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To address the problem of filter parameter perturbation in nonlinear networked systems, a nonfragile quantized dissipative
filter is designed by considering the coexistence of random one-step time delay, multipacket losses, and quantization error. We
acquired the sufficient conditions for the existence of filter by choosing appropriate Lyapunov function as well as utilizing linear
matrix inequality. Furthermore, we obtained the parameter expressions of the designed filter. The designed filter could meet the
performance requirements of stability and dissipativity for the filter error system under the condition of allowed time delays, packet
loss probability, and quantization density. The effectiveness of the designed filter is verified by numerical simulation.

1. Introduction

Theword “filter” is derived fromelectrical engineering, where
filters are used to transform electrical signals from one form
to another, especially to eliminate various frequencies in a
signal. This means that the main role of the filter is to keep
frequency contents in the desired band and to eliminate
other parts when the external input signal passes the filter.
Nowadays, the filter plays an important role in networked
control systems. When information is transmitted in an
infinite network with limited bandwidth, such problems as
overload, packet losses, and so on will occur if the data is too
large. Therefore, the signal needs to be quantized in advance.
Nevertheless, signal quantization will cause quantization
error unavoidably. This will influence system performance
and may lead to system instability [1–6].

The modern networked control systems are develop-
ing rapidly by virtue of low cost, easy installation, high
reliability/flexibility, strong fault tolerance/diagnosis ability,
and convenient remote manipulation/control. In network
environments, network-induced delays and packet dropouts
caused by limited network bandwidth and/or congested
network traffic should be taken into account [7]. The

occurrence of time delays can lead to poor performance or
even destroy the stability of networks [8, 9]. Due to these
problems, the signals delivered to filters may be incom-
plete in real implementation. Consequently, the traditional
techniques for designing filters may lead to unsatisfactory
performance. Many scholars investigated 𝐻∞ filtering and
passive filtering [5, 6, 10]. 𝐻∞ filtering only extracts the
gain of information, whereas passive filtering only considers
phase information.The theory of dissipative systems includes
some basic tools, such as passive theorem, bounded real
lemma, and Kalman–Yakubovich lemma and provides an
effective framework for stability analysis anddesign of control
systems. Thus, in the past several decades, dissipativity is
applied to a wide range of fields, such as systems, circuits,
and complex networks [11]. However, the design of filter
based on dissipative theory can consider both gain and phase
information.Therefore, investigating dissipative filtering is of
great significance [12–19].

Ma et al. [12] investigated the problem of robust dissi-
pative filter for discrete systems with nonlinear factors and
constant time-delay, and they obtained the sufficient condi-
tions for the existence of the filter by constructing appropriate
Lyapunov function. Lin, Yang, and Wang [14] addressed
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the problem of nonlinear fuzzy filtering with multipacket
losses, whereas they obtained the sufficient conditions for the
existence of the filter based on linear matrix inequality (LMI)
using T-S fuzzymodel.Wang, Zhang, andHan [15] solved the
problem of dissipative filter by considering the existence of
time-varying delay during transmission for neutral systems,
and an event-triggered communication scheme was intro-
duced to design a suitable filter. Similarly, they obtained the
parameter expressions of the corresponding filter by solving
LMI. Tao et al. [16] discussed the problem of dissipative
filter for Markov-jump systems, and slack matrix variables
were introduced to eliminate the cross-coupling between the
Lyapunov matrix and system matrices. Furthermore, they
also obtained the sufficient conditions for the existence of
the filter by solving LMI. Yang, Yang, and Liu [18] settled the
problem of stability and dissipativity for nonlinear systems
with filter parameter perturbation. However, they adopted a
more general type of filter gain and obtained the parameter
expressions of the corresponding filter by choosing suitable
Lyapunov function as well as utilizing LMI. Xia et al. [19]
focused on the problem of the coexistence of mixed delays
and unknown transition rates for Markov-jump systems, and
they obtained the sufficient conditions for the existence of
the designed filter by constructing a parameter-dependent
Lyapunov–Krasovskii function based on delay-partitioning
approach.

Unfortunately, time delays, packet losses, and quanti-
zation error were independently considered in the above-
mentioned research. However, they may coexist in real
network transmission. Moreover, the performance of filter
may be influenced by the change of its own parameters.
Therefore, time delays, packet losses, and quantization error
were simultaneously considered in this paper. We designed
the corresponding nonfragile quantized dissipative filter and
acquired the sufficient condition for the existence of the filter
based on Lyapunov stability theory and linearmatrix inequal-
ity. Furthermore, we derived the parameter expression of the
filter.

The rest of this paper is organized as follows. Section 2
outlines the problem formulation. Section 3 details the
design of nonfragile quantized dissipative filter. Section 4
demonstrates numerical simulation results and discussions.
Section 5 concludes this paper.

2. Problem Formulation

Consider the following nonlinear discrete system:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑤 (𝑘) + 𝑓 (𝑘,𝑥 (𝑘))
𝑦 (𝑘) = 𝐶𝑥 (𝑘) +𝐷𝑤 (𝑘)
𝑧 (𝑘) = 𝐿1𝑥 (𝑘) + 𝐿2𝑤 (𝑘)

(1)

where 𝑥(𝑘) ∈ 𝑅𝑛 is the state vector, 𝑧(𝑘) ∈ 𝑅𝑞 is the signal
to be estimated, 𝑦(𝑘) ∈ 𝑅𝑃 is measurement output, 𝑤(𝑘) ∈𝑅𝑚 is the disturbance, and 𝑤(𝑘) ∈ 𝐿2[0,∞); 𝐴 ∈ 𝑅𝑛×𝑛, 𝐵 ∈𝑅𝑛×𝑚, 𝐶 ∈ 𝑅𝑛×𝑛, 𝐷 ∈ 𝑅𝑛×𝑚, 𝐿1 ∈ 𝑅𝑞×𝑛, and 𝐿2 ∈ 𝑅𝑞×𝑚 are
constantmatrices, respectively;𝑓(𝑘,𝑥(𝑘)) ∈ 𝑅𝑛 is a nonlinear

vector that meets Lipschitz condition; that is, ‖𝑓(𝑘,𝑥(𝑘))‖ ≤‖𝑊2𝑥(𝑘)‖;𝑊2 is a constant matrix.
Considering the limited bandwidth, the logarithmic

quantizer is utilized to relieve the tension on the network
channel [1, 2]. We adopt the definition of logarithmic quan-
tizer given in [2], and the quantization level is denoted as

𝑈 = {±𝑢𝑖, 𝑢𝑖 = 𝜌𝑖𝑢0, 𝑖 = ±1, ± 2, . . .} ∪ {±𝑢(0)} ∪ {0} ,
0 < 𝜌 < 1, 𝑢(0) > 0. (2)

The corresponding logarithmic quantizer 𝑞(V) is defined
as

𝑞 (V) =
{{{{{{{{{

𝑢𝑖 𝑖𝑓 11 + 𝛿𝑢𝑖 < V < 11 − 𝛿𝑢𝑖, V > 00 𝑖𝑓 V = 0
−𝑞 (−V) 𝑖𝑓 V < 0

(3)

where 𝜌 is quantization density, 𝛿 = (1−𝜌)/(1+𝜌) represents
the upper bound of quantization error, and V is the signal
sampled before quantization.

