which im-
proves the flight ability. .e algorithm is novel and can
greatly improve the convergence rate and smoothness of the
planning path for 3D environment.

.e remainder of the paper is divided into the following
sections: Section 2 provides the explanation of symbols
which are used to describe the problem. Section 3 gives the
related works and backgrounds of the BPIB-RRT∗algorithm.
Section 4 explains the BPIB-RRT∗ algorithm proposed in
this paper. Section 5 presents the theoretical analyses of the
BPIB-RRT∗ algorithm. Section 6 gives simulation results
regarding the comparison of data and figures. Finally,
conclusions are drawn in Section 7.

2. Problem Definition

.is section will describe the notations that are used in this
paper. .e state space is represented by the set S ⊂ R3.
Furthermore, the given configuration space is divided into
obstacle regions and obstacle-free regions which are
denoted by Sobs ⊂ S and Sfree � S\Sobs, respectively. Let Ta �

(Va, Ea) ⊂ Sfree and Tb � (Vb, Eb) ⊂ Sfree represent two
random trees which are initialized by Sinit ∈ Sfree and
Sgoal ∈ Sfree as their root vertex, respectively. Va, Vb, Ea, and
Eb denote the vertices and edges of two trees Ta and Tb. .e
closed ball of radius r> 0 centred at s′ is defined as
Os′ ,r ≔ s ∈ S ∣ ‖s − s′‖≤ r􏼈 􏼉. Let k denote the number of
iterations. Let ηN􏼈 􏼉 be the set of feasible path produced by
an algorithm where ηN􏼈 􏼉 ∈ Sfree and N is the number of a
complete path vertexes. .e problem of UAV path planning
is to find a feasible path ηN􏼈 􏼉 from the initial state to the
target location in the least amount of time possible in the 3D
environment. A complete feasible path is denoted by
η[0, 1]⟶ η(0) � Sinit, η(1) � Sgoal􏽮 􏽯 ⊂ Sfree.

Let the cost function J denote the cumulative sum of cost
(in terms of Euclidean distance) of coordinate (xn, yn, zn) to
coordinate (xn+1, yn+1, zn+1), and this calculation process
continues till n⟶ N. .e cost function J can be defined as
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J � 􏽘
N

n�1
L(n), (1)

where

L(n) � xn+1 − xn( 􏼁
2

+ yn+1 − yn( 􏼁
2

+ zn+1 − zn( 􏼁
2

􏼐 􏼑
1/2

.

(2)

3. Related Works

In this section, various RRT∗ algorithms are described
briefly.

3.1.RRT∗Algorithm. .eRRT∗ [6] algorithm is explained in
detail in Algorithm 1. .e RRT∗ algorithm initializes the
random tree T � (V, E) with initial location Sinit to start the
iterative process (Line 1). .e random sample qrand ∈ S is
given by Sample () (Line 3). .en, the near vertices or the
nearest vertex of qrand is obtained by NearVertices() or
NearestVertex() (Line 4–7). .e populated set Qnear is then
sorted by the GetSortedList() procedure (Line 8). Choose-
BestParent() returns qmin ∈ Qnear with minimum cost from
the random tree T to qrand in obstacle-free space (Line 9).
Once the best parent vertex is located, qmin is inserted into
the random tree T � (V, E) by making qrand its child and the
rewiring procedure is executed (Line 10–13). Algorithm
iteration continues till k⟶ K or the goal location is
explored.

3.2. B-RRT∗Algorithm. Algorithm 2 is given in this section,
which outlines the implementation of Bidirectional RRT∗
(B-RRT∗) in detail.

.e B-RRT∗ [14] algorithm initializes two random trees
Ta and Tb in the same manner as they were in the RRT∗
(Line 1). .e B-RRT∗ [14] algorithm starts with sampling
from the obstacle-free space Sfree, and the same process is
acted on this random node qrand (Line 4–9). .en, qrand is
inserted into the random tree Ta by InsertVertex() (Line
10–13), and the nearest node qconn from tree Tb is found
(Line 14). If Connect() heuristic successfully connects ran-
dom trees Ta and Tb, a feasible path ηnew from Sinit to Sgoal is
generated (Line 15). .e cost of ηnew is compared with the
previously computed path cost ηbest to confirm an optimal
path with less cost (Line 16–18). .en, random trees Ta and
Tb are swapped, and the procedures mentioned above are
executed on the other tree Tb again.

3.3. IB-RRT∗ Algorithm. .is section explains the imple-
mentation of Intelligent Bidirectional RRT∗ [18] (IB-RRT∗).
.e IB-RRT∗ algorithm is proposed, which can use the
GetBestTreeParent() heuristic to obtain the best parent from
two trees Ta or Tb.

