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Themain purpose of this paper is to identify the dynamic forces between the conical pick and the coal-seam.According to the theory
of time domain method, the dynamic force identification problem of the system is established. The direct problem is described by
Green kernel function method. The dynamic force is expressed by a series of functions superposed by impulses, and the dynamic
response of the structure is expressed as a convolution integral form between the input dynamic force and the response of Green
kernel function. Because of the ill-conditioned characteristics of the structurematrix and the influence of measurement noise in the
process of dynamic force identification, it is difficult to deal with this problem by the usual numerical method. In present content, a
novel improved Tikhonov regularization method is proposed to solve ill-posed problems. An engineering example shows that the
proposed method is effective and can obtain stable approximate solutions to meet the engineering requirements.

1. Introduction

Various mechanical and electrical products are often sub-
jected to a variety of dynamic loads, including vibration,
impact, noise, and thermal environment [1]. It is important
for the safety and accurate design of structures to accurately
determine these loads. In many cases, it is difficult to directly
measure the external loads of large structures such asmissiles,
aircraft, and offshore platforms under the action of wind
waves or alternating excitations. Dynamic load identification
is based on the dynamic response of the measured system and
the known dynamic characteristics of the system to solve the
dynamic loads on the structure. In practical engineering, it is
very difficult to directly measure dynamic loads. Therefore,
load identification is an indirect method to obtain the
required load [2–4].

At present, load identification methods mainly include
frequency domain method and time domain method [5–7].
Frequency domain method was put forward earlier. Its basic
idea is to identify excitation spectrum by response spectrum.
It is mainly realized by inversion of frequency response
function between excitation and response. However, the

ill-conditioned problem of coefficient matrix and singu-
lar value decomposition problem are often encountered
in matrix inversion [8–10]. Based on the back analysis of
the complex convolution relationship between load and
response, the time domain method directly determines the
time history of dynamic force, which has a good appli-
cation prospect in engineering. For instance, [11] adopted
the singular value decomposition (SVD) method to predict
hourly load and peak load for the next selected time span.
Reference [12] presented a new approach for solving specific
classes of inverse source identification problems. Reference
[13] used a modified inverse patch transfer function (IPTF)
method to reconstruct the normal velocities of the target
source in a noisy environment, and [14] used neural network
in combination with genetic programming to implement
the load identification of electric equipment. Reference [15]
proposed the finite element and wavelet-based method for
reconstructing the moving force. In [16], a new and effective
algorithm for optimization problems, GPSA, is utilized in
civil engineering. Reference [17] presented a single-point
method for the identification of prevailing disturbing loads
in power systems. But we may encounter some difficulties.
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It is very difficult to use the above methods for large-scale
and complex load identification problems. Meanwhile, in
practical engineering problems, it is necessary to identify
the random dynamic force on pick and coal-seam structure.
Unfortunately, they are complex inverse problemswith inher-
ent ill-posedness.

Fortunately, there are many popular regularization meth-
ods to deal with the ill-posed problem in practical engineer-
ing applications [18–22]. It is well known that the Tikhonov
regularization method [23], as a traditional technique, has
been widely used in various mathematical and engineering
problems to deal with ill-posedness [24], for instance, param-
eter reconstruction, force source reconstruction problem,
and so on [25–29]. Reference [30] applied the Tikhonov
regularization method to reconstruct the dynamic force. Ref-
erence [31] demonstrated that the Tikhonov regularization
method can solve the inverse problem in a stable manner
despite the presence of noisy data. Reference [32] identified
the shock load on an electroelastic bimorph disk using the
Tikhonov regularization method. However, the Tikhonov
regularization method is not completely perfect; there are
numerous unavoidable limitations and disadvantages, which
is described as follows: (a) the approximate solution provided
by Tikhonov regularization method is too smooth; (b) the
approximate solution provided by Tikhonov regularization
method may lack some details that the desired real solution
might possess. Therefore, it is very necessary to discuss
other regularization methods to improve the limitations
and disadvantages of the regularization method mentioned
above.

Considering the limitations of the above methods in
a certain case, we propose a novel improved Tikhonov
regularization method to offer a stable solution for the ill-
posed problems in practical engineering applications. Com-
pared with the conventional methods, the uniqueness and
improvement of the proposed method are obtained in this
paper.