The measurement output after quantization can be
described as

𝑦̃ = 𝑞 (𝑦) (4)

Utilizing the sector boundary method, the quantization
error of measurement output can be defined as

𝑒𝑘 ≜ 𝑞 (𝑦 (𝑘)) − 𝑦 (𝑘) ≜ Δ 𝑘𝑦 (𝑘) , Δ 𝑘 ∈ [−𝛿, 𝛿] (5)

Then, (4) can be expressed as

𝑦̃ = (1 + Δ 𝑘)𝑦. (6)

Considering that there may be a random one-step delay
or multipacket losses in real received measurement output,
the corresponding mathematical model can be expressed as

𝑦 (𝑘)
= 𝛼 (𝑘) 𝑦̃ (𝑘)
+ (1 − 𝛼 (𝑘)) (1 − 𝛼 (𝑘 − 1)) 𝛽 (𝑘) 𝑦̃ (𝑘 − 1)
+ (1 − 𝛼 (𝑘)) [1 − (1 − 𝛼 (𝑘 − 1)) 𝛽 (𝑘)] 𝑦 (𝑘 − 1)

(7)

where 𝑦(𝑘) ∈ 𝑅𝑃 is the real received measurement output.
Substituting (6) into (7), we have

𝑦 (𝑘) = 𝛼 (𝑘) (1 + Δ 𝑘)𝑦 (𝑘) + (1 − 𝛼 (𝑘))
⋅ (1 − 𝛼 (𝑘 − 1)) 𝛽 (𝑘) (1 + Δ 𝑘)𝑦 (𝑘 − 1)

+ (1 − 𝛼 (𝑘)) [1 − (1 − 𝛼 (𝑘 − 1)) 𝛽 (𝑘)]
⋅ 𝑦 (𝑘 − 1)

(8)

where𝛼(𝑘) and𝛽(𝑘) are uncorrelated random sequences with
Bernoulli distribution.
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Respectively, they meet the following statistical probabil-
ities:

𝑝𝑟𝑜𝑏 {𝛼 (𝑘) = 1} = 𝛼,
𝑝𝑟𝑜𝑏 {𝛼 (𝑘) = 0} = 1 − 𝛼
𝑝𝑟𝑜𝑏 {𝛽 (𝑘) = 1} = 𝛽,
𝑝𝑟𝑜𝑏 {𝛽 (𝑘) = 0} = 1 − 𝛽

(9)

where 𝑝𝑟𝑜𝑏{⋅} represents event probability.
From (8), we have the following:𝑃{𝛼(𝑘) = 0, 𝛼(𝑘 − 1) = 0, 𝛽(𝑘) = 1} = (1 − 𝛼)2𝛽 is the

probability of one-step time delay; 𝑃{𝛼(𝑘) = 0, 𝛼(𝑘 − 1) =0, 𝛽(𝑘) = 0} + 𝑃{𝛼(𝑘) = 0, 𝛼(𝑘 − 1) = 1} = (1 − 𝛼)2(1 − 𝛽) +(1 − 𝛼)𝛼 is the probability of the packet loss; 𝑃{𝛼(𝑘) = 1} = 𝛼
is the probability of timely received data.

For convenience later, we define the following variable:

𝑦̂ (𝑘) = (1 − 𝛼 (𝑘)) 𝛽 (𝑘 + 1) (1 + Δ 𝑘)𝑦 (𝑘)
+ [1 − (1 − 𝛼 (𝑘)) 𝛽 (𝑘 + 1)] 𝑦 (𝑘) (10)

Combining (8) and (10), we have

𝑦 (𝑘) = 𝛼 (𝑘) (1 + Δ 𝑘)𝑦 (𝑘) + (1 − 𝛼 (𝑘)) 𝑦̂ (𝑘 − 1) (11)

Further, combining (1), (10), and (11), we have the follow-
ing augmented system:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑤 (𝑘) + 𝐺𝑓 (𝑘,𝑥 (𝑘))
𝑦 (𝑘) = 𝐶𝑥 (𝑘) +𝐷𝑤 (𝑘)
𝑧 (𝑘) =𝐿𝑥 (𝑘) + 𝐿2𝑤 (𝑘)

(12)

where

𝑥 (𝑘 + 1) = [𝑥 (𝑘 + 1)𝑇 ∧𝑦 (𝑘)𝑇 𝑦 (𝑘)𝑇]𝑇 ,
𝑥 (𝑘) ∈ 𝑅𝑛+2𝑝,

𝐴 = 𝐴0 + 𝛼 (𝑘)𝐴1 + (1 − 𝛼 (𝑘)) 𝛽 (𝑘 + 1)𝐴2,
𝐵 = 𝐵0 + 𝛼 (𝑘)𝐵1 + (1 − 𝛼 (𝑘)) 𝛽 (𝑘 + 1)𝐵2,
𝐶 = 𝐶0 + 𝛼 (𝑘)𝐶1,
𝐷 = 𝛼 (𝑘)𝐷1,
𝐿 = [𝐿1 0 0] ,

𝐴0 = [[
[
𝐴 0 0

0 𝐼 0

0 𝐼 0

]]
]
,

𝐵0 = [[
[
𝐵

0

0

]]
]
,

𝐶0 = [0 𝐼 0] ,

𝐴1 = [[
[

0 0 0

(1 + Δ 𝑘) 𝐶 −𝐼 0

(1 + Δ 𝑘) 𝐶 −𝐼 0

]]
]
,

𝐵1 = [[
[

0

(1 + Δ 𝑘)𝐷(1 + Δ 𝑘)𝐷
]]
]

𝐶1 = [(1 + Δ 𝑘)𝐶 −𝐼 0] ,

𝐴2 = [[
[

0 0 0

(1 + Δ 𝑘)𝐶 −𝐼 0

0 0 0

]]
]
,

𝐵2 = [[
[

0

(1 + Δ 𝑘)𝐷
0

]]
]
,

𝐺 = [𝐼
0
] ,

𝐷1 = (1 + Δ 𝑘)𝐷.
(13)

3. Nonfragile Dissipative Filter Design

Consider designing the following filter:

𝑥̂ (𝑘 + 1) = 𝐴𝑓𝑑𝑥̂ (𝑘) + 𝐵𝑓𝑑𝑦 (𝑘)
𝑧𝑓 (𝑘) = 𝐶𝑓𝑑𝑥̂ (𝑘) +𝐷𝑓𝑑𝑦 (𝑘) (14)

where ∧𝑥 (𝑘) ∈ 𝑅𝑛+𝑝 is the state estimation of the filter;
𝑧𝑓(𝑘) ∈ 𝑅𝑞 is the estimation of 𝑧(𝑘), and 𝐴𝑓 ∈ 𝑅(𝑛+2𝑝)×(𝑛+2𝑝),
𝐵𝑓 ∈ 𝑅(𝑛+2𝑝)×𝑝,𝐶𝑓 ∈ 𝑅𝑞×(𝑛+2𝑝), and𝐷𝑓 ∈ 𝑅𝑞×𝑝 are parameter
matrices of the filter, respectively.𝐴𝑓𝑑, 𝐵𝑓𝑑,𝐶𝑓𝑑, and𝐷𝑓𝑑 can
be updated as follows:

𝐴𝑓𝑑 = 𝐴𝑓 + Δ𝐴𝑓,
𝐵𝑓𝑑 = 𝐵𝑓 + Δ𝐵𝑓
𝐶𝑓𝑑 = 𝐶𝑓 + Δ𝐶𝑓,
𝐷𝑓𝑑 = 𝐷𝑓 + Δ𝐷𝑓

(15)
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where 𝐴𝑓,𝐵𝑓,𝐶𝑓, and 𝐷𝑓 are given parameter matrices
and their corresponding perturbation can be calculated as
follows:

Δ𝐴𝑓 = 𝐻1𝐹1 (𝑘)𝐸1,
Δ𝐵𝑓 = 𝐻2𝐹2 (𝑘)𝐸2
Δ𝐶𝑓 = 𝐻3𝐹3 (𝑘)𝐸3,
Δ𝐷𝑓 = 𝐻4𝐹4 (𝑘)𝐸4

(16)

where𝐻1 ∈ 𝑅(𝑛+2𝑝)×𝑟,𝐻2 ∈ 𝑅(𝑛+2𝑝)×𝑟,𝐻3 ∈ 𝑅𝑛×𝑟,𝐻4 ∈ 𝑅𝑞×𝑟,
𝐸1 ∈ 𝑅𝑟×(𝑛+2𝑝), 𝐸2 ∈ 𝑅𝑟×(𝑛+2𝑝), 𝐸3 ∈ 𝑅𝑟×(𝑛+2𝑝), 𝐸4 ∈ 𝑅𝑟×𝑝, and
𝐹𝑖(𝑘)meet:

