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This paper proposes amodified fuzzy C-means (FCM) algorithm, which combines the local spatial information and the typicality of
pixel data in a new fuzzy way.This new algorithm is called bias-correction fuzzy weightedC-ordered-means (BFWCOM)clustering
algorithm. It can overcome the shortcomings of the existing FCM algorithm and improve clustering performance. The primary
task of BFWCOM is the use of fuzzy local similarity measures (space and grayscale). Meanwhile, this new algorithm adds a typical
analysis of data attributes to membership, in order to ensure noise insensitivity and the preservation of image details. Secondly, the
local convergence of the proposed algorithm is mathematically proved, providing a theoretical preparation for fuzzy classification.
Finally, data classification and real image experiments show the effectiveness of BFWCOM clustering algorithm, having a strong
denoising and robust effect on noise images.

1. Introduction

Clustering analysis is an important technique in data analysis,
having a wide range of applications in data mining technique
[1], image processing [2, 3], computer vision [4], and artificial
intelligence [5]. Image segmentation is a type of image
processing, dividing an image into specific nonoverlapping
regions with unique characteristics, and putting forward
goals of interest. It is a key step from image processing to
image analysis. The existing image segmentation methods are
mainly divided into the following categories: threshold-based
segmentation method, region-based segmentation method,
edge-based segmentation method, specific theory-based seg-
mentation method, etc. Specifically, these methods include
clustering [6, 7], region growing [8], Watershed Transforma-
tion [9], active contour model [10], MeanShift [11], Graph
Cut [12], spectral clustering [13], Markov random field [14],
Neural network [15], etc. The process of image segmentation
is also a marking process, in which pixels belonging to the
same area are given the same number. Image segmentation
has always been one of the most challenging tasks in image

processing and computer vision [16, 17]. Nowadays, there
have been many methods for image segmentation [18–21];
however, they are not robust and effective enough for a large
number of different images.

How to segment a given image? And how to segment
it in a rational way? These are the major problems which
need to be solved by the clustering algorithm. A solution to
such problems: under a certain measure, the data in classes is
made to have as short distance within classes as possible and
as large distance between classes as possible and meanwhile
the summary of whole distance is minimum. FCM clustering
algorithm was first proposed by Dunn [22, 23] and later
developed by Bezdek [24–30]. It is a classical clustering
algorithm, a combination of clustering analysis and fuzzy
theory. It is an unsupervised machine learning algorithm,
which can be divided by constantly modifying the clustering
center andmembershipmatrix. FCMalgorithm is sensitive to
noise due to its restricted condition that total membership of
elements to all centers is 1. Thus, local spatial information is
necessarily introduced into the objective function to improve
the robustness of the FCMalgorithm for image segmentation.
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This paper proposes a new algorithm to make the algorithm
more robust by a detailed study of FCM clustering algorithm.
Its formula is as (∗).
1.1. Introduction to FCM Clustering with Local Spatial Infor-
mation. The traditional Hard C-means (HCM) clustering
algorithm is very simple (the membership degree is only
0 or 1) [31], resulting in poor image segmentation, while
FCM is more tolerant of ambiguity and retain more original
image information. In addition, it is effective for images with
simple texture and background. Therefore, FCM is better
than HCM. The shortcoming of FCM is that it only takes
the gray information into consideration while ignoring the
spatial information. This algorithm cannot segment images
with complex texture and background, because it cannot
avoid the noise interference. In order to solve the problems
mentioned above, many scholars have proposed to introduce
local spatial information into the objective function. For
example, Tolias [32] proposed to add spatial information
to membership degree. Ahmed [33] (1999) and Pham [34]
(2001) proposed a bias-correction FCM algorithm. Consider-
ing that the membership degree of the central pixel is affected
by the pixels in the neighborhood, this algorithm adds the
neighborhood pixel information to the objective function
of the FCM algorithm as a penalty term and attempts to
make neighborhood pixels and central pixels produce more
consistent clustering results in the segmentation process.
Liew [35] used a new neighborhood weighted dissimilarity
measure for the Euclidean distance in the FCM objective
function. Compared with FCM, this algorithm uses more
spatial information, which can better realize the clustering
and segmentation of image data. In order to make the FCM
clustering algorithm perform better, Sziĺlćgyi [36] introduced
a new factor, starting from the standard FCM and its bias-
corrected version. An enhanced fuzzy C-means clustering
(EnFCM) algorithm was proposed which can reduce the
amount of computation required, and provides a fast way
to segment high quality brain images. Wu [37] replaced the
Euclidean norm with an exponential function in C-means
clustering, greatly improving the antinoise ability of the
algorithm. Chen and Zhang [38] proposed a FCM clustering
algorithm based on median filtering or mean filtering and
a kernel method for improving the algorithm. A class of
robust non-Euclidean distance measures is introduced to
derive new objective functions, enhancing the robustness
of the original clustering algorithm to noise and outliers.
Yang et al. [39] proposed a Gaussian kernel-based FCM
(GKFCM) algorithm, a generalization of FCM, BCFCM,
KFCMS1, and KFCMS2 algorithms, having higher efficiency
and robustness. Cai, Chen, and Zhang [40] proposed a fast
generalized FCM clustering algorithm. It uses new factors
as a measure for local similarity (space and grayscale), thus
ensuring the noise immunity and details of images and
removing the global parameter 𝛼. However, there is still a
parameter that needs to be experimentally determined in
the algorithm. Wang et al. [41] proposed local and nonlocal
FCM clustering algorithms to reduce the effects of noise in
the image segmentation process. By using a new dissimilarity

Table 1: Noise immunity fuzzy clustering algorithm table.

Fuzzy

clustering
The objective function

FCM 𝐽𝑚 = 𝐶∑
𝑖=1

𝑁∑
𝑘=1

𝑢𝑚𝑖𝑘 󵄩󵄩󵄩󵄩𝑥𝑘 − V𝑖󵄩󵄩󵄩󵄩2 . (∗)
FCMS

FLICM

FCMS1

FCMS2

𝐽𝑚 = 𝑐∑
𝑖=1

𝑛∑
𝑘=1

𝑢𝑚𝑖𝑘 󵄩󵄩󵄩󵄩𝑥𝑘 − V𝑖󵄩󵄩󵄩󵄩2 +
𝑐∑
𝑖=1

𝑛∑
𝑘=1

𝐺𝑖𝑘. (∗∗)

FCMS

𝐺𝑖𝑘 = 𝛼𝑁𝑅 𝑢𝑚𝑖𝑘 ∑𝑟∈𝑁𝑘
󵄩󵄩󵄩󵄩𝑥𝑟 − V𝑖󵄩󵄩󵄩󵄩2

Among them: 𝛼 is a parameter used to control the
effect of the neighborhood terms.𝑁𝑅 is the cardinality
of 𝑢𝑖𝑘, 𝑥𝑟 is the neighbor of,𝑁𝑖 is the neighbor set in

the window around.

FLICM

𝐺𝑖𝑘 = ∑
𝑟∈𝑁𝑖
𝑖≠𝑟

1𝑑𝑖𝑟 + 1 (1 − 𝑢𝑟𝑘)
𝑚 󵄩󵄩󵄩󵄩𝑥𝑟 − V𝑘󵄩󵄩󵄩󵄩2 . (∗ ∗ ∗)

Among them: 𝑑𝑖𝑟 represents the spatial Euclidean
distance between pixels V𝑖 and 𝑥𝑟. Obviously, 𝐺𝑖𝑘 is
more complicated than in FCMS, so FLICM has a
higher computational complexity than FCMS.