First and foremost, the paper is different from the con-
ventional methods, and the uniqueness and improvement of
this paper can be described as follows: (a) a novel improved
Tikhonov regularization method can make the error of the
regularization solution reach the asymptotic optimal order;
(b) a novel improved Tikhonov regularization method has
better convergence, and the detailed information of the
solution is clearly enhanced; (c) the method we propose can
effectively overcome the smoothness of the solution of the ill-
posed problem; (d) the proposed method not only eliminates
the influence of large singular values but also ensures the
filtering of small singular values; (e) the small perturbation
of right-end data will not affect the accuracy of inversion
results, which fully reflects the good stability of the improved
method.

In this study, our main purpose is to effectively identify
the dynamic force between conical pick and coal-seam by
using a novel improved Tikhonov regularization method.
The rest of this study is structured as follows. In Section 2,
the inverse problem model is established. In Section 3, a
novel improved Tikhonov regularization method is pro-
posed. In Section 4, the stability of the proposed method

is proved. In Section 5, an engineering application example
is discussed. Some valuable conclusions are described in
Section 6.

2. Establishment of Inverse Problem Model

The inverse problems encountered in engineering can be
expressed by the following [33, 34]:𝑦 (𝑡) = ∫𝑡

0
𝑘 (𝑡 − 𝜏) 𝑥 (𝜏) 𝑑𝜏, (1)

where y(t) is the response which can be displacement,
velocity, acceleration, strain, etc. k(t) is the corresponding
Green’s function that is the kernel of impulse response. x(t)
is the identified dynamic force.

Using the rectangular formula, we can get the discrete
form of (1).

𝑛∑
𝑖=1

k (𝑡𝑘 − 𝜏𝑖) x (𝜏𝑖) ΔT = y (𝑡𝑖) . (2)

where ΔT denotes the time interval and it can be rewritten as
follows:

x𝑖 = x (𝜏𝑖) , (3)

y𝑖 = y (𝑡𝑖) , (4)

k𝑘−𝑖 = k (𝑡𝑘 − 𝜏𝑖) . (5)

So

X = (x1, x2, x3, ⋅ ⋅ ⋅ x𝑛)T , (6)

Y = (𝑦1, y2, y3, ⋅ ⋅ ⋅ y𝑛)T , (7)

K = (k𝑘−𝑖) ΔT. (8)

Hence, (2) can be simply written as

Y (𝑡) = K (𝑡)X (𝑡) , (9)

or equivalently,

(𝑦1𝑦2...𝑦𝑚) = (𝑘1𝑘2 𝑘1... ... d𝑘𝑚 𝑘𝑚−1 . . . 𝑘1)(𝑥1𝑥2...𝑥𝑚)Δ𝑡, (10)

Where 𝑦𝑖, 𝑘𝑖, and 𝑥𝑖 denote structural dynamic response,
Green’s function matrix, and input force at time 𝑡 = 𝑖Δ𝑡,
respectively.

Because the condition number of K is very large and
the response signal Y measured in practice always contains
noise, a very small disturbance can result in a huge solution
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deviation. So dynamic force identification is a typical ill-
conditioned problem, and it is inappropriate to directly invert
K in (3).

The above characteristics of ill-conditioned problems do
not mean that ill-conditioned problems are not solvable but
that traditional linear algebraic methods cannot be directly
applied to solve such problems.

Therefore, in order to make the solution meaningful, the
approximate solution is usually obtained by regularization
technique.

3. The Regularization Method for
Solving Inverse Problem

3.1. Preliminaries. As we all know, we have the following
lemma for regularized filter functions.

Lemma 1 (see [35]). Let𝑋 and𝑌 beHilbert spaces,𝐾 : 𝑋 →𝑌 be a compact operator, (𝜇𝑖, 𝑥𝑖, 𝑦𝑖) be a singular system for the
linear operator 𝐾 : 𝑋 → 𝑌, and the function 𝑞 be defined:(0, +∞)×(0, ‖𝐾‖] → 𝑅; thenwe have the following properties:𝑞 (𝛼, 𝜇) ≤ 1, ∀𝛼 (0, +∞) , ∀𝜇 ∈ (0, ‖𝐾‖) . (11)∀𝛼(0, +∞), there is a constant 𝑐(𝛼) > 0, such that |𝑞(𝛼, 𝜇)| ≤𝑐(𝛼)𝜇 and ∀𝜇 ∈ (0, ‖𝐾‖);

lim
𝛼→0

𝑞 (𝛼, 𝜇) = 1, ∀𝜇 ∈ (0, ‖𝐾‖) . (12)