𝐹𝑖 (𝑘)𝑇 𝐹𝑖 (𝑘) ≤ 𝐼, 𝑖 = 1, 2, 3, 4 (17)

Combining (12) and (14), we can obtain the following
filter error system:

𝑥̃ (𝑘 + 1) = 𝐴̃𝑥̃ (𝑘) + 𝐵̃𝑤 (𝑘) + 𝐺̃𝑓 (𝑘,𝑥 (𝑘))
𝑒 (𝑘) = 𝐶̃𝑥̃ (𝑘) + 𝐷̃𝑤 (𝑘) (18)

where 𝑥̃(𝑘) = [𝑥(𝑘)𝑇 𝑥̂(𝑘)𝑇 ]𝑇 and 𝑒(𝑘) = 𝑧(𝑘)−𝑧𝑓(𝑘) is the
estimated error:

𝐴̃ = [
[

𝐴 0

𝐵𝑓𝑑 𝐶 𝐴𝑓𝑑

]
]

= 𝐴̃0 + 𝛼 (𝑘) 𝐴̃1 + (1 − 𝛼 (𝑘)) 𝛽 (𝑘 + 1) 𝐴̃2,
𝐷̃ = 𝐿2 −𝐷𝑓𝑑𝐷𝛼 (𝑘)
𝐵̃ = [

[
𝐵

𝐵𝑓𝑑 𝐷
]
]

= 𝐵̃0 + 𝛼 (𝑘) 𝐵̃1 + (1 − 𝛼 (𝑘)) 𝛽 (𝑘 + 1) 𝐵̃2
𝐶̃ = [𝐿 −𝐷𝑓𝑑 𝐶 −𝐶𝑓𝑑] = 𝐶̃0 + 𝛼 (𝑘) 𝐶̃1
𝐴̃0 = [ 𝐴0 0

𝐵𝑓𝑑𝐶0 𝐴𝑓𝑑
] ,

𝐴̃1 = [ 𝐴1 0

𝐵𝑓𝑑𝐶1 0
] ,

𝐴̃2 = [𝐴2 0
0 0

] ,

𝐵̃0 = [𝐵0
0
] ,

𝐵̃1 = [ 𝐵1

𝐵𝑓𝑑𝐷
]

𝐵̃2 = [𝐵2
0
] ,

𝐶̃0 = [𝐿 −𝐷𝑓𝑑𝐶0 −𝐶𝑓𝑑] ,
𝐶̃1 = [−𝐷𝑓𝑑𝐶1 0] ,
𝐷̃ = 𝐿2 −𝐷𝑓𝑑𝐷1𝑎 (𝑘)

(19)

Defining
∗

𝐴 = 𝐸{𝐴̃}, ∗𝐵 = 𝐸{𝐵̃}, ∗𝐶 = 𝐸{𝐶̃}, ∗𝐷 =𝐸{𝐷̃}, 𝐴𝑑 = 𝐸{𝐴}, 𝐵𝑑 = 𝐸{𝐵}, 𝐶𝑑 = 𝐸{𝐶}, and 𝐷𝑑 =𝐸{𝐷}where 𝐸 represents expectation and letting ⟨𝑥,𝐻,𝑦⟩𝑡 =𝐸[∑𝑡0 𝑥(𝑘)𝑇𝐻𝑦(𝑘)], we select the following secondary energy
supply function for (18):

𝐸 (𝑤, 𝑒, 𝑡) = ⟨𝑒,𝑄, 𝑒⟩𝑡 + 2 ⟨𝑒, 𝑆,𝑤⟩𝑡 + ⟨𝑤,𝑅,𝑤⟩𝑡 (20)

where 𝑄 = 𝑄𝑇, 𝑆, and 𝑅 = 𝑅𝑇 are matrices of appropriate
dimensions, respectively.

The aim of this paper is to design a filter by considering
the coexistence of random one-step time delay, multipacket
losses, and parameter perturbation. The designed filter
should be able to estimate the system state and the signal to
be estimated accurately, and it should meet the following two
performance requirements:

AWhen 𝑤(𝑘) = 0, if there exists a scalar 𝜒 > 0 such that
the inequality𝐸[∑∞𝑘=0 ‖𝑥̃(𝑘)‖2] < 𝜒 sup−𝜏≤𝑖≤0𝐸[‖𝜙(𝑖)‖2] holds,
then system (18) is stochastically stable.

B For any 𝑡 > 0 and nonzero 𝑤(𝑘) ∈ 𝐿2[0,∞),
if there exists a scalar 𝑎 > 0 such that the inequality𝐸[𝑎∑𝑡0𝑤(𝑘)𝑇𝑤(𝑘)] < 𝐸(𝑤, 𝑒, 𝑡) holds under zero initial
conditions, then system (18) is strictly (𝑄, 𝑆,𝑅) dissipative.
3.1. Dissipativity Analysis

Lemma 1 (see [20]). Given matrices 𝑁 = 𝑁𝑇, 𝐻 and 𝐸 are
of appropriate dimensions, and matrix 𝐹meets 𝐹𝑇𝐹 ≤ 𝐼 such
that𝑁+𝐻𝐹𝐸+𝐸𝑇𝐹𝑇𝐻𝑇 < 0. If there exists a positive 𝜀, then
the sufficient and necessary condition of𝑁+𝐻𝐹𝐸+𝐸𝑇𝐹𝑇𝐻𝑇 <0 changes into𝑁 + 𝜀𝐻𝐻𝑇 + 𝜀−1𝐸𝑇𝐸 < 0.

�e detailed proof of Lemma 1 can be found in [20]; it is
omitted here.

Theorem 2. For given matrices 𝑄 = 𝑄𝑇 < 0, 𝑅 = 𝑅𝑇,
and 𝑆, assuming that 𝐴𝑓𝑑,𝐵𝑓𝑑 𝐶𝑓𝑑,𝐷𝑓𝑑 are known, if there
exists symmetric positive definite matrix 𝑃 and constant 𝜏 > 0
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such that (21) holds, then system (18) is stochastically stable and
strictly (𝑄, 𝑆,𝑅) dissipative.

[[[[[[[[[[[[[[[[[[[[[
[

−𝑃 +𝐻 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 −𝜏𝐼 ∗ ∗ ∗ ∗ ∗ ∗ ∗

−𝑆𝑇𝐶∗ 0 −𝐷∗𝑇𝑆 − 𝑆𝑇𝐷∗ − 𝑅 ∗ ∗ ∗ ∗ ∗ ∗
𝐴∗ 𝐺̃ 𝐵∗ −𝑃−1 ∗ ∗ ∗ ∗ ∗
𝜎1𝐴̃1 0 𝜎1𝐵̃1 0 −𝑃−1 ∗ ∗ ∗ ∗
𝜎2𝐴̃2 0 𝜎2𝐵̃2 0 0 −𝑃−1 ∗ ∗ ∗
𝜎3𝐴̃1,2 0 𝜎3𝐵̃1,2 0 0 0 −𝑃−1 ∗ ∗
𝐶̃
∗

0 𝐷̃
∗

0 0 0 0 𝑄−1 ∗
𝜎4𝐶̃1 0 −𝜎4𝐷𝑓𝐷1 0 0 0 0 0 𝑄−1

]]]]]]]]]]]]]]]]]]]]]
]

< 0 (21)

where 𝐴̃1,2 = 𝐴̃1 − 𝐴̃2, 𝜎1 = √𝛼(1 − 𝛼)(1− 𝛽), 𝜎2 =
√(1 − 𝛼)2(1− 𝛽) 𝛽, 𝜎3 = √𝛼 𝛽 (1 − 𝛼), and 𝜎4 = √𝛼(1 − 𝛼).
Proof. We partition the proof into two parts.

Firstly, when 𝑤(𝑘) = 0, we prove that system (18) is
stochastically stable.