FCMS1

FCMS2

𝐺𝑖𝑘 = 𝛼𝑢𝑖𝑘𝑚 󵄩󵄩󵄩󵄩𝑥𝑘 − V𝑖󵄩󵄩󵄩󵄩2 . (∗ ∗ ∗∗)
Among them: 𝑥𝑘 is the average value or median value
of adjacent pixels within the window surrounding. 𝐺𝑖𝑘
have a more simplified form in FCMS1 and FCMS2

than the FCMS, and the clustering time can be
reduced because 𝛼∑𝑟∈𝑁𝑖 ‖𝑥𝑟 − V𝑘‖/𝑁𝑅 is replaced by𝛼‖𝑥𝑘 − V𝑖‖2.

index to replace the usual distance measures, this method
incorporates local spatial context and nonlocal information
into the standard FCM clustering algorithm, where the image
local information takes into account the weighted distance
between the pixel and the class center.

The target criteria and differences of FCM, FCMS,
FLICM, FCMS1, and FCMS2 are presented in Table 1.

Spatial neighborhood information is of great significance
for image segmentation. FCMS and EnFCM [39] are good
algorithms due to their short calculation time, because it
performs a Gray Histogram-Based clustering rather than
summing the pixels of images. The number of gray levels
in an image is usually much smaller than that of pixels,
and the calculation time is very short. However, only the
neighborhood gray value information is added to the clus-
tering process, while the distance information of the spatial
neighborhood points is not taken into account. The effect
of all neighborhood points on the central point is the same,
which is obviously not in line with the actual situation. The
neighborhood points that are closer to the central point
should have more effect on the central point, while the
neighborhood points that are farther away from the central
point should have less effect on it.

However, when EnFCM algorithm constructs linear
weighted sum images, the lack of spatial information makes
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the image segmentation results sensitive to salt and pepper
noise. In order to improve the segmentation results obtained
by EnFCM, Cai et al. [40] proposed a fast generalized FCM
algorithm (FGFCM). Inspired by the EnFCM algorithm, the
FGFCM algorithm first redefines the linear weighted sum
images by utilizing grayscale and spatial information of each
pixel’s neighborhood window of the original image and then
performs clustering on its gray histogram. This algorithm
introduces a new factor as a local similarity measure, which
is aimed to ensure the noise immunity and detail retention
of image segmentation. Meanwhile, the empirical adjustment
parameter 𝛼 required in EnFCM is removed, and finally a
gray histogram is clustered. The FGFCM algorithm can fur-
ther improve the balance between noise and detail, enhance
the robustness of the algorithm to noise, and improve the
computational efficiency of FCM to some extent. However,
it requires more parameters than EnFCM. The contribution
strength of the spatial neighborhood information of FGFCM
algorithm is hard to control and needs to be set manually.
In addition, the strength value is a global variable, and the
distribution of noise cannot be fully considered.

In order to develop a new FCM algorithm, Krinidis and
Chatzis [42] proposed a robust fuzzy local information C-
mean (FLICM) clustering algorithm. The FLICM algorithm
has the following advantages: first, 𝐺𝑖𝑗 (fuzzy factors) not
containing parameters other than necessary m and C is used.
Therefore, there is no need to adjust parameters (such as
parameters in the EnFCM algorithm) to balance image noise
and image detail. In addition, compared with the traditional
FCM algorithm, it can greatly improve the segmentation
effect for images with noise by using spatial and grayscale
information. It replaces parameters used in the EnFCM with
a new fuzzy factor, which can be translated into an objective
function that ensure the noise immunity and image detail
preservation. FLICM overcomes the problem of parameter
selection and improves image segmentation performance, but
it is not robust enough for local information of different
images and fixed spatial distance. Meanwhile, FLICM uses
variance information in the pixel neighborhood tomodify the
fuzzyweight factors, thus improving the robustness and noise
immunity of this algorithm. However, the image denoising
effect is still poor for weak contrast images.

Gong et al. [43] used variable local coefficients instead
of fixed spatial distances and proposed a variant of FLICM
(the formula as shown in Table 1 (∗ ∗ ∗)). A modified robust
FLICM clustering algorithm is obtained by replacing 𝐺𝑖𝑗
with a newly constructed fuzzy factor 𝐺󸀠𝑖𝑗, which can utilize
more local context information in the image. In order to
further improve the segmentation performance of the FLICM
algorithm, Gong et al. [43] proposed a fuzzy factor that
links local spatial information with local gray information
to obtain a new algorithm called kernel weighted fuzzy local
information C-means (KWFLICM). In addition, the fuzzy
weighting factor is modified by variance information in the
pixel neighborhood to adaptively control the local spatial
relationship, thus enhancing the robustness of FLICM to
noise and outliers. The KWFLICM algorithm replaces the
Euclidean distance measures in the FLICM algorithm with

the nuclear distance measures and proposes a new local
information weighted fuzzy factor to improve the antinoise
performance of this algorithm. However, KWFLICM has a
higher computational complexity than FLICM.

Ahmed et al. [33] proposed an adaptively regularized
kernel-based FCM framework (ARKFCM), aiming at the
problem of the segmentation of brain magnetic resonance
image. This algorithm utilizes the heterogeneity of grayscales
in the neighborhood to obtain the local context information
and replaces the Standard Euclidean distance with the Gaus-
sian radial basis kernel functions. In this way, the robustness
of preserving the image details is improved, the indepen-
dence of cluster parameters is enhanced, and the computing
costs are reduced. Lei T et al. [44] proposed an improved
FCM algorithm based on morphological reconstruction and
membership filtering (FRFCM), which is faster and more
robust than FCM algorithm. By introducing morphologi-
cal reconstruction operation, the local spatial information
is incorporated into the FRFCM algorithm to ensure the
antinoise ability and image detail preservation.

Saranathan [45] introduced the nonlocal spatial informa-
tion into the objective function by using variant parameters
adaptive to the noise level of each pixel of the image, which
has been extended to FCM to overcome the parameter
selection to improve the robustness to noise. The FGFCM
algorithm and the FLICM algorithm both use coordinate
information to add spatial distance information to the clus-
tering process. Zhao et al. [46] believe that the Euclidean
distance cannot reflect the spatial information of the image
well. Therefore, they proposed a neighborhood weighted
fuzzy C-means (NWFCM) clustering algorithm, namely,
Neighborhood Weight (NW) distance to reduce the running
time of FLICM and KWFLICM and strengthen the robust-
ness of the algorithm to noise. Although NWFCM uses more
parameters, NWFCM is faster than FLICM and KWFLICM
because image filtering is performed before the iteration
begins.

However, the NWFCMalgorithm is still time-consuming
due to the calculation of the NW distance and the param-
eter selection. Guo et al. [47] proposed an adaptive Noise
Detection-based FCM (NDFCM). This algorithm overcomes
the above-mentioned shortcoming, in which the trade-off
parameters are automatically adjusted bymeasuring the local
variance of the gray scale.

1.2. Introduction to Fuzzy C-Ordered-Means Clustering Algo-
rithm. Fuzzy C-ordered-means (FCOM) [48] clustering
algorithm combines FCM clustering with robust ordered
statistics, in which Huber’s M-estimation [49] and Yager’s
ordered weighted averaging (OWA) operators [50] are used
together for fuzzy clustering to significantly improve its
robustness. The typicality of each data item is calculated
instead of attribute empowerment. The data items are sorted,
and their typicality is updated in each iteration of the
clustering process. The data closer to the cluster center are
of high typicality, while those farther from the cluster center
low typicality. In this way, outliers and noisy data items are
classified as low typicality without damaging the clustering
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process. Thus this method has better performance in terms
of noise and outlier data. Its formula is as shown in (1).

Fuzzy weighted C-ordered-means (FWCOM) clustering
algorithm [51] proposed a new fuzzy weighted C-ordered-
means clustering algorithm based on FCOM. This algorithm
looks for clusters within the fuzzy subspace of the original
task space and assigns weights to dimensions (attributes)
in each cluster. The weight is a number from the unit
interval [0, 1]. In order to enhance the robustness of the
algorithm to outliers and noise, it is combined with sorting
techniques.