Operator 𝑅𝛼 : 𝑌 → 𝑋 is defined by the following formula:

𝑅𝛼𝑦 = ∞∑
𝑖=1

𝑞 (𝛼, 𝜇𝑖)𝜇𝑖 (𝑦, 𝑦𝑖) 𝑥𝑖. (13)

which is a regularization method, and ‖𝑅𝛼‖ ≤ 𝑐(𝛼).
The function 𝑞(𝛼, 𝜇) with the above properties is called a

regularized filter function of 𝐾.

For the famous Tikhonov regularization method, the
Tikhonov regularization solution is the minimum value
of Tikhonov functional; a singular system with compact
operators can be expressed as

𝑥𝛿𝛼 = 𝑅𝛼𝑦𝛿 = ∞∑
𝑖=1

𝑞 (𝛼, 𝜇𝑖)𝜇𝑖 (𝑦𝛿, 𝑦𝑖) 𝑥𝑖. (14)

𝑞(𝛼, 𝜇) is the Tikhonov regularized filter function, and𝑞(𝛼, 𝜇) = 𝜇2/(𝛼 + 𝜇2), 𝛼 > 0, 0 < 𝜇 ≤ ‖𝐾‖. Next, we will get
a new regularization method by giving a new regularization
filter function.

3.2. A Novel Improved Tikhonov Regularization Method.
According to the regularization theory, the regularization
operator 𝑅𝛼 can be constructed by regularization filter func-

tion 𝑞(𝛼, 𝜇), which provides a theoretical basis for establish-
ing a new regularization method.

In this paper, a novel improved regularized filter function
is constructed as follows:

𝑞 (𝛼, 𝜇) = {{{{{{{
1 𝜇𝜎𝑟 ≥ 𝛼𝜇𝜎(𝛼 + 𝜇𝜎𝑟)1/𝑟 𝜇𝜎𝑟 < 𝛼 (15)

where 𝛼 > 0, 0 < 𝜇 ≤ ‖𝐾‖, and 𝑟 > 0, 𝜎 ≥ 1.
The method proposed in this paper can not only ensure

that the large singular values are not corrected but also filter
the small singular values without affecting the accuracy of the
solutions.

Theorem 2. The function 𝑞(𝛼, 𝜇) defined by formula (8) is a
kind of regularized filter function.

Proof. AWhen 𝜇𝜎𝑟 ≥ 𝛼, 𝑞(𝛼, 𝜇) = 1 ≤ 1;
when 𝜇𝜎𝑟 < 𝛼, we all know𝜇𝜎 = (𝜇𝜎𝑟)1/𝑟 < (𝛼 + 𝜇𝜎𝑟)1/𝑟 (16)

Therefore, we get

𝑞 (𝛼, 𝜇) = 𝜇𝜎(𝛼 + 𝜇𝜎𝑟)1/𝑟 < 1. (17)

BWhen 𝜇𝜎𝑟 ≥ 𝛼, 𝜇𝜎𝑟/𝛼 ≥ 1 ⇒ 𝜇/𝛼1/𝜎𝑟 ≥ 1, such that𝑞 (𝛼, 𝜇) = 1 ≤ 1𝛼1/𝜎𝑟 ⋅ 𝜇; (18)

when 𝜇𝜎𝑟 < 𝛼, 𝑞(𝛼, 𝜇) = 𝜇𝜎/(𝛼 + 𝜇𝜎𝑟)1/𝑟.
When 𝜎 = 1, we have𝑞 (𝛼, 𝜇) = 𝜇(𝛼 + 𝜇𝑟)1/𝑟 ≤ 𝜇𝛼1/𝑟 . (19)