Consider constructing the following Lyapunov function:

𝑉 (𝑥̃ (𝑘)) = 𝑥̃ (𝑘)𝑇 𝑃𝑥̃ (𝑘) (22)

Define

𝐸 {Δ𝑉 (𝑥̃ (𝑘))} + 𝜏𝑥 (𝑘)𝑇𝑊2𝑇𝑊2𝑥 (𝑘)
− 𝜏𝑓 (𝑘)𝑇𝑓 (𝑘) = 𝐸 {𝑉 (𝑥̃ (𝑘 + 1)) | 𝑥̃ (𝑘)}
− 𝑉 (𝑥̃ (𝑘)) + 𝜏𝑥 (𝑘)𝑇𝑊2𝑇𝑊2𝑥 (𝑘)
− 𝜏𝑓 (𝑘)𝑇𝑓 (𝑘) = 𝜁 (𝑘)𝑇Φ𝜁 (𝑘)

(23)

where

𝜁 (𝑘) = [𝑥̃ (𝑘)𝑇 𝑓 (𝑘)𝑇]𝑇 ,
Φ = [−𝑃 +𝐻 0

0 −𝜏𝐼] − [
Γ𝑇1

Γ𝑇2
] 𝑃̃−1 [Γ1 Γ2]

Γ1 = [𝐴∗𝑇 𝛽1𝐴̃𝑇1 𝛽2𝐴̃𝑇2 𝜎3𝐴̃𝑇1,2]𝑇 ,
Γ2 = [𝐺̃𝑇 0 0 0]𝑇 ,
𝐺̃ = [𝐺

0
]

𝐻 = [𝜏𝑊1𝑇𝑊1 0
0 0

] ,
𝑊1 = [𝑊2 0] ,

𝑃̃ =
[[[[[[
[

𝑃−1 0 0 0

0 𝑃−1 0 0

0 0 𝑃−1 0

0 0 0 𝑃−1

]]]]]]
]
,

𝐴̃1,2 = 𝐴̃1 − 𝐴̃2
(24)

According to Schur complement lemma, Φ < 0 is
equivalent to the following equation:

[[[[[[[[[[[[
[

−𝑃 +𝐻 ∗ ∗ ∗ ∗ ∗
0 −𝜏𝐼 ∗ ∗ ∗ ∗
𝐴∗ 𝐺̃ −𝑃−1 ∗ ∗ ∗
𝜎1𝐴̃1 0 0 −𝑃−1 ∗ ∗
𝜎2𝐴̃2 0 0 0 −𝑃−1 ∗
𝜎3𝐴̃1,2 0 0 0 0 −𝑃−1

]]]]]]]]]]]]
]

< 0 (25)

Considering that 𝑓(𝑘)𝑇𝑓(𝑘) ≤ 𝑥(𝑘)𝑇𝑊2𝑇𝑊2𝑥(𝑘), if
there exists 𝜏 > 0, then the inequalities 𝜏𝑥(𝑘)𝑇𝑊2𝑇𝑊2𝑥(𝑘) −𝜏𝑓(𝑘)𝑇𝑓(𝑘) ≥ 0 hold.

Further, when (25) holds, we have

𝐸 {Δ𝑉 (𝑥̃ (𝑘))} = 𝐸 {𝑉 (𝑥̃ (𝑘 + 1)) | 𝑥̃ (𝑘)} − 𝑉 (𝑥̃ (𝑘))
≤ 𝜁 (𝑘)𝑇Φ𝜁 (𝑘) < 0 (26)

Therefore, there exists a scalar 𝑐 such that the inequalities𝐸[𝑉(𝑥̃(𝑘 + 1) − 𝑉(𝑥̃(𝑘))] ≤ 𝑐‖𝑥̃(𝑘)2‖ hold. According to the
method proposed in [18], we can also prove that there exists
a constant 𝜒 > 0 such that the inequalities 𝐸[∑∞𝑘=0 ‖𝑥̃(𝑘)‖2] <𝜒 sup−𝜏≤𝑖≤0𝐸[‖𝜙(𝑖)‖2] hold. This means that system (18) is
stochastically stable.

Secondly, when 𝑤(𝑘) ̸= 0, we prove that system (18) is
strictly (𝑄, 𝑆,𝑅) dissipative.
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Under zero initial state conditions, we define

𝐸 {Δ𝑉 (𝑥̃ (𝑘))} − 𝐸 {𝑒 (𝑘)𝑇𝑄𝑒 (𝑘) + 2𝑒 (𝑘)𝑇 𝑆𝑤 (𝑘)
+ 𝑤 (𝑘)𝑇 (𝑅 − 𝑎𝐼)𝑤 (𝑘)} + 𝜏𝑥 (𝑘)𝑇𝑊2𝑇𝑊2𝑥 (𝑘)
− 𝜏𝑓 (𝑘)𝑇𝑓 (𝑘) = 𝜂 (𝑘)𝑇 (Λ + 𝑎 diag (0, 𝐼)) 𝜂 (𝑘)

(27)

where

𝜂 (𝑘) = [𝑥̃ (𝑘)𝑇 𝑓 (𝑘)𝑇 𝑤 (𝑘)𝑇]𝑇 ,
Λ

= [[[
[

−𝑃 +𝐻 ∗ ∗
0 −𝜏𝐼 ∗

−𝑆𝑇𝐶̃∗ 0 −𝑆𝑇𝐷∗ −𝐷∗𝑇𝑆 − 𝑅
]]]
]

− [[[
[

𝐺𝑇1

𝐺𝑇2

𝐺𝑇3

]]]
]
𝑃̃
−1 [𝐺1 𝐺2 𝐺3] ,

𝑃̃ = diag {−𝑃−1, −𝑃−1, −𝑃−1, −𝑃−1,𝑄−1,𝑄−1} ,
𝐺1

= [𝐴∗𝑇 𝜎1𝐴̃𝑇1 𝜎2𝐴̃𝑇2 𝜎3 (𝐴̃1 − 𝐴̃2)𝑇 𝐶∗𝑇 𝜎4𝐶̃𝑇1 ]𝑇
𝐺3

= [𝐵∗𝑇 𝜎1𝐵̃𝑇1 𝜎2𝐵̃𝑇1 𝜎3 (𝐵̃1 − 𝐵̃2)𝑇 𝐷∗𝑇 𝜎4𝐷̃𝑇]𝑇 ,
𝐺2 = [𝐺̃𝑇 0 0 0 0]𝑇 .

(28)

According to Schur complement lemma, Λ < 0 is
equivalent to (21).

When Λ < 0, there must exist a sufficiently small scalar𝑎 > 0 such that the inequalities (Λ + 𝑎 diag(0, 𝐼)) < 0 hold.
This means that (27) is less than zero.

Similar to the proof in the first part, we have

𝐸 {Δ𝑉 (𝑥̃ (𝑘))} − 𝐸 {𝑒 (𝑘)𝑇𝑄𝑒 (𝑘) + 2𝑒 (𝑘)𝑇 𝑆𝑤 (𝑘)
+ 𝑤 (𝑘)𝑇 (𝑅 − 𝑎𝐼)𝑤 (𝑘)} < 0 (29)

Further, summing 𝑘 in (29) from 0 to 𝑡, we can obtain

𝐸 {𝑉(𝑥̃ (𝑇 + 1)} − 𝐸 {𝑉(𝑥̃ (0)} + 𝐸[𝑎 𝑡∑
0

𝑤 (𝑘)𝑇𝑤 (𝑘)]
< 𝐸 (𝑤, 𝑒, 𝑡) .

(30)

Considering that system (18) is stochastically stable and𝑉(𝑥̃(0)) = 0 and 𝑉(𝑥̃(𝑇 + 1)) ≥ 0 under zero initial state
conditions, we have 𝐸[𝑎∑𝑡0𝑤(𝑘)𝑇𝑤(𝑘)] < 𝐸(𝑤, 𝑒, 𝑡). This
means that system (18) is strictly (𝑄, 𝑆,𝑅) dissipative.