The formula of FWCOM [51] 𝛽𝑖𝑘 ∈ [0, 1] is as follows:

𝐽 (𝑈, 𝑉) = 𝑐∑
𝑖=1

𝑛∑
𝑘=1

𝛽𝑖𝑘 (𝑢𝑖𝑘)𝑚
𝑝∑
𝑑=1

(𝑥𝑘𝑑 − V𝑖𝑑)2 (1)

The restricted condition is as follows:

∀𝑘 ∈ 𝑋
𝑐∑
𝑖=1

𝛽𝑖𝑘𝑢𝑖𝑘 = 𝑓𝑘 (2)

Its membership degree formula is as follows:

𝑢𝑖𝑘 = 𝑓𝑖 (∑𝑝𝑑=1 (𝑥𝑖𝑑 − V𝑘𝑑)2)1/(1−𝑚)
∑c
𝑖=1 𝛽𝑖𝑘 (∑𝑝𝑑=1 (𝑥𝑖𝑑 − V𝑘𝑑)2)1/(1−𝑚)

(3)

The c-th clustering center of the d-th attribute is calcu-
lated using the following formula:

V𝑐𝑑 = ∑
𝑛
𝑘=1 𝛽𝑐𝑘𝑢𝑚𝑖𝑘ℎ (𝑒𝑐𝑘𝑑) 𝑥𝑘𝑑∑𝑛𝑘=1 𝛽𝑐𝑘𝑢𝑚𝑖𝑘ℎ (𝑒𝑐𝑘𝑑) (4)

For the above-mentioned algorithm, this paper proposes
an adaptive filtering based fuzzy clustering algorithmby com-
bining the FWCOMclustering algorithm with the FCM clus-
tering algorithm of spatial information. This algorithm first
determines the nonlocal parameter balance factor according
to the strength of the local spatial information, meanwhile
calculating the typicality of each data item, sorting the
data items, and updating their typicalities in each iteration
of the clustering process, with an aim to more accurately
reflect the spatial structure information contained in the
image. Then it uses this balance factor to make an effective
combination of the filtered image and the median filtered
image of the original image. The obtained adaptive filtered
image adaptively determines the degree of filtering according
to the noise intensity, thus improving the algorithm’s ability
to suppress noise and the robustness of the algorithm.

Table 2 lists symbols used in the paper.

2. A New Algorithm BFWCOM with
Incorporating Spatial Information and
Fuzzy Weights

A robust algorithm should have the following properties: (1)
It should have fairly good precision in the assumed model.

(2) Small deviations from the model assumption should only
cause damage to a small amount of performance. (3) Large
deviations from the model assumption should not cause
disaster.

The standard FCM objective function for partitioning𝑋 = {𝑥𝑖}𝑛𝑖=1 into C cluster: this method is also used for
clustering in the paper.

2.1. Criterion Function for BFWCOM Algorithm. The FCM
clustering algorithm uses a quadratic loss function as a
different measure between the data and the cluster center.
The reason for using this method is for simplicity and low
computational burden. However, this method is sensitive
to noise and outliers. In many literatures, there are many
suggestions for robust loss functions.

For example, Huber proposed a mathematical formula
[49, 50]:

𝜏𝐻𝑈𝐵 (𝑒) =
{{{{{{{

𝑒2𝛿2 , |𝑒| ≤ 𝛿
|𝑒|𝛿2 , |𝑒| > 𝛿

(5)

where 𝛿 > 0 represents a parameter. Another well-known
robust loss function is a logarithmic function.

𝜏𝐻𝑈𝐵 (𝑒) = {{{
0, 𝑒 = 0
log (1 + 𝑒2) , 𝑒 ̸= 0 (6)

Use 𝐷(𝑥𝑘, V𝑖) = 𝜏(𝑥𝑘 − V𝑖) as a discrepancy measure
between the k-th data and the i-th prototype center and an
additional weighting. The criterion function for BFWCOM is
as follows:

𝐽 (𝑈,𝑉) = 𝑐∑
𝑖=1

𝑛∑
𝑘=1

𝛽𝑖𝑘𝑢𝑚𝑖𝑘𝐷(𝑥𝑘, V𝑖)

+ 𝑐∑
𝑖=1

𝑛∑
𝑘=1

𝛼𝑁𝑅𝑢𝑚𝑖𝑘∑𝑟∈𝑁𝑖
󵄩󵄩󵄩󵄩𝑥𝑟 − V𝑖󵄩󵄩󵄩󵄩2

(7)

𝑁𝑅 is the cardinality of 𝑢𝑘𝑖, 𝑥𝑟 is the neighbor of 𝑥𝑖,𝑁𝑖 is the neighbor set in the window around 𝑥𝑖. 𝛼 is a
parameter used to control the effect of the neighborhood
terms. The relative importance of the adjustment terms is
inversely proportional to the signal-to-noise ratio (SNR).
A lower signal-to-noise ratio requires a higher parameter
value.

The area of application to which the criterion function
faces is as follows:

𝑀𝑓𝑛𝑐 = {𝑈 ∈ R𝑐𝑁 | ∀𝑢𝑖𝑘 ∈ [0, 1] ; 𝑐∑
𝑖=1

𝛽𝑖𝑘𝑢𝑖𝑘 = 𝑓𝑘; 0

< 𝑁∑
𝑘=1

𝑢𝑖𝑘 < 𝑁}
(8)
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Table 2: Symbols used in the paper.

Symbol Meaning

c Number of clusters
X Set of data items,𝑋 = {𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛}
n Number of data items, 𝑛 = ‖𝑋‖𝑥𝑖 Data item, 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, ⋅ ⋅ ⋅ , 𝑥𝑖𝑝)𝑇
p Number of attributes𝑥𝑟 the neighbor of, 𝑥𝑖𝑁𝑅 the cardinality of, 𝑢𝑘𝑖𝑁𝑖 the neighbor set in the window around 𝑥𝑖𝛼 a parameter used to control the effect of the neighborhood terms𝑈 Membership matrix 𝑐 × 𝑛𝑢𝑖𝑘 Membership of the i-th item to the k-th cluster𝑉 Matric of cluster centers,𝑉 = (V1, V2, ⋅ ⋅ ⋅ , V𝑐)𝑇
V𝑖 Centre of i-th cluster, V𝑖 = (V𝑖1, V𝑖2, . . . , V𝑖𝑝)𝑇𝛽𝑖𝑘 Typicality of the k-th data item with respect to i-th cluster𝑓𝑘 Global typicality of the k data item, cf. Eq.(42)
m Weighting exponent for memberships𝑒𝑖𝑑𝑘 Residual of d-th of k-th datum from the centre of i-th cluster♢ S-norm, fc. Eq.(42)𝜂𝑘 the bias field at the k-th pixel

2.2. The Laplace AlgorithmUsed to Determine the Membership
Degree and the Central Formula

2.2.1. The Membership Degree Formula. The Laplace algo-
rithm used to give the specific formula is as follows:

𝐺 (𝑈,𝑉) = 𝑐∑
𝑖=1

𝑛∑
𝑘=1

𝛽𝑖𝑘𝑢𝑚𝑖𝑘𝐷 (𝑥𝑘, V𝑖)

+ 𝑐∑
𝑖=1

𝑛∑
𝑘=1

𝛼𝑁𝑅𝑢𝑚𝑖𝑘𝑆𝐷 (𝑥𝑟, V𝑖)

− 𝜆( c∑
𝑖=1

𝛽𝑖𝑘𝑢𝑖𝑘 − 𝑓𝑘)

(9)

where 𝑆𝐷(𝑥𝑟, V𝑖) = ∑𝑟∈𝑁𝑖 ‖𝑥𝑟 − V𝑖‖, 𝑥𝑟 is the neighbor of𝑥𝑖, and𝐷(𝑥𝑘, V𝑖) is the distance from the neighbor point 𝑥𝑘 to
the center V𝑖.