.e IB-RRT∗ [18] algorithm initializes the random tree
Ta and Tb as well as B-RRT∗. .e random vertex qrand is
produced by Sample(). .en, the near neighbour vertices
Qa

near and Qb
near are generated byNeghboringVertices() from

Ta and Tb, respectively. Both neighbouring vertex sets
Qa

near and Qb
near are sorted by theGetSortedList() procedure.

.e GetBestTreeParent() heuristic returns the best parent
Pmin from Ta or Tb. .en, the qrand is inserted in the best
selected tree, and the rewiring procedure is executed.

3.4. PIB-RRT∗ Algorithm. .e PIB-RRT∗ [20] algorithm
incorporates the Artificial Potential Fields (APF) into IB-
RRT∗ by using the BPG() heuristic. .e BPG() heuristic
returns the potentially guided bidirectional randomly
sampled state qpb. .e BPG() heuristic is shown in Algo-
rithm 3 and explained below.

BPG(): if the iteration number k is even, the potentially
guided bidirectional randomly sampled state qpb is fed into
the BPGgoal() heuristic, which is used to calculate the at-
tractive force Fatt working on qpb. Comparing d∗nearest with a
constant d∗obs, qpb will be guided downhill in the direction of
decreasing potential towards the goal region. Similarly, for
odd iteration k, qpb is passed to the BPGinit() heuristic and
attractive force Fatt is calculated. .en, qpb is pulled towards
Sinit by the BPGinit() heuristic.

4. Biased Sampling Potentially Guided
Intelligent Bidirectional RRT∗

In this section, we present our proposed algorithm, Biased
Sampling Potentially Guided Intelligent Bidirectional RRT∗
(BPIB-RRT∗).

4.1. Algorithm Process. .e detailed procedure of the pro-
posed algorithm is explained as mentioned below.

From aforementioned descriptions, the flow chart of the
BPIB-RRT∗ algorithm can be presented in Figure 1.

Extra procedures employed by BPIB-RRT∗are explained
below, whereas the rest are exactly the same as they are for
IB-RRT∗. .erefore, only the Bi-bias() heuristic and BPF()
heuristic are explained in detail.

4.2. Bi-bias(). .e random sampling process of the RRT∗
algorithm based on full space causes its convergence to the
optimal solution very slow. Hence, the Bi-bias() heuristic
based on the growth trend of the target tree is introduced
into IB-RRT∗.qrand is generated by Sample() firstly and
then passed to Bi-bias(). If the iteration count k is even,
then the randomly sampled state qrand is pulled toward the
random tree Tb. .e bias direction can be obtained by
analysing the relative position between qprev2 and qrand,
where qprev2 is the new vertex of the target tree Tb. 5e Bi-
bias() heuristic can provide a higher deviation in the right
direction before generating the bias node qbia. If the it-
eration count k is odd, the random tree Ta attracts the
randomly sampled state qrand. Similarly, the relative po-
sition between qprev1 and qrand is calculated to provide a
higher deviation for qrand, where qprev1 is the new vertex of
the target tree Ta.

.e bias formulas are shown below:
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xbia � xrand + rand∗ xprev∗ − xrand􏼐 􏼑, xrand ≤ xprev∗,

xbia � xrand − rand∗ xrand, xrand > xprev∗,

⎧⎨

⎩

(3)

ybia � yrand + rand∗ yprev∗ − yrand􏼐 􏼑, yrand ≤yprev∗,

ybia � yrand − rand∗ yrand, yrand >yprev∗,

⎧⎨

⎩

(4)

zbia � zrand + rand∗ zprev∗ − zrand􏼐 􏼑, zrand ≤ zprev∗,

zbia � zrand − rand∗ zrand, zrand > zprev∗,

⎧⎨

⎩

(5)

where (xrand, yrand, zrand) denotes the random state co-
ordinate, (xprev1, yprev1, zprev1) and (xprev2, yprev2, zprev2)

represent the new vertex of target trees Ta and Tb, re-
spectively. rand denotes the random function between 0 and
1. Bias node qbia � (xbia, ybia, zbia) is calculated by the
aforementioned formulas.

It can be seen from Figure 2, there are eight relative
positions between qprev∗ and qrand in state space. Take the
spatial position shown in Figure 2 as an example, part of the
Bi-bias() heuristic is shown in Algorithm 5. .e calculation
of other spatial relationships for qrand and qprev∗ is the same.
By feeding back the vertex position of the two random trees,
Bi-bias() updates the spatial position of random state qrand

dynamically, improves the effectiveness of the sampling
process, and furthermore reduces the number of iterations
of the algorithm.