This completes the proof.
3.2. Solution of Filter Parameters

Theorem 3. For given correlated perturbation parameter
matrices 𝐻̂1 ∈ 𝑅(𝑛+2𝑝)×𝑟, 𝐻̂2 ∈ 𝑅(𝑛+2𝑝)×𝑟, 𝐻3 ∈ 𝑅𝑛×𝑟, 𝐻4 ∈𝑅𝑞×𝑟, 𝐸̂1 ∈ 𝑅𝑟×(𝑛+2𝑝), 𝐸2 ∈ 𝑅𝑟×(𝑛+2𝑝), 𝐸̂3 ∈ 𝑅𝑟×(𝑛+2𝑝), 𝐸4 ∈𝑅𝑟×𝑝 and matrices 𝑄 = 𝑄𝑇 < 0, 𝑅 = 𝑅𝑇, and 𝑆, if there exist
constants 𝜀 > 0, 𝜀𝑖 > 0 (𝑖 = 1, 2, 3, 4, 5) and 𝜏 > 0 andmatrices

𝑋 ∈ 𝑅(𝑛+2𝑝)×(𝑛+2𝑝), 𝑍 ∈ 𝑅(𝑛+2𝑝)×(𝑛+2𝑝), ∧𝐴𝑓 ∈ 𝑅(𝑛+2𝑝)×(𝑛+2𝑝),
∧
𝐵𝑓 ∈ 𝑅(𝑛+2𝑝)×𝑝, ∧𝐶𝑓 ∈ 𝑅𝑞×(𝑛+2𝑝), and ∧𝐷𝑓 ∈ 𝑅𝑞×𝑝, the following
LMI holds:

[𝜑1 𝜑𝑇2
𝜑2 𝜑3

] < 0 (31)

�en system (18) is stochastically stable and strictly (𝑄, 𝑆,𝑅)
dissipative, where

𝜑1 = [Ξ1 Ξ
𝑇
2

Ξ2 Ξ3
] ,

𝜑2 = [𝑂1 𝑂2
𝑂3 𝑂4

]
𝜑3 = diag {−𝜀1𝐼, −𝜀1𝐼, −𝜀1𝐼, −𝜀1𝐼, −𝜀2𝐼, −𝜀2𝐼, −𝜀3𝐼, −𝜀3𝐼, −𝜀4𝐼, −𝜀4𝐼, −𝜀5𝐼, −𝜀5𝐼}
Ξ1 = [Ξ11 Ξ

𝑇
12

Ξ12 Ξ13
] ,

Ξ11 = [[[
[

−𝑋 + 𝜏𝑊1𝑇𝑊1 + 𝜀𝛿2𝐼 −𝑍 + 𝜏𝑊1𝑇𝑊1 + 𝜀𝛿2𝐼 0
−𝑍 + 𝜏𝑊1𝑇𝑊1 + 𝜀𝛿2𝐼 −𝑍 + 𝜏𝑊1𝑇𝑊1 + 𝜀𝛿2𝐼 0

0 0 −𝜏𝐼
]]]
]

Ξ13 = [𝑀1
∗ 0

𝑀2
∗ 𝑀3

∗
]
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Ξ12 =

[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[

−𝑆𝑇𝐿 + 𝑆𝑇𝐷𝑓𝐶 −𝑆𝑇𝐿 + 𝑆𝑇𝐷𝑓𝐶 + 𝑆𝑇𝐶̂𝑓 0

𝑋𝐴𝑑 + 𝐵̂𝑓𝐶𝑑 𝑋𝐴𝑑 + 𝐵̂𝑓𝐶𝑑 + 𝐴̂𝑓 𝑋𝐺

𝑍𝐴𝑑 𝑍𝐴𝑑 𝑍𝐺

𝜎1 (𝑋𝐴1 + 𝐵̂𝑓𝐶1) 𝜎1 (𝑋𝐴1 + 𝐵̂𝑓𝐶1) 0

𝜎1𝑍𝐴1 𝜎1𝑍𝐴1 0

𝜎2𝑋𝐴2 𝜎2𝑋𝐴2 0

𝜎2𝑍𝐴2 𝜎2𝑍𝐴2 0

𝜎3 (𝑋𝐴1,2 + 𝐵̂𝑓𝐶1) 𝜎3 (𝑋𝐴1,2 + 𝐵̂𝑓𝐶1) 0

𝜎3𝑍𝐴1,2 𝜎3𝑍𝐴1,2 0

𝐿 −𝐷𝑓𝐶𝑑 𝐿 −𝐷𝑓𝐶𝑑 − 𝐶̂𝑓 0

−𝜎4𝐷𝑓𝐶1 −𝜎4𝐷𝑓𝐶1 0

]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]

𝑀1
∗ = −𝐷̃∗𝑇𝑑 𝑆 − 𝑆𝑇𝐷̃∗𝑇𝑑 − 𝑅 + 𝜀𝛿2,

𝐷̃
∗

𝑑 = 𝐿2 − 𝑎𝐷̂𝑓𝐷
𝑀∗𝑇2

= [(𝑀22)𝑇 (𝑍𝐵𝑑)𝑇 𝜎1 (𝑀23)𝑇 𝜎1 (𝑍𝐵1)𝑇 𝜎2 (𝑋𝐵2)𝑇 𝜎2 (𝑋𝐵2)𝑇 𝜎3 (𝑀24)𝑇 𝜎3 (𝑍𝐵1,2)𝑇 (𝐿2 −𝐷𝑓𝐷 𝑎)𝑇 −𝜎4 (𝐷𝑓𝐷)𝑇]
𝑀22 = 𝑋𝐵𝑑 + 𝐵̂𝑓𝐷 𝑎,
𝑀23 = 𝑋𝐵1 + 𝐵̂𝑓𝐷,
𝑀24 = 𝑋𝐵1,2 + 𝐵̂𝑓𝐷
𝑀3
∗ = diag {𝑀11,𝑀11,𝑀11,𝑀11,𝑀12}

𝑀11 = [−𝑋 −𝑍
−𝑍 −𝑍] ,

𝑀12 = [𝑄
−1 0

0 𝑄−1
]

Ξ2 = [Ξ21 Ξ22]

Ξ21 =
[[[[[[[
[

0 0 0 𝑈𝑇𝐷𝑇𝑓𝑑𝑆 𝛼𝑀𝑇1𝑋 + 𝛼𝑀𝑇11𝐵̂𝑇𝑓 + 𝛿𝑀𝑇2𝑋 𝛼𝑀𝑇1𝑍 + 𝛿𝑀𝑇2𝑍 𝜎1𝑀𝑇1𝑋 + 𝜎1𝑀𝑇11𝐵̂𝑇𝑓 𝜎1𝑀𝑇1𝑍
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 𝛼𝐷𝑇𝐷𝑇𝑓𝑑𝑆 𝛼𝑁𝑇1𝑋 + 𝑎𝐷𝑇𝐵̂𝑇𝑓 + 𝛿𝑁𝑇2𝑋 𝛼𝑁𝑇1𝑍 𝜎1𝑁𝑇1𝑋 + 𝜎1𝐷𝑇𝐵̂𝑇𝑓 𝜎1𝑁𝑇1𝑍

]]]]]]]
]

Ξ22 =
[[[[[[[
[

𝜎2𝑀𝑇2𝑋 𝜎2𝑀𝑇2𝑍 𝜎3𝑀𝑇1𝑋 + 𝜎3𝑀𝑇11𝐵̂𝑇𝑓 − 𝜎3𝑀𝑇2𝑋 𝜎3𝑀𝑇1𝑍 − 𝜎3𝑀𝑇2𝑍 −𝛼𝑈𝑇𝐷𝑇𝑓 −𝜎4𝑈𝑇𝐷𝑇𝑓
0 0 0 0 0 0

0 0 0 0 0 0

𝜎2𝑁𝑇2𝑋 0 𝜎3𝑁𝑇1𝑋 + 𝜎3𝐷𝑇𝐵̂𝑇𝑓 − 𝜎3𝑁𝑇2𝑋 𝜎3𝑁𝑇1𝑍 −𝛼𝐷𝑇𝐷𝑇𝑓 −𝜎4𝐷𝑇𝐷𝑇𝑓

]]]]]]]
]