Take the partial derivative of formula (9) with respect to𝑢𝑖𝑘:
𝜕𝐺 (𝑈,𝑉)𝜕𝑢𝑖𝑘 = 𝑚𝛽𝑖𝑘𝑢𝑚−1𝑖𝑘 𝐷(𝑥𝑘, V𝑖)

+ 𝑚 𝛼𝑁𝑅𝑢𝑚−1𝑖𝑘 𝑆𝐷 (𝑥𝑟, V𝑖) − 𝜆𝛽𝑖𝑘 = 0
(10)

𝜆𝑚 = 𝑢𝑚−1𝑖𝑘 (𝐷(𝑥𝑘, V𝑖) + (𝛼/𝑁𝑅) 𝑆𝐷 (𝑥𝑟, V𝑖)𝛽𝑖𝑘 ) (11)

The membership degree 𝑢𝑖𝑘 is derived:
𝑢𝑖𝑘 = ( 𝜆𝑚)

1/(𝑚−1)

⋅ (𝐷 (𝑥𝑘, V𝑖) + (𝛼/𝑁𝑅) 𝑆𝐷 (𝑥𝑟, V𝑖)𝛽𝑖𝑘 )1/(1−𝑚)
(12)

𝐷(𝑥𝑘, V𝑖) =
𝑝∑
𝑑=1

(𝑥𝑘𝑑 − V𝑖𝑑)2 (13)

Available from formula (8),
𝑐∑
𝑖=1

𝛽𝑖𝑘𝑢𝑖𝑘 = 𝑓𝑘 (14)

Substitute formula (12) into formula (14):

𝑓𝑘 = 𝑐∑
𝑖=1

𝛽𝑖𝑘𝑢𝑖𝑘 = 𝑐∑
𝑖=1

𝛽𝑖𝑘 ( 𝜆𝑚)
1/(𝑚−1)

⋅ (𝐷 (𝑥𝑘, V𝑖) + (𝛼/𝑁𝑅) 𝑆𝐷 (𝑥𝑟, V𝑖)𝛽𝑖𝑘 )1/(1−𝑚)
(15)

The following formula is derived from formula (15):

( 𝜆𝑚)
1/(𝑚−1) = 𝑓𝑘 ( 𝑐∑

𝑖=1

𝛽𝑖𝑘 (𝐷 (𝑥𝑘, V𝑖)

+ (𝛼/𝑁𝑅) 𝑆𝐷 (𝑥𝑟, V𝑖)𝛽𝑖𝑘 )1/(1−𝑚))
−1

(16)
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The obtained membership degree formula is as follows:

𝑢𝑖𝑘
= 𝑓𝑘 (𝐷 (𝑥𝑘, V𝑖) + (𝛼/𝑁𝑅) 𝑆𝐷 (𝑥𝑟, V𝑖) 𝛽−1𝑖𝑘 )1/(1−𝑚)
∑𝑐𝑖=1 𝛽𝑖𝑘 (𝐷 (𝑥𝑘, V𝑖) + (𝛼/𝑁𝑅) 𝑆𝐷 (𝑥𝑟, V𝑖) 𝛽−1𝑖𝑘 )1/(1−𝑚)

(17)

2.2.2. The Clustering Center Formula. The distance formula𝐷(𝑥𝑘, V𝑖) can also be written as

𝐷(𝑥𝑘, V𝑖) = (𝑥𝑘 − V𝑖)𝑇𝐴 (𝑥𝑘 − V𝑖) (18)

Formula (7) can be written as follows:

𝐽 (𝑈,𝑉) = 𝑐∑
𝑖=1

𝑛∑
𝑘=1

𝛽𝑖𝑘𝑢𝑚𝑖𝑘 (𝑥𝑘 − V𝑖)𝑇𝐴 (𝑥𝑘 − V𝑖)

+ 𝑐∑
𝑖=1

𝑛∑
𝑘=1

𝛼𝑁𝑅𝑢𝑚𝑖𝑘∑𝑟∈𝑁𝑖 (𝑥𝑟 − V𝑖)
𝑇𝐴 (𝑥𝑟 − V𝑖)

(19)

Take the derivative of formula (19) with respect to V𝑖:

𝜕𝐽𝜕V𝑖 = −2𝐴
𝑛∑
𝑘=1

𝛽𝑖𝑘𝑢𝑚𝑖𝑘 (𝑥𝑘 − V𝑖)

− 2𝐴 𝑛∑
𝑘=1

𝛼𝑁𝑅𝑢𝑚𝑖𝑘∑𝑟∈𝑁𝑖 (𝑥𝑟 − V𝑖) = 0
(20)

The clustering center formula as follows can be obtained
by deriving formula (20):

V𝑖 = ∑
𝑛
𝑘=1 𝑢𝑚𝑖𝑘 (𝛽𝑖𝑘𝑥𝑘 + (𝛼/𝑁𝑅)∑𝑟∈𝑁𝑖 𝑥𝑟)∑𝑛𝑘=1 𝑢𝑚𝑖𝑘 (𝛽𝑖𝑘 + 𝛼) (21)

2.3. Clustering Prototype Updating. The objective function𝐽(𝑈,𝑉) can beminimized in amanner similar to the standard
FCM algorithm. The first-order derivatives of the objective
function 𝐽(𝑈,𝑉) with respect to 𝑢𝑘𝑖, V𝑖, and 𝜂𝑘 are set 0,
resulting in three necessary but insufficient conditions for
local extrema. In the following subsections, we will obtain
these three conditions.

According to literature [33], the additive bias field formula𝑦𝑘 = 𝑥𝑘 + 𝜂𝑘, ∀𝑘 ∈ {1, 2, . . . , 𝑁} is given, where 𝑥𝑘 and 𝑦𝑘 are
the true and observed log-transformed intensities at the kth
pixel, respectively, and 𝜂𝑘 is the bias field at the kth pixel.

𝐽𝑚 (𝑈,𝑉) = 𝑐∑
𝑖=1

𝑛∑
𝑘=1

(𝛽𝑖𝑘𝑢𝑚𝑖𝑘𝐷𝑖𝑘 + 𝛼𝑁𝑅𝑢𝑚𝑖𝑘𝛾𝑖) (22)

where

𝐷𝑖𝑘 = 󵄩󵄩󵄩󵄩𝑦𝑘 − 𝜂𝑘 − V𝑖󵄩󵄩󵄩󵄩2 (23)

𝛾𝑖 = ∑
𝑟∈𝑁𝑖

󵄩󵄩󵄩󵄩𝑦𝑟 − 𝜂𝑟 − V𝑖󵄩󵄩󵄩󵄩2 (24)

Use Laplace’s theorem:

𝐺𝑚 = 𝑐∑
𝑖=1

𝑛∑
𝑘=1

(𝛽𝑖𝑘𝑢𝑚𝑖𝑘𝐷𝑖𝑘 + 𝛼𝑁𝑅𝑢𝑚𝑖𝑘𝛾𝑖)

− 𝜆( 𝑐∑
𝑖=1

𝛽𝑖𝑘𝑢𝑖𝑘 − 𝑓𝑘)
(25)

Take the derivative of 𝑢𝑖𝑘, 1 ≤ 𝑖 ≤ 𝑛; 1 ≤ 𝑘 ≤ 𝑐:
𝜕𝐺𝑚𝜕𝑢𝑖𝑘 = 𝑚𝛽𝑖𝑘𝑢𝑚−1𝑖𝑘 𝐷𝑖𝑘 + 𝑚

𝛼𝑁𝑅𝑢𝑚−1𝑖𝑘 𝛾𝑖 − 𝜆𝛽𝑖𝑘 = 0 (26)

Sort out the formula:

𝑢𝑖𝑘 = ( 𝜆𝑚)
1/(𝑚−1) (𝐷𝑖𝑘 + 𝛼𝛾𝑖(𝑁𝑅𝛽𝑖𝑘))

1/(1−𝑚)

(27)

Sort out the formula by substituting ∑𝑐𝑖=1 𝛽𝑖𝑘𝑢𝑖𝑘 = 𝑓𝑘:
𝑐∑
𝑖=1

𝛽𝑖𝑘 ( 𝜆𝑚)
1/(𝑚−1) (𝐷𝑖𝑘 + 𝛼𝛾𝑖(𝑁𝑅𝛽𝑖𝑘))