4.3. BPF(). Artificial potential field (APF) has a good ap-
plication in obstacle avoidance technology of UAV..e APF
algorithm constructs attractive field and repulsive force field
based on the target point and obstacles in the planning space,
respectively. .e goal region pulls the robot towards it, and
the obstacles repel the robot away from the obstacle con-
figuration space Sobs. .e force exerted to the robot is equal
to the resultant force of attractive force and repulsive force at
this location [21]. APF is simple to operate and has a fast
convergence speed. It could get stuck in the local minima for
it performs pure exploitation, and it is greedy. APF is smooth
in mathematic which means the tangent and the velocity are
always continuous [22] and improves UAV stability. .e
equation of attraction field is discussed below:

UAtt(q) �
1
2

kAttρ
2

q, Sgoal􏼐 􏼑, (6)

whereUAtt(q) is the attraction field, kAtt is the attraction field
coefficient, q is the current position of the UAV, Sgoal is the
goal location, and ρ(q, Sgoal) is the distance between the
current point and the goal location..e attraction field force
FAtt(q) is generated by taking a negative gradient

(1) V⟵ {Sinit}; E⟵Ø; T⟵ (V, E);
(2) for k⟵ 0 to K do
(3) qrand⟵ Sample(k)
(4) Qnear⟵NearVertices(qrand, T)
(5) if Qnear �Ø then
(6) Qnear⟵NearestVertex(qrand, T)
(7) end
(8) Ls⟵GetSortedList(qrand, Qnear)
(9) qmin⟵ChooseBestParent(Ls)
(10) if qmin≠Ø then
(11) T⟵ InsertVertex(qrand, qmin, T)
(12) T⟵RewireVertices(qrand, Ls, E)
(13) end
(14) end
(15) return T� (V, E)

ALGORITHM 1: RRT∗(Sinit).

(1) qpb⟵ qrand
(2) if k mod 2� 0 then
(3) for k⟵ 0 to n do
(4) Fatt �BPGgoal (Sgoal, qpb)
(5) d∗nearest⟵NearestObstacleSearch(Sobs, qpb)
(6) if d∗nearest ≤d∗obs then
(7) return qpb
(8) else
(9) qpb⟵ qpb + ε (Fatt/‖Fatt‖)

(10) else
(11) for k⟵ 0 to n do
(12) Fatt �BPGinitt(Sinit, qpb)
(13) d∗nearest⟵NearestObstacleSearch(Sobs, qpb)
(14) if d∗nearest ≤d∗obs then
(15) return qpb
(16) else
(17) qpb⟵ qpb + ε (Fatt/‖Fatt‖)

(18) return qpb

ALGORITHM 3: BPG(qrand, k).
(1) V⟵ {Sinit, Sgoal}; E⟵Ø; Ta⟵ (Sinit, E); Tb⟵ (Sgoal, E);
(2) ηbest⟵∞
(3) for k⟵ 0 to K do
(4) qrand⟵ Sample(k)
(5) qnearest⟵NearestVertex(qrand, Ta)
(6) qnew⟵Extend(qnearest, qrand)
(7) Qnear⟵NearVertices(qnew, Ta)
(8) Ls⟵GetSortedList(qnew, Qnear)
(9) qmin⟵ChooseBestParent(Ls)
(10) if qmin≠Ø then
(11) T⟵ InsertVertex(qnew, qmin, Ta)
(12) T⟵RewriteVertices(qnew, Ls, E)
(13) end
(14) qconn⟵NearestVertex(qnew, Tb)
(15) ηnew⟵Connect(qnew, qconn, Tb)
(16) if ηnew≠Ø &&C(ηnew)<C(ηbest) then
(17) ηbest⟵ ηnew
(18) end
(19) SwapTrees(Ta, Tb)
(20) end
(21) return Ta, Tb � (V, E)

ALGORITHM 2: B-RRT∗ (Sinit, Sgoal).
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FAtt(q) � − ∇UAtt(q) � kAttρ q, Sgoal􏼐 􏼑. (7)

.e repulsive field URep(q) is generated by all obstacles
Sobs ∈ S.

URep(q) � 􏽘
I

i�1
U

i
Rep(q), (8)

where Ui
Rep(q) is the repulsion field generated by the ith

obstacle at q.

U
i
Rep(q) �

1
2
λ

1
ρ q, qi

obs􏼐 􏼑
−
1
ρi
0

⎛⎝ ⎞⎠

2

, ρ q, qi
obs( 􏼁< ρi

0,

0, ρ q, qi
obs( 􏼁≥ ρi

0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

where λ is the repulsive field coefficient, ρi
0 is the effective

radius of the ith repulsive field, and ρ(q, qi
obs) is the distance

between the ith obstacle and the current position q. Cor-
respondingly, let Fi

Rep(q) sign the repulsion force,

F
i
Rep(q) �

Fi
Rep1(q), ρ q, qi

obs( 􏼁< ρi
0,

0, ρ q, qi
obs( 􏼁≥ ρi

0,

⎧⎨

⎩ (10)

where Fi
Rep1(q) � λ((1/ρ(q, qi

obs)) − (1/ρi
0))(1/ρ

2(q, qi
obs))

∇ρ(q, qi
obs).