𝑀1 = [[
[
0 0 0

𝐶 0 0

𝐶 0 0

]]
]
,

𝑀2 = [[
[
0 0 0

𝐶 0 0

0 0 0

]]
]
,
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𝑁1 = [[
[
0

𝐷

𝐷

]]
]
,

𝑁2 = [[
[
0

𝐷

0

]]
]
,

𝑈 = [𝐶 0 0]

Ξ3 =
[[[[[
[

−𝜀𝐼 0 0 0

0 −𝜀𝐼 0 0

0 0 −𝜀𝐼 0

0 0 0 −𝜀𝐼

]]]]]
]
,

𝐴1 = [[
[
0 0 0

𝐶 −𝐼 0

𝐶 −𝐼 0

]]
]
,

𝐵1 =
[[[
[

0

𝐷

𝐷

]]]
]
,

𝐵2 =
[[[
[

0

𝐷

0

]]]
]
,

𝐶1 = [𝐶 −𝐼 0] ,

𝐴2 = [[
[
0 0 0

𝐶 −𝐼 0

0 0 0

]]
]
,

𝐴1,2 = 𝐴1 − 𝐴2,
𝐵1,2 = 𝐵1 − 𝐵2
𝐴𝑑 = 𝐴0 + 𝛼𝐴1 + 𝛿𝐴2,
𝐵𝑑 = 𝐵0 + 𝛼𝐵1 + 𝛿𝐵2,
𝐶𝑑 = 𝐶0 + 𝛼𝐶1,
𝛿 = (1 − 𝛼) 𝛽

𝑂1 =

[[[[[[[[[[[[[
[

0 0 0 0 𝐻̂
𝑇

2 0 0 0 0

𝜀1𝐸2𝐶𝑑 𝜀1𝐸2𝐶𝑑 0 𝜀1 ⋅ 𝛼𝐸2𝐷 0 0 0 0 0

0 0 0 0 0 0 𝜎1𝐻̂𝑇2 0 0

𝜀1𝐸2𝐶1 𝜀1𝐸2𝐶1 0 𝜀1𝐸2𝐷 0 0 0 0 0

0 0 0 0 𝐻̂
𝑇

1 0 0 0 0

0 𝜀2𝐸̂1 0 0 0 0 0 0 0

]]]]]]]]]]]]]
]

,
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𝑂2 =

[[[[[[[[[[[[[
[

0 0 0 0 0 0 0 0 0

0 0 0 0 0 𝜀1 ⋅ 𝛼𝐸2𝑀11 0 0 𝜀1 ⋅ 𝛼𝐸2𝐷
0 𝜎3𝐻̂𝑇2 0 0 0 0 0 0 0

0 0 0 0 0 𝜀1𝐸2𝑀11 0 0 𝜀1𝐸2𝐷
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

]]]]]]]]]]]]]
]

𝑂3 =

[[[[[[[[[[[[[[
[

0 0 0 𝐻̂
𝑇

3 𝑆 0 0 0 0 0

0 𝜀3𝐸̂3 0 0 0 0 0 0 0

0 0 0 𝐻𝑇4 𝑆 0 0 0 0 0

𝜀4𝐸4𝐶𝑑 𝜀4𝐸4𝐶𝑑 0 𝜀4𝐸4𝐷𝑎 0 0 0 0 0

0 0 0 0 0 0 0 0 0

𝜀5𝐸4𝐶1 𝜀5𝐸4𝐶1 0 𝜀5𝐸4𝐷 0 0 0 0 0

]]]]]]]]]]]]]]
]

,

𝑂4 =

[[[[[[[[[[[[[[
[

0 0 0 −𝐻̂𝑇3 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 −𝐻𝑇4 0 0 0 0 0

0 0 0 0 0 𝜀4𝐸4𝑈 0 0 𝜀4𝐸4𝐷
0 0 0 0 −𝜎4𝐻𝑇4 0 0 0 0

0 0 0 0 0 𝜀5𝐸4𝑈 0 0 𝜀5𝐸4𝐷

]]]]]]]]]]]]]]
]

(32)

If (31) has a solution, then the parameters of the nonfragile
dissipative filter can be calculated as follows:

𝐴𝑓 =𝑊−1 ∧𝐴𝑓𝑍−1𝑉−𝑇,
𝐵𝑓 =𝑊−1 ∧𝐵𝑓,
𝐶𝑓 = ∧𝐶𝑓𝑍−1𝑉−𝑇,
𝐷𝑓 = 𝐷𝑓
𝐻1 =𝑊−1 ∧𝐻1,
𝐸1 = ∧𝐸1𝑍−1𝑉−𝑇,
𝐻2 =𝑊−1 ∧𝐻2,
𝐸3 = ∧𝐸3𝑍−1𝑉−𝑇

(33)

where𝑊 and 𝑉 are nonsingular constant matrices that meet
𝑊𝑉𝑇 = 𝐼 −𝑋𝑍−1.

Proof. Define

𝑃 = [ 𝑋 𝑊

𝑊𝑇 −𝑊𝑇𝑍−1𝑉−𝑇] ,

Ω1 = [ 𝑀1 0

𝐵𝑓𝑑𝑀11 0
] ,

Ω2 = [𝑀2 0
0 0

] ,

Γ1 = [ 𝑁1

𝐵𝑓𝑑𝐷
] ,

Γ2 = [𝑁2
0
]

Γ3 = [−𝐷𝑓𝑑𝑈 0] ,
Γ4 = −𝐷𝑓𝑑𝐷,

(34)

and then (21) is equivalent to the following LMI:
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Σ +

[[[[[[[[[[[[[[[[[[[[[[[[[[[
[

0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗

−𝑆𝑇Γ3Δ 𝑘𝐼 0 −𝛼Γ𝑇4Δ 𝑘𝐼 − 𝛼Γ4Δ 𝑘𝐼 ∗ ∗ ∗ ∗ ∗ ∗
(𝛼Ω1 + 𝛿Ω2) Δ 𝑘𝐼 0 (𝛼Γ1 + 𝛿Γ2) Δ 𝑘𝐼 0 ∗ ∗ ∗ ∗ ∗

𝜎1Ω1Δ 𝑘𝐼 0 𝜎1Γ1Δ 𝑘𝐼 0 0 ∗ ∗ ∗ ∗
𝜎2Ω2Δ 𝑘𝐼 0 𝜎2Γ2Δ 𝑘𝐼 0 0 0 ∗ ∗ ∗

𝜎3 (Ω1 −Ω2) Δ 𝑘𝐼 0 𝜎3 (Γ1 − Γ2) Δ 𝑘𝐼 0 0 0 0 ∗ ∗
𝛼Γ3 0 𝛼Γ4 0 0 0 0 0 ∗
𝜎4Γ3 0 𝜎4Γ4 0 0 0 0 0 0

]]]]]]]]]]]]]]]]]]]]]]]]]]]
]

< 0 (35)

where

Σ = [[
[
Σ11 Σ

𝑇
12

Σ12 Σ22

]]
]
,

Σ11

= [[[
[

−𝑃 + 𝜏𝐻𝑇𝐻 + 𝜀𝛿2 ∗ ∗
0 −𝜏𝐼 ∗

−𝑆𝑇𝐶̃∗𝑑 0 −𝐷̃∗𝑇𝑑 𝑆 − 𝑆𝑇𝐷̃∗𝑑 − 𝑅 + 𝜀𝛿2
]]]
]