1/(1−𝑚) = 𝑓𝑘 (28)

( 𝜆𝑚)
1/(𝑚−1)

= 𝑓𝑘( 𝑐∑
𝑖=1

𝛽𝑖𝑘 (𝐷𝑖𝑘 + 𝛼𝛾𝑖(𝑁𝑅𝛽𝑖𝑘))
1/(1−𝑚))

−1 (29)

The following formula is available from formula (27) and
by substituting formula (29):

𝑢𝑖𝑘 = 𝑓𝑘 (𝐷𝑖𝑘 + 𝛼𝛾𝑖/ (𝑁𝑅𝛽𝑖𝑘))1/(1−𝑚)
∑𝑐𝑖=1 𝛽𝑖𝑘 (𝐷𝑖𝑘 + 𝛼𝛾𝑖/ (𝑁𝑅𝛽𝑖𝑘))1/(1−𝑚) (30)

Available from formulas (23) and (24), formula (19) can
also be written as follows:

𝐽𝑚 = 𝑐∑
𝑖=1

𝑛∑
𝑘=1

(𝛽𝑖𝑘𝑢𝑚𝑖𝑘𝐷(𝑦𝑘 − 𝜂𝑘, V𝑖)

+ 𝛼𝑁𝑅𝑢𝑚𝑖𝑘∑𝑟∈𝑁𝑖𝐷 (𝑦𝑟 − 𝜂𝑟, V𝑖))
(31)

among

𝐷(𝑦𝑘 − 𝜂𝑘, V𝑖) = (𝑦𝑘 − 𝜂𝑘 − V𝑖)𝑇𝐴 (𝑦𝑘 − 𝜂𝑘 − V𝑖)
𝐷 (𝑦𝑟 − 𝜂𝑟, V𝑖) = (𝑦𝑟 − 𝜂𝑟 − V𝑖)𝑇𝐴 (𝑦𝑟 − 𝜂𝑟 − V𝑖)

(32)

Use the Laplace’s method:

𝐺𝑚 = 𝑐∑
𝑖=1

𝑛∑
𝑘=1

[𝛽𝑖𝑘𝑢𝑚𝑖𝑘𝐷(𝑦𝑘 − 𝜂𝑘, V𝑖)

+ 𝛼𝑁𝑅𝑢𝑚𝑖𝑘∑𝑟∈𝑁𝑖𝐷 (𝑦𝑟 − 𝜂𝑟, V𝑖)] + 𝜆(
𝑐∑
𝑖=1

𝛽𝑖𝑘𝑢𝑖𝑘 − 𝑓𝑘)
(33)
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Take the derivative of

𝜕𝐺𝑚𝜕V𝑖 = −2𝐴
𝑛∑
𝑘=1

𝛽𝑖𝑘𝑢𝑚𝑖𝑘 (𝑦𝑘 − 𝜂𝑘 − V𝑖)

− 2𝐴 𝑛∑
𝑘=1

𝛼𝑁𝑅𝑢𝑚𝑖𝑘∑𝑟∈𝑁𝑖 (𝑦𝑟 − 𝜂𝑟 − V𝑖) = 0
(34)

The clustering center formula as follows can be obtained
by deriving formula (34):

V𝑖

= ∑𝑛𝑘=1 𝑢𝑚𝑖𝑘 (𝛽𝑖𝑘 (𝑦𝑘 − 𝜂𝑘) + (𝛼/𝑁𝑅)∑𝑟∈𝑁𝑖 (𝑦𝑟 − 𝜂𝑟))∑𝑛𝑘=1 𝑢𝑚𝑖𝑘 (𝛽𝑖𝑘 + 𝛼)
(35)

2.4. Bias Field Estimation. In a similar manner, take the
derivative of 𝐽𝑚 with respect to 𝜂𝑘, and the result is set to 0.

𝑐∑
𝑖=1

𝜕𝜕𝜂𝑘
𝑛∑
𝑘=1

(𝛽𝑖𝑘 (𝑢𝑖𝑘)𝑚𝐷𝑖𝑘 + 𝛼𝑁𝑅𝑢𝑚𝑖𝑘𝛾𝑖) = 0 (36)

Because only the k-th term in the second sum depends
on, then we can have

𝑐∑
𝑖=1

𝜕𝜕𝜂𝑘𝛽𝑖𝑘 (𝑢𝑖𝑘)
𝑚 (𝑦𝑘 − 𝜂𝑘 − V𝑖)2 = 0 (37)

Differentiate the distance function:
𝑐∑
𝑖=1

𝛽𝑖𝑘 (𝑢𝑖𝑘)𝑚 (𝑦𝑘 − 𝜂𝑘 − V𝑖) = 0 (38)

Therefore, the zero gradient condition of the bias field
estimator is expressed as

𝜂𝑘 = 𝑦𝑘 − ∑
𝑐
𝑖=1 𝛽𝑖𝑘 (𝑢𝑖𝑘)𝑚 V𝑖∑𝑐𝑖=1 𝛽𝑖𝑘 (𝑢𝑖𝑘)𝑚 (39)

Here we should first discuss the ordering of data items.
For each data item in each cluster, the properties of each
attribute are computed separately. To do this, the data items
are sorted by their distance from the cluster center. The d-th
attribute of the closest data item is marked with the ordinal
number 1, while that of the farthest data item n (n stands
for the number of data items). The value 𝛽𝑐𝑘𝑑 represents the
characteristic of the d-th attribute relative to the k-th data
item of the c-th cluster and is calculated with the function:

𝛽𝑐𝑘𝑑 = [(𝑝𝑐𝑛 − 𝜒𝑐𝑘𝑑2𝑝𝑙𝑛 + 12) ∧ 1] ∨ 0 (40)

It is called piecewise linear ordered weighted averaging
(PLOWA) or

𝛽𝑐𝑘𝑑 = 11 + exp [(2.944/𝑝𝑎𝑛) (𝜒𝑐𝑘𝑑 − 𝑝𝑐𝑛)] (41)

Among them, ∧ and ∨, respectively, represent the mini-
mum and maximum operations. These two functions, which

PLOWA
SOWA

1

0.5

0
0 20 40 60 80 100

Figure 1: The PLOWA and SOWA weighting functions for 𝑛 = 100,𝑝𝑎 = 0.2, 𝑝𝑐 = 0.5, and 𝑝𝑙 = 0.2.

can be called weighting functions, are not increased relative
to the parameter 𝜒𝑐𝑘𝑑 ∈ {1, 2, . . . , 𝑛}. For 𝜒𝑐𝑘𝑑 = 𝑝𝑐𝑛, both
functions are equal to 0.5. Parameters 𝑝𝑙 > 0 and 𝑝𝑎 > 0
affect the slope. In the case of a piecewise linear function, for𝜒𝑐𝑘𝑑 ∈ [𝑝𝑐𝑛−𝑝𝑙𝑛, 𝑝𝑐𝑛+𝑝𝑙𝑛], its value is linearly reduced from 1
to 0 (see Figure 2 for details). In the case of the S-function, for𝜒𝑐𝑘𝑑 ∈ [𝑝𝑐𝑛 − 𝑝𝑎𝑛, 𝑝𝑐𝑛 + 𝑝𝑎𝑛], its value dropped from 0.95 to
0.05. The functions defined by formula (40) and formula (41)
are, respectively, called S-ordered weighted average (SOWA)
and piecewise linear ordered weighted averaging (PLOWA)
in the rest of the work. If residual ordering is not applied, this
is equivalent to using a uniform weighting function Based on
OWA-UOWA for all 𝜒𝑐𝑘𝑑, 𝛽𝑐𝑘𝑑 = 1. Then we call this case an
unordered cluster (or no weighting function).