When 𝜎 > 1, 𝛼 + 𝜇𝜎𝑟 ≥ 𝛼1/𝑝 ⋅ 𝜇𝜎𝑟/𝑞.
Letting 𝑝 = 𝜎, 𝑞 = 𝜎/(𝜎 − 1), we have𝛼 + 𝜇𝜎𝑟 ≥ 𝛼1/𝜎 ⋅ 𝜇𝑟(𝜎−1). (20)

Then (𝛼 + 𝜇𝜎𝑟)1/𝑟 ≥ 𝛼1/𝜎𝑟 ⋅ 𝜇𝜎−1, (21)

such that 𝜇𝜎(𝛼 + 𝜇𝜎𝑟)1/𝑟 ≤ 𝜇𝜎𝛼1/𝑟𝜎 ⋅ 𝜇𝜎−1 = 𝜇𝛼1/𝑟𝜎 . (22)

Hence, ∀𝜎 ≥ 1, we have 𝑞(𝛼, 𝜇) = 𝜇/𝛼1/𝜎𝑟.
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And ∀𝛼 > 0; we can obtain𝑞 (𝛼, 𝜇) = 1𝛼1/𝜎𝑟 ⋅ 𝜇 = 𝑐 (𝛼) 𝜇. (23)

CWhen 𝛼 → 0, 𝑞(𝛼, 𝜇) = 1.
It is known fromTheorem 2

𝑞 (𝛼, 𝜇) = {{{{{{{
1 𝜇𝜎𝑟 ≥ 𝛼𝜇𝜎(𝛼 + 𝜇𝜎𝑟)1/𝑟 𝜇𝜎𝑟 < 𝛼 (24)

which is a kind of regularized filter functions and its corre-
sponding regularization operator is 𝑅𝛼 : 𝑌 → 𝑋

𝑅𝛼𝑦 = ∞∑
𝑖=1

𝑞 (𝛼, 𝜇𝑖)𝜇𝑖 (𝑦, 𝑦𝑖) 𝑥𝑖. (25)

In order to express the advanced filtering operator of the pro-
posed method more clearly, we give another representation
of its filtering algorithm.

Substituting formula (13) into formula (14), we can get

𝑅𝛼𝑦 = 𝑘∑
𝑖=1

1𝜇 (𝑦, 𝑦𝑖) 𝑥𝑖
+ ∞∑
𝑖=𝑘+1

1𝜇𝑖 ⋅ 𝜇𝛽𝑖(𝛼 + 𝜇𝛽𝑖𝑖 )1/𝛾 (𝑦, 𝑦𝑖) 𝑥𝑖
(26)

Introduce the singular value decomposition (SVD) [36]:

A = U∑VT = 𝑛∑
𝑖=1

𝑢𝑖𝜎𝑖V𝑇𝑖 , (27)

in whichU = (𝑢1, 𝑢2, 𝑢3, ⋅ ⋅ ⋅ 𝑢𝑛+1) and V = (V1, V2, V3, ⋅ ⋅ ⋅ V𝑛+1)
are orthogonal matrices and ∑ = diag(𝜎1, 𝜎2, 𝜎3, ⋅ ⋅ ⋅ 𝜎𝑛+1).𝜎1 ≥ 𝜎2 ≥ 𝜎3 ≥ ⋅ ⋅ ⋅ ≥ 𝜎𝑛 > 𝜎𝑛+1. (28)

Substituting formula (27) into formula (26), we can get

𝑅𝛼𝑦 = 𝑘∑
𝑖=1

1𝜎𝑖 (𝑦, 𝑢𝑖) V𝑖+ 𝑛+1∑
𝑖=𝑘+1

1𝜎𝑖 ⋅ 𝜎𝛽𝑖(𝛼 + 𝜎𝛽𝛾𝑖 )1/𝛾 (𝑦, 𝑢𝑖) V𝑖
= 𝑘∑
𝑖=1

𝑢𝑇𝑖 𝑦𝜎𝑖 V𝑖 + 𝑛+1∑𝑖=𝑘+1( 𝜎𝛽𝑖(𝛼 + 𝜎𝛽𝛾𝑖 )1/𝛾) 𝑢𝑇𝑖 𝑦𝜎𝑖 V𝑖
(29)

