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Inertial measurement unit (IMU) (an IMU usually contains three gyroscopes and accelerometers) is the key sensor to construct a self-
contained inertial navigation system (INS). IMU manufactured through the Micromechanics Electronics Manufacturing System
(MEMS) technology becomes more popular, due to its smaller column, lower cost, and gradually improved accuracy. However,
limited by the manufacturing technology, the MEMS IMU raw measurement signals experience complicated noises, which cause the
INS navigation solution errors diverge dramatically over time. For addressing this problem, an advanced Neural Architecture Search
Recurrent Neural Network (NAS-RNN) was employed in the MEMS gyroscope noise suppressing. NAS-RNN was the recently
invented artificial intelligence method for time series problems in data science community. Different from conventional method,
NAS-RNN was able to search a more feasible architecture for selected application. In this paper, a popular MEMS IMU STIM300 was
employed in the testing experiment, and the sampling frequency was 125 Hz. The experiment results showed that the NAS-RNN was
effective for MEMS gyroscope denoising; the standard deviation values of denoised three-axis gyroscope measurements decreased by
44.0%, 34.1%, and 39.3%, respectively. Compared with the Long Short-Term Memory Recurrent Neural Network (LSTM-RNN), the
NAS-RNN obtained further decreases by 28.6%, 3.7%, and 8.8% in standard deviation (STD) values of the signals. In addition, the

attitude errors decreased by 26.5%, 20.8%, and 16.4% while substituting the LSTM-RNN with the NAS-RNN.

1. Introduction

With the booming of the location-based service (LBS), the
demand for position, velocity, and time (PVT) information
has gained a significant increment [1-5]. Global Navigation
Satellite System (GNSS) receiver has been the indispensable
equipment for various vehicles, carriers, and smart devices,
for instance, unmanned ground vehicles (UGV), un-
manned aerial vehicle (UAV), smartphone, and so on
[1-5]. With a GNSS receiver, these users are able to obtain
accurate PVT information under an open-sky environment
(6, 71.

According to the GNSS working principle, GNSS is the
radio wireless signal-based navigation system. The receivers
operate positioning function relying on receiving the wireless
signals from the navigation satellites [8-10]. For GNSS, the
navigation satellites in orbit emit the signals to the earth, and

the receivers get the signal for obtaining distance between the
user and satellite through measuring the transmitting time of
the navigation signal. However, while the signal reaches the
earth, it is quite weak and easy to be disturbed or interfered
[8-10]. As illustrated in past publications, the following two
reasons account for this phenomena: (1) the transmitting
signal power is limited by the energy of the navigation sat-
ellite, saving the energy and for keeping the satellite life span,
it is hard to enlarge the navigation signal strength will
consume more energy; (2) for saving the cost of constructing
the GNSS, while meeting the demand of covering the earth
with fewer satellites, the orbit is far away from the earth and
the signal transmits a long distance before reaching the earth
[8-11]. Due to the above drawbacks, a standalone GNSS is
usually unable to output seamless and ubiquitous navigation
solutions. Thus, it is of significance for enhancing the per-
formance of the GNSS in signal challenging environments.
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In the past decades, researchers are devoted to im-
proving the GNSS receiver performance under weak signals.
The first approach is to extend the integration time, which is
effective for weak signal tracking [12-14]. The second
method is to utilize advanced signal tracking architecture,
for instance, vector tracking loop (VTL) [15, 16]. However,
apart from the weak signals, the receiver cannot receive all
the available satellite signals due to the signal blockage.
Under this condition, extending the integration time is
usually ineffective. New approaches are proposed to address
this situation. According to past investigations, integrating
GNSS with other available sensors or navigation system for
improving the availability of navigation solutions is the most
popular solution [15-17]. Among them, the inertial navi-
gation system (INS)/GNSS integrated navigation system is
the most popular, due to the highly complementary char-
acteristics between GNSS and INS [18-21].