It is called S-ordered weighted average (SOWA) [50]. In
these two functions, 𝜒𝑐𝑘𝑑 represents the k-th data item index
after reordering the distance relative to the c-th cluster of the
d-th attribute. The two functions are shown in Figure 1, n =
100 and, 𝑝𝑎 = 0.2, 𝑝𝑐 = 0.5, and 𝑝𝑙 = 0.2,

The importance of this data item affects the central
location of the cluster. The global characteristic of the k-th
data item is calculated using s-norm (♢) of all cluster data
item characteristics:

𝑓𝑖 = 𝛽1𝑖♢𝛽2𝑖♢ ⋅ ⋅ ⋅ ♢𝛽𝑐𝑖 (42)

We use the largest operator as the s-norm operator.

3. Pseudocode, Complexity Calculation, and
Convergence of BFWCOM Algorithm

3.1. Pseudocode and Complexity Calculation of BFWCOM
Algorithm. By writing the pseudocode mentioned in Algo-
rithm 1, it can be seen that it is a 4-fold loop with a complexity
of 𝑂(𝑁4).
3.2. Proof of the Convergence of BFWCOM Algorithm. Algo-
rithm 1 starts from initializing the membership degree matrix𝑈(0). The local minimum point or saddle point of the fuzzy C
line (FCL) is its solution point. The BFWCOMalgorithm can
converge to a local minimum point.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 2: Comparison of segmentation results on the synthetic image from denoising base on salt & pepper. (a) Original image; (b) the image
added salt & pepper (zero mean and 20% variance); (c) FCMS result; (d) FCMS1 result; (e) FCMS2 result; (f) FLICM result; (g) ARKFCM
result; (h) FRFCM result; (i) BFWCOM result.

Definition 1. In formula (22), {𝐽𝑚(𝑈, 𝑉),𝑚 ∈ [1,∞]}. Let
BFWCOM algorithm obtain the best clustering result (𝑈∗,𝑉∗) by minimizing

∀𝑈 ∈ 𝑀𝑓𝑛𝑐,
𝐽𝑚 (𝑈∗, 𝑉∗) ≤ 𝐽𝑚 (𝑈,𝑉∗) (43)

∀𝑉 ∈ 𝑅𝑠𝑐,
𝐽𝑚 (𝑈∗, 𝑉∗) ≤ 𝐽𝑚 (𝑈∗, 𝑉) (44)

Ω is called the solution set of the problem FCL.

Definition 2. Let 𝐽 : 𝑀𝑓𝑛𝑐 󳨀→ R𝑠𝑐; 𝐽(𝑈) = 𝑉 = (𝑉1, 𝑉2, ⋅ ⋅ ⋅ ,𝑉𝑐). Calculate 𝑉𝑖 using formula (35).
Let 𝐹 : R𝑠𝑐 󳨀→ 𝑃(𝑀𝑓𝑛𝑐); 𝐹(𝑉) = (𝑉1, 𝑉2, ⋅ ⋅ ⋅ , 𝑉𝑐) = {𝑈 ∈𝑀𝑓𝑛𝑐 | (𝑈,𝑉) subject to (17) and (35)}.
BFWCOM operator (point-to-set mapping) 𝑇𝑚 : 𝑀𝑓𝑛𝑐 ×

R𝑠𝑐 󳨀→ 𝑃(𝑀𝑓𝑛𝑐 ×R𝑠𝑐) is defined as

𝑇𝑚 = 𝑀2 ∘ 𝑀1 (45)

where

𝑀1 : 𝑀𝑓𝑛𝑐 ×R𝑠𝑐 󳨀→ 𝑃(𝑀𝑓𝑛𝑐) ;
𝑀1 (𝑈, 𝑉) = {(𝑈,𝑉) | 𝑈 ∈ 𝐹 (𝑉)}

𝑀2 : 𝑃 (𝑀𝑓𝑛𝑐) 󳨀→ 𝑃(𝑀𝑓𝑛𝑐 ×R𝑠𝑐) ;
𝑀2 (𝑈, 𝑉) = {(𝑈, 𝐽 (𝑈))}

(46)

Then
𝑇𝑚 (𝑈,𝑉) = 𝑀2 ∘ 𝑀1 (𝑈,𝑉)

= {(𝑈󸀠, 𝑉󸀠) | 𝑈󸀠 ∈ 𝐹 (𝑉) , 𝑉󸀠 = 𝐽 (𝑈)} (47)

Definition 3. When any (𝑈(𝑘), 𝑉(𝑘))𝑙𝑘=1 ∈ 𝑀𝑓𝑛𝑐 × R𝑠𝑐,
there is an initial value of (𝑈(0), 𝑉(0)), 𝑙 is the number of
iterations, (𝑈(𝑘), 𝑉(𝑘)) = 𝑇(𝑈(𝑘 − 1), 𝑉(𝑘 − 1)), and then(𝑈(𝑘), 𝑉(𝑘)) is called the iterative sequence of BFWCOM
algorithm.

If the nested implicit relationship among themembership
function and the clustering prototype and the parameter m
is not considered, take the partial derivative of formula (22)
with respect to m:

𝜕𝐽𝑚 (𝑈, 𝑉)𝜕𝑚
= 𝑐∑
𝑖=1

𝑛∑
𝑘=1

(𝛽𝑖𝑘𝑢𝑚𝑖𝑘 log (𝑢𝑖𝑘)𝐷𝑖𝑘 + 𝛼𝑁𝑅𝑢𝑚𝑖𝑘 log (𝑢𝑖𝑘) 𝛾𝑖)

= 𝑐∑
𝑖=1

𝑛∑
𝑘=1

{(𝛽𝑖𝑘𝑢𝑚𝑖𝑘𝐷𝑖𝑘 + 𝛼𝑁𝑅𝑢𝑚𝑖𝑘𝛾𝑖) log (𝑢𝑖𝑘)} < 0

(48)

It can be seen from formula (48) that the increase of𝐽𝑚(𝑈,𝑉) is monotonously decreasing and 𝐽𝑚(𝑈,𝑉) ≥ 0.
According to the monotone bounded sequence convergence
theorem, (𝑈(𝑘), 𝑉(𝑘)) must converge to a point in the
solution set. Meanwhile, there are different optimal fuzzy C
partitions for different m values. Therefore, the BFWCOM
algorithm has a clustering validity problem for the weighted
indexm. In other words, it is necessary to determine the value
of m, so that the corresponding clustering result is the most
effective and reasonable. The parameter m has important
influence on FCM algorithm.

According to the above statement, the core theorem of
BFWCOM algorithm is as follows.
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Procedure BFWCOM (X,c,m,l)
X:Data item matrix
c:The number of clusters
m:Membership degree weighted exponent
l:the number of iterations
n:=the number of data items in X;
1: Initialize all 𝛽󸀠𝑠 with 1𝑠;
2: Calculate data iteme characteristics using formula (42);
3: Set up the initial assignment of the random number

matrix U, and normalize it using the constraint formula
(14);

4: Calculate the clustering prototype V using formula (35);
5: for iter:=1 to𝑁 do
6: Update U and normalize it using formula (30);
7: for c: =1 to 𝑐 do
8: for d: =1 to 𝑝 do
9: for for k: =1 to 𝑛 do
10: 𝑒𝑐𝑑𝑘 := |𝑥𝑘𝑑 − V𝑐𝑑|;
11: end for
12: sort residual;
13: mark each residual with the number of se-

quences𝑋 the ordered sequence;
14: for k: =1 to 𝑛 do
15: calculate the characteristics of 𝛽𝑐𝑘𝑑 using

formulas (40) (41), or uniform weighting;
16: end for
17: end for
18: for k: =1 to 𝑛 do
19: Calculate the characteristics of 𝛽𝑐𝑘 with the

maximum of the multiple values obtained informula
(40),(41);

20: end for
21: Update the prototype using formula (35);
22: end for
23: end for
24: Return U, V;
25: End procedure;

Algorithm 1: Pseudocode of BFWCOM clustering algorithm.