.e resultant force on the UAV at point q is F(q).

F(q) � FAtt(q) + 􏽘

I

i�1
F

i
Rep(q). (11)

Incorporating APF into IB-RRT∗ by using the Bi-
directional Potential Field heuristic (BPF()), pseudocode of
the BPF() heuristic is presented in Algorithm 6. .e current
vertices of two random trees qprev1 and qprev2 are first fed into
the BPF() algorithm. When the number of iterations k is
even, the new vertex qprev2 of the Tb is treated as the target
point of the bias point qbia, and the attraction force based on

(1) Va⟵ {Sinit}; Vb⟵ {Sgoal}; Ea⟵Ø; Eb⟵Ø;
(2) Ta⟵ (Va, Ea); Tb⟵ (Vb, Eb);
(3) qprev1 � Sinit
(4) qprev2 � Sgoal
(5) ηbest⟵∞
(6) Connection⟵True
(7) for k⟵ 0 to K do
(8) qrand⟵ Sample(k)
(9) qbia⟵Bi-bias(qrand, k, qprev1, qprev2)
(10) qop⟵BPF(qbia, k, qprev1, qprev2)
(11) {Qa

near, Qb
near}⟵NeighbouringVertices(qop, Ta, Tb)

(12) if Qa
near �Ø and Qb

near �Ø then
(13) {Qa

near, Qb
near}⟵NearestVertex(qop, Ta, Tb)

(14) Connection⟵ False
(15) La⟵GetsortedList(qop, Qa

near)
(16) Lb⟵GetsortedList(qop, Qb

near)
(17) {qparent, flag, ηbest}⟵GetBestTreeParent(La, Lb, Connection)
(18) if (flag) then
(19) Ta⟵ InsertVertex(qop, qparent, Ta)
(20) Ta⟵RewriteVertices(qop, La, Ea)
(21) qprev1⟵ qop
(22) else
(23) Tb⟵ InsertVertex(qop, qparent, Tb)
(24) Tb⟵RewriteVertices(qop, Lb, Eb)
(25) qprev2⟵ qop
(26) E⟵ Ea∪Eb
(25) V⟵Va∪Vb
(26) return {Ta, Tb}� (V, E)
(27) η∗⟵B-spline(Ta, Tb)

Step 1: Sampling optimization: randomly sampled state qrand is obtained by the sampling process in the given state space. .en,
the biased node qbia based on the growth trend of the target random tree is obtained by using the Bi-bias() heuristic. After being
guided by the BPF() heuristic, randomly sampled state qrand turns into biased potentially guided bidirectional randomly sampled
state qop such that qrand⟶ qop, where qop ∈ Sfree. Bi-bias() and BPF() heuristics have been explained later in this section.
Step 2: Insert vertex: the GetBestTreeParent() heuristic finds the best parent for the state qop obtained in Step 1 from random trees
Ta or Tb and InsertVertex() insert the qop into the best selected tree. Step 1 and Step 2 continue till k⟶ K.
Step 3: Generate the path. As iteration, k, goes from 0 to K, a feasible solution path η[0, 1] from initial to goal configuration is
found. .en, the final path is smoothed by B-spline. Finally, BPIB-RRT∗ can provide a smooth feasible path. .e pseudocode of
BPIB-RRT∗ is given in Algorithm 4.

ALGORITHM 4: BPIB-RRT∗(Sinit, Sgoal).

Mathematical Problems in Engineering 5



the qprev2 is calculated. di
nearest ∈ Dnearest is the distance be-

tween the bias point qbia and the ith obstacle. ρi
0 denotes the

radius of repulsion field. If di
nearest is less than ρi

0, qbia will be

guided toward the direction of the resultant force F(q) based
on the repulsion force and the attraction force, otherwise
only attraction force FAtt(q) works on qbia..en, the optimal
random node qop is obtained. If the iteration count k is odd,
the BPF() heuristic treats the new vertex qprev1 of the Ta as
the attraction field of the bias point qbia. Similarly, qbia is
directed downhill in direction of the decreasing potential by
computing the resultant force, and the optimal random node
qop is produced.