The INS is a famous self-contained navigation system,
which produces navigation solutions from processing data
from inertial measurement unit (IMU). Commonly, an IMU
is composed of three orthogonal gyroscopes and acceler-
ometers [18-21]. Gyroscopes measure angular velocity; the
accelerometers sense the specific force. Measurements from
the IMU are processed together for outputting navigation
solution (position, velocity and attitude, PVA) continuously.
Due to the random noise contained in the raw signals, the
INS navigation solutions diverge dramatically over time.
GNSS has precise navigation solutions, which could be
integrated with INS for providing more reliable navigation
solutions [18-21]. As mentioned above, the INS and GNSS
are complementary. Thus, GNSS/INS integration system is
always the preferable selection for long-term accurate
navigation solutions. While GNSS signal is normal, the
GNSS can calibrate the INS and compensate the INS errors.
While the signal is abnormal, the INS could provide short-
term navigation solutions [18-21]. But, the errors diverge
over time, which is determined by the noises contained in
the IMU measurements. To further improve the perfor-
mance of the GNSS/SINS integrated navigation system, it is
critical to reducing the IMU measurement noise. Especially,
for volume and cost-sensitive applications, Micromechanics
Electronics Manufacturing System (MEMS) IMU is usually
employed to construct the INS. In fact, there are several
kinds of IMUs; among them, MEMS IMU is popular due to
low cost and small size. MEMS IMU also performs the lowest
accuracy. It is of great significance for reducing or sup-
pressing MEMS IMU noises [18-21].

Firstly, inspired by the time sequence processing in data
science community, Allan variance (AV) was employed to
analyze the MEMS IMU error components, and then ARMA
models are employed for modeling and representing the
noise [22-31]. After this, some machine learning methods
are also employed in this application, for instance, neural
networks and support-vector machine (SVM). With the
rapid development of the semiconductor technology and
computing capacity, recently, deep learning (DL) gained a
boom in data science community [22-31]. Artificial in-
telligence (AI) methods were employed in sequence data
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processing and obtained great advances while compared
with the conventional machine learning methods [22-31].

In this paper, inspired by the excellent capability of deep
neural networks in sequence data processing, the advanced
Neural Architecture Search Recurrent Neural Network
(NAS-RNN) was employed and tested for reducing the
MEMS gyroscope noise (only the gyroscope was tested using
the proposed method, and the accelerometers processing
was similar to that of gyroscope). A commercial MEMS IMU
STIM300 was employed in the experiments [22-31]. The
sampling frequency was 125Hz, and the testing time was
approximately 800 seconds.

Specially, Long Short-Term Memory Recurrent Neural
Network (LSTM-RNN) and Simple Reduced Unit Recurrent
Neural Network (SRU-RNN) were employed in MEMS
gyroscope noise suppressing. Both LSTM-RNN and SRU-
RNN were popular variants of RNN, and they both per-
formed better than conventional machine learning or re-
gression method [32, 33]. However, it is interesting to
explore a more feasible RNN structure in this application.
NAS-RNN was able to automatically search for a more
appropriate neural architecture for certain application. A
popular commercial method was employed in this experi-
ment for testing the NAS-RNN performance, and the LSTM-
RNN was selected as the reference for demonstrating the
NAS-RNN superiority compared with the LSTM-RNN.

Apart from the introduction section, the rest of the paper
is organized as follows: (1) Section 2 introduces the model
and the workflow of the employed NAS-RNN model; (2)
Section 3 illustrates the NAS implementation, training, re-
sults, and the comparison details with the LSTM-RNN; (3)
Section 4 concludes the paper and the discussion is added
following this section.

2. Methods

In this section, we first introduce the basic architecture and
the working flowchart of a popular LSTM-RNN, and then,
an RNN generative method using NAS is presented. This
section is divided into two subsections: (1) LSTM unit basic
structure, relative mathematical equations, and workflow;
(2) NAS-RNN mechanics and setting up, especially how
NAS-RNN is trained and the logic.

2.1. Long Short-Term Memory Unit. Before introducing the
NAS-RNN, Figure 1 gives the basic architecture of the LSTM
unit, which is composed of three “gates” including “forget
gate,” “input gate,” and “output gate.” Basically, the three
different gates have its unique functions, and the details are

as following:

(1) “Forget gate” is the first gate, and its function is to
decide what information will be thrown away from
the previous cell state. As illustrated in Figure 1, the
gate takes the variable /,_; and x, as the inputs of the
function, which will generate values representing the
forgetting degree of each number in the cell state. The
operation equation f, is as follows:
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FiGure 1: Basic architecture of an LSTM unit.
ftzg(Wf. [ht—l’xt]+bf)’ (1)

where o () is a sigmoid function, W ; is the updating
weights, b I is the bias, h,_, is the hidden state, and x,
is the input vector.

(2) The next is the “input gate,” which controls what new
information should be inputted to the module. The
relative equations are as follows:

i =0(W;- [hey, %] + b)),

2

C, = tanh (W - [h,_y, x,] + be), @

here o () is a sigmoid function, W; is the updating

weights, b; is the bias in the input gate, h,_, is the

hidden state at time t -1, W, is the updating

weights, b is the bias, x, is the input vector, and C, is

the new cell candidate values. This gate has two
functions.