Σ22 = diag {−𝑃−1, −𝑃−1, −𝑃−1, −𝑃−1,𝑄−1,𝑄−1}
Σ𝑇12

= [[[[
[

𝐴̃
∗𝑇

𝑑 𝜎1𝐴̃𝑇1𝑑 𝜎2𝐴̃𝑇2𝑑 𝜎3𝐴̃𝑇1,2𝑑 𝐶̃
∗𝑇

𝑑 𝜎4𝐶̃1𝑑𝑇
𝐺̃
𝑇

0 0 0 0 0

𝐵̃
∗𝑇

𝑑 𝜎1𝐵̃𝑇1𝑑 𝜎2𝐵̃𝑇2𝑑 𝜎3𝐵̃𝑇1,2𝑑 𝐷̃
∗𝑇

𝑑 −𝜎4 (𝐷𝑓𝐷1𝑑)𝑇
]]]]
]

𝐴̃
∗

𝑑 = [[
𝐴𝑑 0

𝐵𝑓𝑑 𝐶𝑑 𝐴𝑓𝑑

]
]
,

𝐵̃
∗

𝑑 = [ 𝐵𝑑 0

𝐵𝑓𝑑 𝐷𝑑
] ,

𝐶̃
∗

𝑑 = [𝐿 −𝐷𝑓𝑑 𝐶𝑑 −𝐶𝑓𝑑] ,
𝐴̃2𝑑 = [𝐴2 0

0 0
] ,

𝐴̃1𝑑 = [ 𝐴1 0

𝐵𝑓𝑑𝐶1 0
] ,

𝐵̃1𝑑 = [ 𝐵1

𝐵𝑓𝑑𝐷
] ,

𝐶̃1𝑑 = [−𝐷𝑓𝑑𝐶1 0] ,
𝐴̃1,2𝑑 = 𝐴̃1𝑑 − 𝐴̃2𝑑
𝐵̃1,2𝑑 = 𝐵̃1𝑑 − 𝐵̃2𝑑,
𝐵̃2𝑑 = [𝐵2

0
] .

(36)

Equation (35) can be simplified as Σ+𝐻𝑀+𝑀𝑇𝐻𝑇 < 0,
where

𝐻 =

[[[[[[[[[[[[[[[[[[[[
[

0 0 0

0 0 0

−𝑆𝑇Γ3 0 −𝑎Γ𝑇4 𝐼 − 𝑎Γ4
(𝑎Ω1 + 𝛿Ω2) 0 (𝑎Γ1 + 𝛿Γ2)𝜎1Ω1 0 𝜎1Γ1𝜎2Ω2 0 𝜎2Γ2𝜎3 (Ω1 −Ω2) 0 𝜎3 (Γ1 − Γ2)𝑎Γ3 0 𝑎Γ4𝜎4Γ3 0 𝜎4Γ4

]]]]]]]]]]]]]]]]]]]]
]

,

𝑀 = [[
[
Δ 𝑘𝐼 0 0 0 0 0 0 0 0

0 Δ 𝑘𝐼 0 0 0 0 0 0 0

0 0 Δ 𝑘𝐼 0 0 0 0 0 0

]]
]

(37)

Considering that ‖Δ 𝑘‖2 < 𝛿2, based on Schur comple-
ment Lemma, we have

[𝜓1 𝜓𝑇2
𝜓2 𝜓3

] < 0 (38)

where
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𝜓1 = [[
∏
1
∏𝑇
3∏

3
∏
2

]
]
,

∏
1
= [[[
[

−𝑃 + 𝜏𝐻𝑇𝐻 + 𝜀𝛿2 ∗ ∗
0 −𝜏𝐼 ∗

−𝑆𝑇𝐶̃∗𝑑 0 −𝐷̃∗𝑇𝑑 𝑆 − 𝑆𝑇𝐷̃∗𝑑 − 𝑅 + 𝜀𝛿2
]]]
]
,

∏
2
= diag {−𝑃−1, −𝑃−1, −𝑃−1, −𝑃−1,𝑄−1,𝑄−1} ,

∏𝑇
3
= [[[[
[

𝐴̃
∗𝑇

𝑑 𝜎1𝐴̃𝑇1𝑑 𝜎2𝐴̃𝑇2𝑑 𝜎3𝐴̃𝑇1,2𝑑 𝐶̃
∗𝑇

𝑑 𝜎4𝐶̃1𝑑𝑇
𝐺̃
𝑇

0 0 0 0 0

𝐵̃
∗𝑇

𝑑 𝜎1𝐵̃𝑇1𝑑 𝜎2𝐵̃𝑇2𝑑 𝜎3𝐵̃𝑇1,2𝑑 𝐷̃
∗𝑇

𝑑 −𝜎4 (𝐷𝑓𝐷1𝑑)𝑇
]]]]
]

𝜓2 = [[[
[

0 0 −Γ𝑇3 𝑆 𝛼Ω𝑇1 + 𝛿Ω𝑇2 𝜎1Ω𝑇1 𝜎2Ω𝑇2 𝜎3 (Ω1 −Ω2) 𝛼Γ𝑇3 𝜎4Γ𝑇3
0 0 0 0 0 0 0 0 0

0 0 −𝛼Γ𝑇4 𝑆 (𝛼Γ𝑇1 + 𝛿Γ𝑇2 ) 𝜎1Γ𝑇1 𝜎2Γ𝑇2 𝜎3 (Γ1 − Γ2) 𝛼Γ𝑇4 𝜎4Γ𝑇4
]]]
]
,

𝜓3 = [[
[
−𝜀𝐼 0 0
0 −𝜀𝐼 0
0 0 −𝜀𝐼

]]
]

(39)

Let Σ1 = [ 𝑋 𝐼
𝑉
𝑇
0
] and Σ2 = [ 𝐼 𝑍−1

0 𝑉
𝑇 ]; (38) can be simplified

as (31) with the following steps:

Step 1. Premultiply (38) with diag {Σ𝑇2 , 𝐼, 𝐼,Σ𝑇1 ,Σ𝑇1 ,Σ𝑇1 ,Σ𝑇1 , 𝐼,
𝐼, 𝐼, 𝐼}.
Step 2. Postmultiply diag {Σ2, 𝐼, 𝐼,Σ1,Σ1,Σ1,Σ1, 𝐼, 𝐼, 𝐼, 𝐼} on
the basis of Step 1.

Step 3. Premultiply diag {𝐼,𝑍, 𝐼, 𝐼, 𝐼,𝑍, 𝐼,𝑍, 𝐼,𝑍, 𝐼,𝑍, 𝐼,
𝐼, 𝐼, 𝐼, 𝐼, 𝐼} on the basis of Step 2.

Step 4. Postmultiply diag {𝐼,𝑍, 𝐼, 𝐼, 𝐼,𝑍, 𝐼,𝑍, 𝐼,𝑍, 𝐼,𝑍, 𝐼,
𝐼, 𝐼, 𝐼, 𝐼, 𝐼} on the basis of Step 3.

Step 5. Separate certainty with uncertainty in Step 4, and
repeatedly utilize Lemma 1 and Schur complement Lemma.

This completes the proof.

Remark 1. The solution method of linear inequality (31) is
general and will bring less conservatism. We can always get
the solutions.

Remark 2. According to Theorem 3, the filter parameters of
the system can be obtained by the feasible solution of linear
inequality (31). Randomdelays and packet losses are assumed
to occur simultaneously in the networked systems. Compared

with the results of considering only random time delays or
packet losses, the derivation process is more complicated due
to the increase of random variables in this paper.