4.4. Path Generation Using B-Spline. .e curvature of path
generated by the RRT∗ algorithm is noncontinuous.
.erefore, the initial path cannot meet the flight constraints
of UAV. To overcome this shortcoming, B-spline is in-
troduced into BPIB-RRT∗ due to its high flexibility and
arbitrary continuity. .e path vertices generated by the
BPIB-RRT∗ algorithm are fed into B-spline as its control
points to generate a smooth path with continuous curvature
[23]. .e equation of the B-spline curve can be presented by
the following equation:

p(t) � 􏽘
n

i�0
pi • Fi,k(t), (12)

where pi(i � 0, 1, . . . , n) are the characteristic nodes of the
spline curve. .e ith B-spline basis function of degree k,
written as Fi,k(i � 0, 1, . . . , n), can be expressed as follows:

F0,3(t) �
1
6
(1 − t)

3
,

F1,3(t) �
1
6

3t
3

− 6t
2

+ 4􏼐 􏼑,

F2,3(t) �
1
6

− 3t
3

+ 3t
2

+ 3t + 1􏼐 􏼑,

F3,3(t) �
1
6

t
3
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

where t ∈ [0, 1].

5. Analysis

5.1. Probabilistic Completeness. Let Da
k(p) denote the

random variable of the distance with the minimum cost
from node p ∈ Sfree to the first random tree Ta, and da

k is
the value of the random variable Da

k(p), where k is the
number of iterations for BPIB-RRT∗. Similarly, let Db

k(p)

denote the random variable of the minimum distance
cost between nodes p ∈ Sfree and Tb , and db

k is the value of
the random variable. Dk(pa, pb) is the random variable of
the distance with the minimum distance cost from Ta

to Tb, where pa and pb belong to Ta and Tb,
respectively. dk(pa, pb) is the value of the random vari-
able Dk(pa, pb).

Probabilistic Completeness: for a robust feasible path
planning problem (Sfree, Sinit, Sgoal), when the number of
iterations k approaches infinity, the distance between pa and

(1) if k mod 2� 0 then
(2) if (xprev2< xrand) then
(3) if (yprev2< yrand) then
(4) if (zprev2> zrand) then
(5) xbia � xrand − rand∗ xrand
(6) ybia � yrand − rand∗ yrand
(7) zbia � zrand+ rand∗ (zprev2 − zrand)
(8) else
(9) if (xprevl< xrand) then
(10) if (yprevl< yrand) then
(11) if (zprev1> zrand) then
(12) xbia � xrand − rand∗ xrand
(13) ybia � xrand − rand∗ yrand
(14) zbia � zrand − rand∗ (zprev1 − zrand)
(15) return qbia � (xbia, ybia,zbia)
(16) end

ALGORITHM 5: Bi-bias(qrand, k, qprev1, qprev2).

�e state space
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Figure 1: Flow chart of the BPIB-RRT∗ algorithm.

qprev1
(qprev2)

Z

X

qrand

Y

Figure 2: .e instance of spatial position.

6 Mathematical Problems in Engineering



pb is less than a constant τ. .e probability of finding a
feasible solution goes to one.

lim
k⟶∞

P dk pa, pb( 􏼁< τ pa

􏼌􏼌􏼌􏼌 , pb ∈ Sfree􏼐 􏼑 � 1. (14)

Theorem 1. 5e BPIB-RRT∗ algorithm is a probabilistically
complete algorithm. In the three-dimensional solution space S,
as the number of iterations approaches infinity, probability of
finding a feasible path from the initial to goal region goes to
one.

lim
k⟶∞

P dk pa, pb( 􏼁< τ pa

􏼌􏼌􏼌􏼌 , pb ∈ Sfree􏼐 􏼑 � 1. (15)

Proof. .e closed ball of radius τ > 0 centred at pa ∈ Ta is
defined as Oa(pa). Similarly, for pb ∈ Tb the closed ball is
defined as Ob(pb).

Oa pa( 􏼁 : Oa,τ ≔ p ∈ S p − pa

����
����

􏼌􏼌􏼌􏼌 ≤ τ􏽮 􏽯, (16)

Ob pb( 􏼁 : Ob,τ ≔ p ∈ S p − pb

����
����

􏼌􏼌􏼌􏼌 ≤ τ􏽮 􏽯. (17)

Let Oa
′(pa) denote the intersection of the obstacle-free

space Sfree and the closed ball Oa(pa). Ob
′(pb) is denoted in

the same way as Oa
′(pa).

Oa
′ pa( 􏼁 � Oa pa( 􏼁∩ Sfree, (18)

Ob
′ pb( 􏼁 � Ob pb( 􏼁∩ Sfree. (19)

For k � 0, d0(pa, pb) � ‖Sinit, Sgoal‖, where ‖Sinit, Sgoal‖

denotes the Euclidean distance from the initial to goal re-
gion. BPIB-RRT∗guides two rapidly-exploring random trees

towards each other by using the proposed Bi-bias() and
BPF() heuristics. .erefore, the distance between Ta and Tb

is decreasing.