Then, we have

𝑅𝛼𝑦 = 𝑢𝑇1𝑦𝜎1 V1 + 𝑢𝑇2𝑦𝜎2 V2 + ⋅ ⋅ ⋅ 𝑢𝑇𝑘𝑦𝜎𝑘 V𝑘+ 𝜎𝛽
𝑘+1(𝛼 + 𝜎𝛽𝛾𝑘+1)1/𝛾 𝑢𝑇𝑘+1𝑦𝜎𝑘+1 V𝑘+1

+ ⋅ ⋅ ⋅ 𝜎𝛽𝑛+1(𝛼 + 𝜎𝛽𝛾𝑛+1)1/𝛾 𝑢𝑇𝑛+1𝑦𝜎𝑛+1 V𝑛+1 = [V1, V2 ⋅ ⋅ ⋅ V𝑛+1]
[[[[[[[[[[[[[[[

1𝜎1
d 1𝜎𝑘

d 1𝜎𝑘+1 ⋅ 𝜎𝛽
𝑘+1(𝛼 + 𝜎𝛽𝛾
𝑘+1

)1/𝛾

]]]]]]]]]]]]]]]
⋅ [[[[[[[[[[[

𝑢𝑇1𝑢𝑇2𝑢𝑇3...𝑢𝑇𝑛+1
]]]]]]]]]]]⋅ 𝑦 = [V1, V2 ⋅ ⋅ ⋅ V𝑛+1] ⋅[[[[[[[[[[[[[

1
d 1

d 1𝜎𝑘+1 ⋅ 𝜎𝛽
𝑘+1(𝛼 + 𝜎𝛽𝛾
𝑘+1

)1/𝛾
]]]]]]]]]]]]]

⋅ [[[[[[[
𝜎−11 𝜎−12

d 𝜎−1𝑛+1
]]]]]]] ⋅ [[[[[[[[[[[

𝑢𝑇1𝑢𝑇2𝑢𝑇3...𝑢𝑇𝑛+1
]]]]]]]]]]]

⋅ 𝑦 = 𝑉 ⋅ 𝑀𝛼𝛽,𝛾
⋅ −1∑𝑈𝑦.

(30)

in which

𝑀𝛼𝛽,𝛾 =
[[[[[[[[[[[[[

1
d 1

d 1𝜎𝑘+1 ⋅ 𝜎𝛽
𝑘+1(𝛼 + 𝜎𝛽𝛾
𝑘+1

)1/𝛾
]]]]]]]]]]]]]

(31)
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Hence, we can have 𝑅𝛼 = 𝑉 ⋅ 𝑀𝛼𝛽,𝛾 ⋅ −1∑𝑈. (32)

Comparing the Tikhonov regularization method with the
improved Tikhonov regularization method, according to
formula (31), we can see that, in part 𝜎𝛽𝛾𝑖 ≥ 𝛼, change from𝜎2𝑖 /(𝛼 + 𝜎2𝑖 ) to 1, 1 ≤ 𝑖 ≤ 𝑘, this eliminates the effect of large
singular values.

When 𝜎𝛽𝛾𝑖 < 𝛼 change from𝜎2𝑖 /(𝛼+𝜎2𝑖 ) to 𝜎𝛽𝑖 /(𝛼+𝜎𝛽𝛾𝑖 )1/𝛾,𝑘 < 𝑖 ≤ 𝑛 + 1; this not only guarantees the filtering of small
singular values but also improves the approximation order of
solutions.

4. Stability Analysis of the Proposed Method

Theorem 3. Suppose that the solution 𝑥+of 𝐾𝑥 = 𝑦 satisfies𝑥+ = (𝐾∗𝐾)]𝑧 ∈ 𝑅(𝐾∗𝐾)], 𝑧 ∈ 𝑋, and ‖𝑧‖ ≤ 𝐸; if choosing
the regularization parameter 𝛼(𝛿) = 𝑐(𝛿/𝐸)𝜎𝑟/(2V+1) (𝑐 is a
positive constant), then there are the following error estimates:𝑥𝛿𝛼(𝛿) − 𝑥+ = O (𝛿2V/(2V+1)) . (33)

Proof. Aswe all know, the error estimates of true solution and
regular solution can be expressed as follows:𝑥𝛿𝛼 − 𝑥+ ≤ 𝑅𝛼 ⋅ 𝛿 + 𝑅𝛼𝑦 − 𝑥+ . (34)