4. Numerical Simulation and Discussion

To verify the effectiveness of the proposed filter, we adopt the
following system parameters given in [18]:

𝐴 = [[
[
−0.2 0.1 0.4
0.7 −0.1 0.1
−0.3 −0.2 −0.1

]]
]
,

𝐵 = [[
[
−1
−1.5
0.5

]]
]
,

𝐷 = 0.9,
𝐶 = [1 −2 1] ,
𝐿1 = [−2 1 −2] ,
𝐿2 = 0

∧
𝐻1 =

[[[[[[[[
[

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

]]]]]]]]
]
,
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∧
𝐸1 = 0.01 ∗

[[[[[[[[
[

−1 0 0 0 −1
1 0 0 0 1
−1 0 0 1 0
1 0 0 0 −1
−1 0 1 0 0

]]]]]]]]
]
,

∧
𝐻2 =

[[[[[[[[
[

1
1
1
1
1

]]]]]]]]
]
,

𝐸2 = 0.02
𝐻4 = 1,
𝐸4 = 0.02
𝐻3 = [1 0 0 0 2] ,

∧
𝐸3 = 0.02 ∗

[[[[[[[[
[

1 0 0 0 1
−1 0 0 0 −1
1 0 0 1 0
−1 1 0 0 0
1 0 1 0 0

]]]]]]]]
]

𝑊2 = [[
[
0.01 0 0
0 0.01 0
0 0 0.01

]]
]
,

𝑓 (𝑘,𝑥 (𝑘)) = [[[
[

0.01 sin (𝑥 (𝑘)1)
0.01 sin (𝑥 (𝑘)2)
0.01 sin (𝑥 (𝑘)3)

]]]
]

𝐹1 (𝑘) = 𝐹3 (𝑘)

=
[[[[[[[[
[

sin (0.1𝑘) 0 0 0 0
0 sin (0.1𝑘) 0 0 0
0 0 sin (0.1𝑘) 0 0
0 0 0 sin (0.1𝑘) 0
0 0 0 0 sin (0.1𝑘)

]]]]]]]]
]

𝐹2 (𝑘) = 𝐹4 (𝑘) = sin (0.1𝑘)
(40)

Here, we choose 𝛼 = 0.7, 𝛽 = 0.8, and 𝜌 = 0.95. Assume
that disturbance 𝑤(𝑘) is in the form of sin(𝑘) ∗ 𝑒−0.1𝑘. The
parameters of dissipative filter are set as 𝑄 = −𝐼, 𝑆 = 0.5 𝐼,
and 𝑅 = 12 𝐼. According to Theorem 3, the parameters
of traditional quantized dissipative filter without parameter
perturbation and the parameters of the nonfragile quantized
dissipative filter with parameter perturbation can be obtained
byMatlab LMI toolbox.Then, we can obtain the performance
metric 𝛾 of corresponding dissipative filter based on the
formula 𝛾 = ∑(‖𝑒(𝑘)‖)/∑(‖𝑤(𝑘)‖).

The parameters and performancemetric 𝛾 of the nonfrag-
ile quantized dissipative with parameter perturbation filter
are listed as follows:

𝐴𝑓

=
[[[[[[[[
[

−1.3330 −1.4733 0.5060 0.6555 0.0009
0.6161 0.3589 −0.1316 −0.3262 −0.0005
−1.0025 −1.7769 0.3872 −0.7236 −0.0003
0.0001 −0.1066 0.0783 0.1667 0.0000
−0.0388 −0.0666 0.0254 0.0237 0.0000

]]]]]]]]
]
,

𝐵𝑓 =
[[[[[[[[
[

−0.5688
0.1140
−0.5597
−0.2520
−131.1128

]]]]]]]]
]
,

𝐶𝑓 = [−0.1075 −0.4379 0.2480 0.4629 0.0002] ,
𝐷𝑓 = −0.1801,
𝛾 = 0.9893.

(41)

The parameters of traditional quantized dissipative filter
without parameter perturbation are listed as follows:

𝐴𝑓

=
[[[[[[[[
[

−1.0905 −1.1645 0.4671 0.4963 0.0013
0.4857 0.2565 −0.1398 −0.1720 −0.0008
−0.8796 −1.3818 0.2421 −0.3477 −0.0025
−0.0634 −0.2373 0.1196 0.1112 0.0000
−0.0385 −0.0611 0.0231 0.0179 −0.0000

]]]]]]]]
]
,

𝐵𝑓 =
[[[[[[[[
[

−0.5539
0.1482
−0.4579
−0.3401
−52.8181

]]]]]]]]
]

𝐶𝑓 = [−0.0619 −0.4009 0.2350 0.3271 0.0005] ,
𝐷𝑓 = −0.1726

(42)

Note that there exists parameter perturbation in real
networked systems; that is, Δ𝐴𝑓, Δ𝐵𝑓, Δ𝐶𝑓, and Δ𝐷𝑓 are
unequal to zero. We can obtain the corresponding per-
formance metric of traditional quantized dissipative filter
with parameter perturbation in real networked systems;
that is, 𝛾 = 1.0233. It can be seen that the performance
metric of the nonfragile quantized dissipative filter is less
than its counterpart in the traditional quantized dissipative
filter without parameter perturbation. This means that the
nonfragile quantized dissipative filter is of better disturbance
rejection capability than the traditional quantized dissipative
filter.

The curves of 𝑧𝑓(𝑘) estimated by nonfragile quantized
dissipative filter and the signal to be estimated 𝑧(𝑘) are
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Table 1: Performance metric 𝛾 under different PTD and PPL.

𝛼 𝛽 PTD PPL 𝛾 of TQDF 𝛾 of NFQDF
0.6 0.7 0.112 0.288 1.1511 1.1101
0.7 0.8 0.072 0.228 1.0233 0.9893
0.8 0.9 0.036 0.164 1.0013 0.9375
Note that PTD, PPL, TQDF, and NFQDF are the abbreviations of probability of time delays, probability of the packet loss, traditional quantized dissipative
filter, and nonfragile quantized dissipative filter, respectively.

Table 2: Performance metric 𝛾 under different QD.
QD RQE 𝛾 of TQDF 𝛾 of NFQDF
0.75 [-0.1428,0.1428] 1.3401 1.2639
0.85 [-0.0811,0.0811] 1.1243 1.0623
0.95 [-0.0256,0.0256] 1.0233 0.9893
Note that QD, RQE, TQDF, and NFQDF are the abbreviations of quantization density, range of quantization error, traditional quantized dissipative filter, and
nonfragile quantized dissipative filter, respectively.
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Figure 1: The curves of 𝑧𝑓(𝑘) and 𝑧(𝑘).

shown in Figure 1, respectively. We can see that 𝑧(𝑘) will
converge to 𝑧𝑓(𝑘) within finite times 𝑘. This means that the
designed nonfragile quantized dissipative filter is effective in
real networked systems with time delays and packet losses.

We set 𝜌 = 0.95; considering the existence of different
probability of time delays and packet losses in networked
systems, the performance metric 𝛾 of nonfragile quantized
dissipative filter under the same quantization density is
shown in Table 1. We can see that the nonfragile quantized
dissipative filter is of better disturbance rejection capabil-
ity than traditional quantized dissipative filter under given
probability of time delays and packet losses. Furthermore,
the performance metric 𝛾 of nonfragile quantized dissipative
filter will become larger and the estimation result of non-
fragile quantized dissipative filter will become worse with the
increase of the probability of time delays and packet losses.
Therefore, the probability of time delays and packet losses
may influence system performance.

We set 𝛼 = 0.7, 𝛽 = 0.8; considering three different
quantization densities, the performance metric 𝛾 of nonfrag-
ile quantized dissipative filter under the same probability of
time delays and packet losses is shown in Table 2. We can
see that the nonfragile quantized dissipative filter is of better
disturbance rejection capability than traditional quantized
dissipative filter under given quantization density. Further-
more, the performance metric 𝛾 of nonfragile quantized
dissipative filter will become larger and the estimation result
of nonfragile quantized dissipative filter will become worse
with the decrease of quantization density. Therefore, the
quantization density may also influence system performance.

5. Conclusion

In this paper, we investigate the problem of nonfragile
quantized dissipative filter with parameter perturbation in
nonlinear networked systems. Compared with the designed
filter in [12–20], the designed nonfragile quantized dissipative
filter in this paper considers the coexistence of time delays,
packet losses, and quantization error in the real networked
systems.The designed filter decreases the conservation prob-
lem by considering filter parameter perturbation. We obtain
the sufficient conditions for the existence of nonfragile quan-
tized dissipative filter by constructing appropriate Lyapunov
function and utilizing linear matrix inequality method. Fur-
thermore, we obtain the expression of the filter parameters.
The simulation results show that the designed nonfragile
quantized dissipative filter is better than traditional quantized
dissipative filter without parameter perturbation.
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