(3) The last part is the “output gate,” and by its nature,
this gate is designed for managing the outputs of the
unit. Two functions are employed in this gate, and
the details are given in equations (3) and (4).

Ot = G(Wo : [ht—l’xt] + bo)’ (3)

h, = o, x tanh(C,), (4)

where W, is the updating weights, b, is the bias in the output
gate, and C, is the cell state at time t.

2.2. Neural Architecture Searching Recurrent Neural Network.
The last subsection gives the basic LSTM unit computation
in detail. In fact, it requires expert knowledge and takes time
to design such basic recurrent unit. Recently, a neural ar-
chitecture searching is proposed for generating neural
networks with reinforcement learning [34-37]. Figure 2(a) is
the overview of the NAS; the work is based on the obser-
vation that the structure and connectivity of a neural net-
work can be typically specified by a variable-length string. It

is therefore possible to use a recurrent network, the con-
troller, to generate such string. Training the network
specified by the string, the “child network,” on the real data
will result in accuracy on validation set. Using this accuracy
as the renewal signal, we can compute the policy gradient to
update the controller. As a result, in the next iteration, the
controller will give higher probabilities to architectures that
receive high accuracies.

In fact, the basic LSRN-RNN computations could be
extended or illustrated as the tree of steps. Figure 3 shows
an example of this tree structure, which is composed of two
leaf nodes and one internal node. The leaf nodes are
indexed by 0 and 1, and the internal node is indexed by 2. In
this architecture, the controller RNN needs to predict 3
blocks first, each block specifying a combination method
and activation function for each tree index. After this, it
needs to predict the last 2 blocks that specify how to
connect C, and C,_, to temporary variables inside the tree.
Specifically, according to the predictions of the controller
RNN in this example, the following computation steps will
occur:

(1) The controller predicts Add and tanh for tree index 0,
and this means that we need to compute
ay=tanh(W, = x, + W, = h,_,);

(2) The controller predicts ElemMult and ReLU for tree
index 1, and this means that we need to compute
a, = ReLU((W5 # x,) - (W, * h,_y));

(3) The controller predicts 0 for the second element of
the “Cell Index”and Add and ReLU for elements in
“Cell Inject,” which means that we need to compute
ag™ = ReLU (a, + C,_;). Notice that we do not have
any learnable parameters for the internal nodes of
the tree;

(4) The controller RNN predicts 1 for the first element
for the “Cell Index,” and this means that we should
set C, to the input of the tree at index 1 before the
activation, C, = (W5 * x,) - (W, = h,_;)).

3. Experiments and Results

In this section, field tests were carried out for evaluating the
performance of the proposed method. Moreover, a common
LSTM-RNN was employed and compared with the proposed
NAS-RNN in terms of the standard deviation of the gyro-
scope signals and the attitude errors. In this experiment, a
popular MEMS IMU STIM300 was adopted, which was
manufactured by Sensors AS Company from Norway. The
IMU was presented in Figure 4, the gyroscope’s full mea-
surement range was *400/s, the gyroscope’s bias instability
was 0.3°/h, the angle random walk was <0.15/+/hr, and the
sampling frequency was 125Hz [37].
Overall, this section is organized as follows:

(1) First subpart presented the setting up of the NAS-
RNN, and the results of the NAS-RNN, the training
loss, the standard deviation values, and attitude
errors were employed as indicators for evaluating the
performance of the NAS-RNN denoising
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FIGURE 2: An example of NAS-RNN generation. (a) Overview of the NAS. (b) Tree structure. (c) An example of a recurrent cell constructed
from tree (two leaf nodes). (d) Specifications of the connections.

(2) In the second subpart, LSTM-RNN was compared

with the proposed method for analyzing the differ-

was set 100. Input date length was 15, which means using the
ence between them

past 15 gyroscope measurements to predict the current
gyroscope outputs. After this, the predicted outputs were
employed for compensating the random noise contained in
the raw signals. Before applying the NAS-RNN to predict
noise, a training procedure was carried out for determining

appropriate parameters and generating proper neural net-
work architecture in NAS-RNN.

3.1. NAS-RNN Results. As aforementioned, Section 2 pre-
sented the diagram and the architecture of the NAS-RNN in
detail. The NAS-RNN was implemented using the Python
programming language (version 3.4) and the popular Google

Figures 3, 5, and 6 list the training loss for the three-axis
open source deep learning library TensorFlow (version

1.12.0) in this experiment. Among the NAS-RNN param-
eters, the learning rate was set to 0.01 and the training step

gyroscope outputs. It could be seen that the NAS-RNN
training loss converged during the training procedure. In
Figures 5(b), 3(b), and 6(b), the red line represents the NAS-
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FIGURE 6: X-axis gyroscope single-layer GRU-RNN denoising results.