P dk pa, pb( 􏼁< τ􏼈 􏼉> 0. (20)

For k � n, it is assumed that all vertices in Ta are outside
the ball Ob

′(pb).

Ta ∩Ob
′ pb( 􏼁 � ∅. (21)

Similarly,

Tb ∩Oa
′ pa( 􏼁 � ∅. (22)

For the next growth of the random tree Ta, according to
the extension mode of BPIB-RRT∗, if qop � pb, the mean of
Da

k+1(pb) is as shown below:

E D
a
k+1 pb( 􏼁 ∣ qop � pb􏽨 􏽩<E D

a
k pb( 􏼁􏼂 􏼃, (23)

otherwise, the mean of Da
k+1(pb) is given by following:

E D
a
k+1 pb( 􏼁 ∣ qop ≠pb􏽨 􏽩≤E D

a
k pb( 􏼁􏼂 􏼃. (24)

.us,

E D
a
k+1 pb( 􏼁􏼂 􏼃 � E􏼔α • D

a
k+1 pb( 􏼁 qop � pb

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

+(1 − α) • D
a
k+1 pb( 􏼁 ∣ qop ≠pb􏼐 􏼑􏼕<E D

a
k pb( 􏼁􏼂 􏼃,

(25)
where 0< α< 1.

Similarly, for the next growth of the random tree Tb, if
qop � pa, then the mean of Db

k+1(pa) is as given below:

E D
b
k+1 pa( 􏼁 qop

􏼌􏼌􏼌􏼌􏼌 � pa􏼔 􏼕<E D
b
k pa( 􏼁􏽨 􏽩; (26)

otherwise, the mean of Db
k+1(pa) is expressed by the fol-

lowing form:

E D
b
k+1 pa( 􏼁 qop

􏼌􏼌􏼌􏼌􏼌 ≠pa􏼔 􏼕≤E D
b
k pa( 􏼁􏽨 􏽩. (27)

.erefore,

E D
b
k+1 pa( 􏼁􏽨 􏽩 � E􏼔β • D

b
k+1 pa( 􏼁 qop � pa

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓

+(1 − β) • D
b
k+1 pa( 􏼁 qop

􏼌􏼌􏼌􏼌􏼌 ≠pa􏼒 􏼓􏼕<E D
b
k pa( 􏼁􏽨 􏽩,

(28)

where 0< β< 1.
Referring to (25) and (28), it is obvious that the distance

between the vertex pa ∈ Ta and the vertex pb ∈ Tb is
decreasing.

As the number of iterations k reaches infinity, the
probability of finding a feasible path approaches one.

lim
k⟶∞

P dk pa, pb( 􏼁< τ pa

􏼌􏼌􏼌􏼌 , pb ∈ Sfree􏼐 􏼑 � 1. (29)

.e BPIB-RRT∗ algorithm does not change the random
sampling characteristic of the RRT∗ which ensures proba-
bilistic completeness. □

(1) qop⟵ qbia
(2) if k mod 2� 0 then
(3) FAtt � computeAttForce(qprev2, qop)
(4) Dnearest � ρ(Sobs, qop)
(5) if di

nearest ≤ ρi
0 then

(6) FRep � computeRepForce(qop, Sobs)
(7) qop � qop + (FRep/‖FRep‖) + (FAtt/‖FAtt‖)

(8) else
(9) qop � qop + (FAtt/‖FAtt‖)

(10) end
(11) else
(12) FAtt � computeAttForece(qprev1, qop)
(13) Dnearest � ρ(Sobs, qop)
(14) if di

nearest ≤ ρi
0 then

(15) FRep � computeRepForce(qop, Sobs)
(16) qop � qop + (FRep/‖FRep‖) + (FAtt/‖FAtt‖)

(17) else
(18) qop � qop + (FAtt/‖FAtt‖)

(19) end
(20) end
(21) return qop

ALGORITHM 6: BPF (qbia, k, qprev1, qprev2).
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5.2. Asymptotic Optimality. Given a cost function J(•), for
an optimal path η∗, the optimal cost J∗ can be confirmed by
J(η∗) � J∗. Let η∗ ⊂ Sfree denote the optimal path such that
limk⟶∞ηk � η∗ and limk⟶∞J(ηk) � J(η∗) � J∗, where
η∗ : [0, 1] ⟶ η∗(0) � Sinit, η∗(1) � Sgoal. Let CBPIB− RRT∗

k

denote the random variable of the minimum path cost.

Theorem 2. As the total number of iterations k reaches
infinity, the cost of path generated by BPIB-RRT∗ converges to
the optimal cost J∗.