Core theorem: let 𝑋 = {𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛}, 𝑥𝑖 ∈ R𝑝; c is the
number of clusters 1<c<n, for the formula

𝐽𝑚 (𝑈,𝑉) = 𝑐∑
𝑖=1

𝑛∑
𝑘=1

(𝛽𝑖𝑘 (𝑢𝑖𝑘)𝑚𝐷𝑖𝑘 + 𝛼𝑁𝑅𝑢𝑚𝑖𝑘𝛾𝑖) (49)

where 𝐷𝑖𝑘 = ‖𝑦𝑘 − 𝜂𝑘 − V𝑖‖2; 𝛾𝑖 = ∑𝑟∈𝑁𝑖 ‖𝑦𝑟 − 𝜂𝑟 − V𝑖‖2;𝑉 = {𝑉1, 𝑉2, ⋅ ⋅ ⋅ , 𝑉𝑐} ⊂ R𝑝; 𝑚 (1 < 𝑚 < ∞) is weight factor;𝑈 = [𝑢𝑖𝑗]𝑐×𝑛 ∈ 𝑀𝑓𝑛𝑐. Let 𝑉(0) ∈ R𝑠𝑐 and 𝑈(0) = 𝐹(𝑉(0));(𝑈(0), 𝑉(0)) is the initial value of the mapping T.The iterative
sequence of BFWCOM terminates at a point in the solution
set of min(𝐽𝑚) (local convergence theorem).

4. Algorithm Experiment

The experiment consists of three steps.
First, IRIS data are classified using FCM, FCMS,

FWCOM, ARKFCM, FRFCM, and BFWCOM. Then, the
advantages and disadvantages of the proposed algorithm in

this paper are compared with other algorithms according to
the running results.

Second, these algorithms are all applied to the specific
composite image processing. By image denoising, the advan-
tages and disadvantages of the new algorithm are compared
with other ones.

Third, the advantages and disadvantages of the proposed
algorithm are verified by the real image processing.

Experimental environment: software environments:
Windows 7 Ultimate and Software MATLAB; hardware
environments: (1) processor: Intel(R) Pentium(R) CPU
G2020@2.90GHz 2.90GHz; (2) installed memory: 8.00GB;
(3) system type: 64-bit operating system.

In all experiments, the fuzzy parameter value is uniformly
set: m=2. For FCMS, FCMS1, FCMS2, FLICM, ARKFCM,
FRFCM, and BFWCOM, the iteration stops when the Frobe-
nius norm of continuous Vmatrix difference is less than 10−4.
The loss function adopts 𝜀 = 0.5, 𝛼 = 6.0, 𝛽 = 1.0, and𝛿 = 1.0. The weighted functions (40)-(41) adopt 𝑝𝑐 = 0.5,
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𝑝𝑙 = 0.2, and 𝑝𝑎 = 0.2. For the calculated terminal prototype,
we use the Frobenius norm of the difference between the real
center matrix and the terminal prototype matrix to measure
the clustering performance.

4.1. IRIS Data Used for Comparison of Classification Effective-
ness. Iris data set, collected by Fisher in 1936, is a commonly
used data set for classification experiment. Iris, also called
Iris flower data set, is a data set for multivariate analysis.
It contains 150 data sets, divided into 3 classes, 50 data
per class, each data containing 4 attributes. Aiming at the
commonly used IRIS data, six algorithms, namely, FCM,
FCMS, FWCOM, ARKFCM, FRFCM, and BFWCOM, are
used for comparison. The comparison process is as follows.

4.1.1. Classification Error Rate (CER). The CER is referred to
as the probability that a sample that should belong to one
of the class c is incorrectly assigned to other classes. In this
paper, 𝑋 = {𝑥(𝑗)𝑖 | 1 ≤ 𝑖 ≤ 𝑛; 1 ≤ 𝑗 ≤ 𝑐}; that is
to say, the data are divided into c spaces, each space being
a class. Regardless of how it is divided, there is always a
misclassification phenomenon that an individual of a class
is assigned to other classes. Therefore, the good and bad of
cluster analysis algorithm can be equivalent to the division of
the lowest average misclassification rate.

𝐶𝐸𝑅
= (1 − 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 )
× 100%

(50)

4.1.2. Deviation Degree (DD) Calculation

Definition 4. Sum of squares for error is also called residual
sum of squares (RSS) or sum of squares within groups.
After fitting the appropriate model based on n observations,
the remaining that is underfitting (𝑒𝑖 = 𝑥𝑖 − 𝑥) is called
the residual, of which 𝑥 represents the average value of n
observations 𝑥 = ∑𝑛𝑖=1 𝑥𝑖. The sum of the squares of all the
n residuals is called residual sum of squares (RRS) or sum of
squares for error (SSE), 𝑆𝑆𝐸 = ∑𝑛𝑖=1(𝑥𝑖 − 𝑥)2.
Definition 5. In the set, 𝑋 = {𝑥(𝑗)𝑖 | 1 ≤ 𝑖 ≤ 𝑛; 1 ≤ 𝑗 ≤ 𝑐},𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, ⋅ ⋅ ⋅ , 𝑥𝑖𝑝)𝑇 ∈ R𝑝, 𝑗 is the concrete class to which𝑥𝑖 belongs to.Themeanof sumof the 𝑗-th sample is as follows:𝑥𝑗 = (1/𝑛𝑗) ∑𝑛𝑗𝑙=1 𝑥(𝑗)𝑙 , of which 𝑛𝑖 is the total number of data
in class 𝑗. The mean of sum of squares of total deviation for
all the data samples, also called the mean of the residual sum
of squares, is as shown below:

𝑆 = 1𝑝
𝑝∑
𝑖=1

{{{
1𝑛
𝑐∑
𝑗=1

𝑛𝑖∑
𝑙=1

(𝑥(𝑗)
𝑙𝑖
− 𝑥𝑗𝑖)2}}}

(51)

𝑆, the mean of sum of squares of total deviation, can reflect
the deviation degree between all measured data and themean
value of the data it classifies. The function above is called
Deviation degree (DD).

It is obviously seen that the smaller the deviation degree,
the better the clustering. In Table 2, CER is calculated with
function (50), DD is calculated with function (51), and the
clustering center is calculated with corresponding center
formulas of algorithms.

Table 3 shows that BFWCOM, the new algorithm, which
performs better than FCM, FCMS, FWCOM, ARKFCM, and
FRFCM in classification, for the residual sum of squares is the
smallest, and the misclassification rate is the lowest.

4.2. Comparison of Experimental Results Using Composite
Images. In this part, synthetic images are used to verify
the performance of the proposed algorithm. In addition
to BFWCOM, the other six algorithms are also taken into
consideration, namely, FCMS, FCMS1, FCMS2, FLICM,
ARKFCM, and FRFCM. For all fuzzy algorithms, the size
of the neighboring window is 3×3. In order to compare the
segmentation performance, segmentation accuracy (SA) is
used as a quantitative index [52].

𝑆𝐴 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟
× 100%

(52)

As shown in Figure 2, the composite image contains five
regions, namely, five classes. The gray values of these five
regions are, respectively, 0, 60, 120, 180, and 255. Figure 2
shows the different clustering results of several methods
under the condition of images with Gaussian noise with
the variance: 𝜎𝑔 = 20. It can be observed that BFWFCM
produces a better segmentation than the other six fuzzy
clustering algorithms. Visually, they can achieve acceptable
segmentation results under Gaussian noise. Figure 3 shows
the segmentation accuracies (SAs) of different methods for
composite images under different noises, of which 𝜎𝑔 is the
variance of Gaussian noise. As can be seen from the first line
of Table 4, for synthetic images with different noise levels, the
segmentation accuracy of our method is always higher than
that of other methods.

As shown in Figure 3, “salt & pepper” noise is added
to the synthetic images above to carry out the denoising
experiment.This figure shows the clustering denoising results
of images with 20% “salt & pepper” noise. It can be observed
that, under this condition, BFWFCM produces a better
segmentation than the other six fuzzy clustering algorithms.
Visually, they can achieve acceptable segmentation results
under the “salt & pepper” noise. Table 4 shows the segmen-
tation accuracies (SAs) of different methods for synthetic
images under different “salt & pepper” noises. From Table 4,
it can be seen that, for synthetic images with different levels
of “salt & pepper” noise, the segmentation accuracy of our
method is always higher than that of other methods.