TaBLE 1: Comparison of raw signal and LSTM-RNN standard
deviation values.

X (degree) Y (degree) Z (degree)
Raw signal 0.025 0.041 0.056
LSTM-RNN 0.014 0.027 0.034
Percentage (%) 44.0 34.1 39.3

RNN denoised gyroscope signals and the green line rep-
resents the raw gyroscope signals. Furthermore, Table 1 lists
the comparison of standard deviation values (SDV) between
NAS-RNN and the raw gyroscope signals. Compared with
the raw signals, the SDV of the NAS-RNN results decreased
by 44.0%, 34.1%, and 39.3%, respectively. This result dem-
onstrated the effectiveness of the NAS-RNN in this MEMS
gyroscope noise suppressing application.

3.2. NAS-RNN vs. LSTM-RNN. For further analyzing the
NAS-RNN performance in MEMS gyroscope denoising, and
in this subsection, the LSTM-RNN was compared with NAS-
RNN for exploring whether there was a more feasible ar-
chitecture for this application. Table 2 lists the comparison
results between raw signals and the NAS-RNN. As listed in
Table 2, the SDV decreased by 60.0%, 36.6%, and 44.6%
compared with the raw signals. Furthermore, Table 3 lists the
comparison between LSTM-RNN and NAS-RNN. Com-
pared with LSTM-RNN, the NAS-RNN realized a further
decrease in SDV. More specifically, the three-axis SDV
decreased by 28.6%, 3.7%, and 8.8% compared with LSTM-
RNN.

In addition, Figures 7-9 present the training loss and
testing loss comparison between LSTM-RNN and NAS-
RNN. It could be seen that NAS-RNN converged to smaller
values, but NAS-RNN performed at slower convergence
speed. Actually, the NAS-RNN was more complicated than
LSTM-RNN, and NAS-RNN had a more heavy computation
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TaBLE 2: Raw signal and NAS-RNN comparison.

X (degree) Y (degree) Z (degree)
Raw signal 0.025 0.041 0.056
NAS-RNN 0.010 0.026 0.031
Percentage (%) 60.0 36.6 44.6

TaBLE 3: LSTM-RNN and NAS-RNN comparison.

X (degree) Y (degree) Z (degree)
LSTM-RNN 0.014 0.027 0.034
NAS-RNN 0.010 0.026 0.031
Percentage (%) 28.6 3.7 8.8
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FiGure 7: Comparison of X-axis gyroscope denoising results.
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load. More specifications were introduced in Section 2.2.
Table 4 lists the comparison of attitude errors; the attitude
errors obtained 26.5%, 20.8%, and 16.4% improvement in
the three-axis attitude errors compared with LSTM-RNN.

4. Discussion

The motivation of this paper was to explore more feasible
RNN for MEMS gyroscope noise modeling and compen-
sation, and we think the following problems need more
discussion:

(1) In this paper, the training procedure or processing
data was limited by the computation capacity, and
this might influence the generation capacity of the
neural networks.

(2) Only a STIM300 was employed in testing the pro-
posed method; it was of significance for evaluating

TaBLE 4: Comparison of LSTM-RNN and NAS-RNN attitude
errors.

X (degree) Y (degree) Z (degree)
LSTM-RNN 0.412 0.524 0.622
NAS-RNN 0.303 0.415 0.520
Percentage (%) 26.5% 20.8% 16.4%

the performance of the NAS-RNN in different
MEMS IMUs since different IMUs performed dif-
ferent noise characteristics.

5. Conclusions

In this paper, an advanced variant of RNN was employed in
MEMS gyroscope noise modeling and compensating. A
commercial MEMS IMU product STIM300 was employed in
this experiment for evaluating the performance of the
proposed NAS-RNN-based method. Compared with the raw
signals, the three-axis NAS-RNN denoised signals per-
formed 60.0%, 36.6%, and 44.6%, decreasing in standard
deviation individually. In addition, compared with popular
LSTM-RNN, the NAS-RNN obtained 28.6%, 3.7%, and 8.8%
turther decreasing for the three-axis gyroscope signals.
Basically, the NAS-RNN was effective for this application,
and it performed better than LSTM-RNN. We hope these
results might provide reference for embedding a deep
learning module in MEMS gyroscope for improving the
accuracy of the MEMS gyroscope.
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