P lim
k⟶∞

supC
BPIB− RRT∗
k � J

∗
􏼚 􏼛􏼒 􏼓 � 1. (30)

Sketch of Proof. In reference to .eorem 14 in [11], similar
to RRT∗, the BPIB-RRT∗ attempts to establish a connec-
tion between the roadmap vertexes within a ball of dy-
namic radius rBPIB− RRT∗

k that Ta and Tb can grow towards
each other, where rBPIB− RRT∗

k is a function of k. .e con-
nection radius rBPIB− RRT∗

k is denoted as

r
BPIB-RRT∗
k � cBPIB-RRT∗

log k

k
􏼠 􏼡

1/d

, (31)

where
cBPIB− RRT∗ > c∗BPIB− RRT∗ � 2(1 + (1/d))1/d(μ(Sfree)/ζd)1/d.
μ(•) denotes the Lebesgue measure, and ζd denotes the
volume of the unit ball in the d-dimensional Euclidean
space. As the same procedures happened in BPIB-RRT∗,
according to Lemma 56, 71, and 72 in [12], it can be proved
that BPIB-RRT∗ is asymptotically optimal.

5.3. Computational Complexity. Let MBPIB− RRT∗
k denote the

mean of the total computation performed by BPIB-RRT∗

with k iterations. .eorem 3 proposes that the computa-
tional complexity of BPIB-RRT∗ is a constant multiple
higher than IB-RRT∗.

Theorem 3. 5ere exists a constant ϕ ∈ R+ such that it
satisfies the following formula:

lim
k⟶∞

supE
MBPIB− RRT∗

k

MIB− RRT∗
k

􏼢 􏼣≤ ϕ. (32)

Sketch of Proof. Compared to IB-RRT∗, Bi-bias() and BPF()
heuristics are introduced into BPIB-RRT∗. Notice that Bi-
bias() and BPF() heuristics are both performed in a constant
number of iterations and independent of the number of
vertices in the tree. BPF() has to calculate all obstacles for the
bias point qbia ∈ Sfree which requires at leastΩ(log10 n) time.
Furthermore, BPIB-RRT∗ calls NearestVertex(), Neigh-
bouringVertices(), Steer(), and ObstacleFree() procedures for
both trees Ta and Tb just like IB-RRT∗ which adds up a
computation constant. Hence, as seen in .eorem 3, BPIB-
RRT∗ only vary from IB-RRT∗ by ϕ in terms of computa-
tional complexity ratio.

6. Simulation Results

In order to analyse the effectiveness of BPIB-RRT∗, the 3D
simulation examples will be made for three different 3D
configuration spaces in this section.

.ree different 3D configuration spaces are shown in
Figure 3. .e initial and goal locations are fixed at (0, 0, 0)

and (100, 100, 100), respectively in Map1 and Map2. .e
initial and goal locations are fixed at (0, 0, 5) and
(100, 100, 5) in Map3. Spherical obstacles are generated in
the configuration spaces to examine the efficiency of our
proposed BPIB-RRT∗ algorithm.

.e maximum number of algorithm iterations is set as
106. If the total number of iterations exceeds the maximum,
the simulation returns a feasible path or a failed one. BPIB-
RRT∗, PIB-RRT∗, tGSRT, and RRT∗ are examined in three
aforementioned different 3D environments, and the simu-
lation results are shown in Figures 4–9. From Figures 4–9, it
can be obtained that PIB-RRT∗, tGSRT, and BPIB-RRT∗ are
effective for UAV path planning in 3D environments,
whereas the traditional RRT∗ algorithm may be failed. Be-
sides, all the paths generated by our proposed BPIB-RRT∗
algorithm can avoid obstacles, which have been obviously
shown in Figures 7–9 with different visual angles. Table 1
shows the parameters obtained while running 50 times of the
four different algorithms with maximum, minimum, and
average iterations and path cost (in terms of Euclidean
metric). .e conclusions of the examination and the sim-
ulations are discussed in detail below.

Figure 4 shows the simulation results of RRT∗ in three
different 3D maps. As seen from Table 1, RRT∗ performs
pure exploration that too many invalid samples lower effi-
ciency of the algorithm. It may be hard or need a lot of
iterations for RRT∗ to find an optimal path. .erefore, a
longer planning time is necessary for RRT∗ to converge to an
optimal solution. Meanwhile, RRT∗ is failed to converge to
the optimal solution 76%, 70%, and 62% of the times in three
different maps, respectively.

.e path planning results in three different environ-
ments for PIB-RRT∗ are illustrated in Figure 5. Compared
with the RRT∗algorithm, the PIB-RRT∗algorithm converges
to the optimal solution faster. Random trees are potentially
guided by bidirectional potential gradient heuristics towards
each other to improve the sampling efficiency and reduces
the planning time of the PIB-RRT∗ in three different maps
(Time� 25.627, 23.633, 25.739). However, the fixed attrac-
tive pole inside the BPG() heuristic still produced invalid
sampling points. Also, the smoothness of the path is not
considered in PIB-RRT∗.