4.3. Comparison of Experimental Results Using Brain MR
and Lena Images. In this section, we experimented with
real images, particularly magnetic resonance (MR) images
and Lena images, in order to prove the performance of the
proposed BFWCOM. Meanwhile, some well-known image
segmentation methods, such as FCMS, FCMS1, FCMS2,
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 3: Comparison of segmentation results on the synthetic image from denoising base on salt & pepper. (a) Original image; (b) the image
added salt & pepper (zero mean and 20% variance); (c) FCMS result; (d) FCMS1 result; (e) FCMS2 result; (f) FLICM result; (g) ARKFCM
result; (h) FRFCM result; (i) BFWCOM result.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 4: Comparison of segmentation results on the brain CT image from denoising base on salt & pepper. (a) Ground truth; (b) the image
added salt & pepper (zero mean and 20% variance); (c) FCMS result; (d) FCMS1 result; (e) FCMS2 result; (f) FLICM result; (g) BFWCOM
result.

FLICM, ARKFCM, and FRFCM, were used as comparison
methods. In Figures 2 and 3, the denosing results of synthetic
images have been compared. In addition to this, in Figures 4
and 5, we first use gauss and “salt & pepper” mixture noise
to erode the real images [53] and then use these 7 algorithms
to denoise real images with noise. Eventually, the comparison
is made on the denoising results of real images. The selection
of such real images is mainly carried out from two aspects.
One is to select MR image for testing; the other is to select the
head image of Lena for testing. Such selection also reflects the
comparison between medical image and natural portrait.

4.3.1. Denoising Experimental Results of MR Image. Figures
4(c)–4(i) show the denoising segmentation results of different
algorithms for imageswith 20% “salt & pepper” noise. Figures
5(c)–5(i) show the Gaussian denoising segmentation results
of various algorithms with. The segmentation results show
that the proposed BFWCOMalgorithm can achieve excellent
segmentation, while the other fuzzy methods are more or
less affected by noise. The FRFCM algorithm is a relatively
excellent method; however, it merely considers the influence
of traditional fuzzy c-means clustering algorithm and spatial
neighborhood, but fails to consider the typicality of data
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 5: Comparison of segmentation results on the brain CT image from denoising base on Gaussian. (a) Ground truth; (b) the image
added Gaussian (zero mean and 20% variance); (c) FCMS result; (d) FCMS1 result; (e) FCMS2 result; (f) FLICM result; (g)FRFCM result; (i)
BFWCOM result.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6: Comparison of segmentation results on the Lena image from denoising base on Gaussian. (a) Original Lena image; (b) gray image;
(c) the image added Gaussian (zero mean and 20% variance); (d) FCMS result; (e) FCMS1 result; (f) FCMS2 result; (g) FLICM result; (h)
ARKFCM result; (i) FRRCM result; (j) BFWCOM result.

attributes. Thus, it is less delicate than BFWCOM algorithm
in image denoising.

4.3.2. Denoising Experimental Results of Lena’s Head Images.
The parameters in the BFWCOM include the fuzzy control
parameter m, size of the neighborhood N, and similarity
window S. Roughly speaking, the larger the size of N, the
smoother the final results, the larger the similarity window,
and the more structural information. However, it might use
considerably large neighborhood windows and similarity
windows for oversmoothing. In the experiment, we find that
the 3×3 windows of N and S are applicable to brainMR image.
For the real Lena images (Figure 6), a largerwindow is needed
to measure the similarity. Under this circumstance, 5×5 or

7×7 windows of S are applicable. In this paper, 5×5 windows
are adopted.

Figure 6 is a comparison of denoising results on the Lena
image with added Gaussian noise with 20% variance. As
can be seen from the figure above, the proposed BFWCOM
algorithmhasmore obviously advantage than FCMS, FCMS1,
FCMS2, FLICM, and ARKFCM. The FRRCM algorithm
achieves a very good performance in the processing effect but
is not better than BFWCOM algorithm in detail.

In order to further verify the denoising effect of the BFW-
COM algorithm proposed in this paper, the performance of
the proposed algorithm is compared and analyzed based on
the objective data. Mean Squared Error (MSE), Peak Signal-
to-Noise Ratio (PSNR) [54, 55], and signal-to-noise ratio
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Table 5: Noise-free Lena image denoising effect evaluation index (n=3; 𝛿 = 0.2).
Denosing method MSE PSNR/db SNR/db
Image with noise 640.5461 20.0653 13.4480
FCMS 138.6119 26.7128 21.0557
FCMS1 179.6752 26.1314 20.0553
FCMS2 182.4737 25.5188 19.8616
FLICM 107.1739 26.1670 20.5099
ARKFCM 91.4922 28.8986 22.2414
FRRCM 67.5066 29.5425 23.8853
BFWCOM 54.9023 30.7349 24.6808

(SNR) [56] are used for numerical calculation of the image
after denoising.

The function for MSE is shown as below:

𝑀𝑆𝐸 = 1𝑀 ×𝑁 [[
𝑀∑
𝑖=1

𝑁∑
𝑗=1

(𝑓 (𝑗, 𝑖) − 𝑓𝑗𝑖)2]]
(53)

The functions for PSNR and SNR are shown as below:

𝑃𝑆𝑁𝑅 = 10 × log10 ( 2552𝑀𝑆𝐸) = 20 ⋅ log10 255𝑀𝑆𝐸 (54)

𝑆𝑁𝑅 = 10 × log10
{{{
[∑𝑀𝑖=1∑𝑁𝑗=1 𝑓 (𝑗, 𝑖)2](𝑀 ×𝑁) ⋅ 𝑀𝑆𝐸}}}

(55)

of which 𝑀 × 𝑁is the size of test image; 𝑓(𝑗, 𝑖) and 𝑓𝑗𝑖
represent the noise-free image and denoised image, respec-
tively. In order to compare the performance of the proposed
algorithm more comprehensively, the MSE function (53), the
PSNR function (54) and SNR function (55) are used for
comparison of the image denoised by algorithms in Figure 6.
The calculation results are shown in Table 5.

The MSE here is referred to as the mean of the squared
sumof gray level difference values of pixel points correspond-
ing to the original image and denoised image.The smaller the
value is, the better the denoised image quality is. The unit of
PSNR is dB. The higher the value of PSNR is, the better the
denoising effect is. According to function (53) and function
(54) and by limiting(𝑓(𝑗, 𝑖) − 𝑓𝑗𝑖)2 ≥ 1, 𝑃𝑆𝑁𝑅 ∈ (0, 48.12)
after calculation. When the PSNR value here is above 40,
it has been close to the original image. Therefore, 30.7349,
the PSNR value of the image denoised by the BFWCOM
algorithm, is quite good. SNR means signal-to-noise ratio.
The larger its value, the better. By the comparison in Table 4, it
can be seen that the denoising effect of BFWCOM algorithm
in Lena image is better than that of other algorithms.

5. Conclusion

This paper proposes a fast and robust BFWCOM algorithm
for image segmentation to improve image segmentation
quality and reduce the impact of image noise. The following
things are done:

(1) Improve segmentation effect by using the local spatial
information of the image and the typicality of the data
item.

(2) BFWCOM uses the membership filtering algorithm
to exploit the local spatial constraint. Since noise
points will have low compatibility in all clusters, the
membership functions obtained by this algorithm
more approach to the concept of typicality, making
their impact on clustering negligible. Therefore, this
algorithm is naturally more immune to noise.

(3) This algorithm has additional advantages in calcu-
lation. It is a natural mechanism, assigning “fuzzy
labels” to data in each iteration. Therefore, it can be
used for more complex pattern recognition.

(4) The convergence of BFWCOM is proved by mathe-
matical theory, providing a theoretical preparation for
the algorithm.

(5) Experimental results show that the proposed BFW-
COMcanprovide better segmentation results without
adjusting parameters for different grayscale.
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