It can be seen from Figure 6 that the tGSRT algorithm
can search the path effectively in three different maps.
However, the path generated by tGSRT algorithm with jags
which cannot meet the constraint conditions of smooth and
the jags may cause unstability for the flight of UAV. Fur-
thermore, compared with the other algorithms, the paths
generated by the tGSRT algorithm in three different maps
are not the optimal solution (Path Cost� 204.861, 205.797,
195.709). Meanwhile, the planning time is increased
(Time� 54.982, 60.663, 45.422) due to the evolutionary
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Figure 3: 3D configuration spaces. (a) Map1, (b) Map2, and (c) Map3.
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Figure 5: Simulation results of PIB-RRT∗ in three different 3D environments. (a) Map1, (b) Map2, and (c) Map3.
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Figure 6: Simulation results of tGSRT in three different 3D environments. (a) Map1, (b) Map2, and (c) Map3.
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Figure 4: Simulation results of RRT∗ in three different 3D environments. (a) Map1, (b) Map2, and (c) Map3.
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process (selection, crossover and mutation) of the genetic
algorithm.

.e simulation results in three maps of BPIB-RRT∗ are
shown in Figures 7–9. Also, different visual angle of results
are given to present obviously. As seen from Table 1, based
on the Bi-bias() heuristic and BPF() heuristic, the optimal

solution is found in the Map1, most quickly with more
efficient sampling strategy by BPIB-RRT∗(Time� 8.532 s).
Comparing with PIB-RRT∗(Average Iterations� 205.473),
the average number of iterations of BPIB-RRT∗ is reduced
(Average Iterations� 104.368). To improve the flight ability
of the BPIB-RRT∗-generated path, the path vertices
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Figure 8: Simulation results of BPIB-RRT∗ in Map2. (a) AZ� − 37.5, EL� 30, and (b) AZ� 31, EL� 18.
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Figure 7: Simulation results of BPIB-RRT∗ in Map1. (a) AZ� − 37.5, EL� 30, and (b) AZ� − 150, EL� 12.
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Figure 9: Simulation results of BPIB-RRT∗ in Map3. (a) AZ� − 37.5, EL� 30, and (b) AZ� − 130, EL� 22.
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sequence is fed into B-spline to robustly produce a smooth
optimal path. Figure 8 is another 3D environment with
obstacles gradually growing larger, and BPIB-RRT∗ is the
first to find the optimal path(Time� 19.537 s), whereas PIB-
RRT∗ and B-RRT∗ are the second (Time� 23.633 s) and the
third (Time� 33.647 s) converge to the optimal path. Fig-
ure 9 is the results of Map3, and UAV can smoothly pass
through the obstacles. As seen from Table 1, BPIB-RRT∗ is
the fastest to find the optimal path (Time� 17.018), com-
paring with PIB-RRT∗ (Time� 25.739) and RRT∗
(Time� 862.011).

Based on aforementioned analyses, it can be known that
the proposed BPIB-RRT∗ algorithm can solve the path
planning problem for UAV in complex 3D environment and
avoid obstacle with excellent performance. Moreover,
comparing with other variants of the RRT∗ algorithm, the
average number of iterations is minimal and the conver-
gence rate is the fastest by using the BPIB-RRT∗ algorithm.

7. Conclusions

In this paper, a new sampling-based approach defined as the
BPIB-RRT∗ algorithm is proposed, which can obtain the
optimal path in the complex 3D configuration space. Higher
deviation can be provided by the Bi-bias() heuristic which
can adjust the space of the sample and improve the accuracy
of it. .e BPF() heuristic is introduced into the BPIB-RRT∗
algorithm to guide the path node by the resultant force based
on the goal node and the obstacle and reduce the blindness
of the algorithm which expedites the convergence rate. Also,
the iteration number of the BPIB-RRT∗ algorithm can be
reduced benefited by the aforementioned heuristics. Finally,
the curvature of path turns into continuous by B-spline
which guarantees the stability of UAV. Meanwhile, it is
strictly proven that as the number of iteration reaches in-
finity, the probability of finding a feasible solution is limited
to 1. Computational complexity has been testified to be both
theoretically and experimentally equal to the IB-RRT∗ al-
gorithm, and the presented algorithm inherits the asymp-
totic optimality of RRT∗. Comparing with RRT∗ and other
existing algorithms, the superiority of the proposed BPIB-

RRT∗ algorithm has been verified in the comparison
experiments.
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