It is known fromTheorem 2 that we have𝑅𝛼 ≤ 𝑐 (𝛼) = 1𝛼1/𝜎𝑟 (35)

By using the singular system of operator K, then we have𝑅𝛼𝑦 − 𝑥+2 = ∞∑
𝑖=1

𝑞 (𝛼, 𝜇𝑖) − 12 ⋅ (𝑥+, 𝑥𝑖)2
= ∞∑
𝑖=1

𝑞 (𝛼, 𝜇𝑖) − 12 ⋅ ((𝐾∗𝐾)V 𝑧, 𝑥𝑖)2
= ∞∑
𝑖=1

𝑞 (𝛼, 𝜇𝑖) − 12 ⋅ (∞∑𝑗=1𝜇2V𝑗 (𝑧, 𝑥𝑗) 𝑥𝑗, 𝑥𝑖)2= ∞∑
𝑖=1

𝑞 (𝛼, 𝜇𝑖) − 12 ⋅ 𝜇2V𝑖 (𝑧, 𝑥𝑖)2
= ∞∑
𝑖=1

𝑞 (𝛼, 𝜇𝑖) − 12 ⋅ 𝜇4V𝑖 ⋅ (𝑧, 𝑥𝑖)2 .
(36)

when 𝜇𝜎𝑟 < 𝛼 and 0 < 𝑞(𝛼, 𝜇) < 1, such that |𝑞(𝛼, 𝜇𝑖)−1| < 1,
hence, we can obtain𝑞 (𝛼, 𝜇𝑖) − 1 ⋅ 𝜇2V𝑖 < 𝜇2V𝑖 = (𝜇𝜎𝑟𝑖 )2V/𝜎𝑟 < 𝛼2V/𝜎𝑟. (37)

When 𝜇𝜎𝑟 ≥ 𝛼 and 𝑞(𝛼, 𝜇) = 1, then we have𝑞 (𝛼, 𝜇𝑖) − 1 ⋅ 𝜇2V𝑖 = 0 ⋅ 𝜇2V𝑖 = 0 < 𝛼2V/𝜎𝑟. (38)

Coal-seam structure

Conical pick

Figure 1: The structure diagram of conical pick and coal-seam
structure.

And𝑅𝛼𝑦 − 𝑥+2 < 𝛼4V/𝜎𝑟 ∞∑
𝑖=1

(𝑧, 𝑥𝑖)2 = 𝛼4V/𝜎𝑟 ⋅ ‖𝑧‖2≤ 𝛼4V/𝜎𝑟 ⋅ 𝐸2. (39)

So we can obtain𝑥𝛿𝛼 − 𝑥+ ≤ 1𝛼1/𝜎𝑟 + 𝛼2V/𝜎𝑟 ⋅ 𝐸. (40)

If 𝛼(𝛿) = 𝑐(𝛿/𝐸)𝜎𝑟/(2V+1), then𝑥𝛿𝛼(𝛿) − 𝑥+ ≤ 𝛿 ⋅ [𝑐 ( 𝛿𝐸)𝜎𝑟/(2V+1)]−1/𝜎𝑟
+ [𝑐( 𝛿𝐸)𝜎𝑟/(2V+1)]2V/𝜎𝑟 ⋅ 𝐸

= 𝛿 ⋅ [𝑐−1/𝜎𝑟 (𝛿𝐸)−1/(2V+1)]
+ 𝑐2V/𝜎𝑟 (𝛿𝐸)𝜎𝑟/(2V+1) ⋅ 𝐸= (𝑐−1/𝜎𝑟 + 𝑐2V/𝜎𝑟) ⋅ 𝐸1/(2V+1) ⋅ 𝛿2V/(2V+1).

(41)

Hence, we can get𝑥𝛿𝛼(𝛿) − 𝑥+ = O (𝛿2V/(2V+1)) . (42)

From the above proofs, we can see that the method pro-
posed in this paper can make the error of the regularization
solution reach the asymptotically optimal order.

5. An Example of Engineering Application

In this section, the proposed method is used to an engineer-
ing example of the identification problem of dynamic force
acting on conical pick and coal-seam structure.

5.1. The Establishment of Experimental System. The structure
diagram of conical pick and coal-seam is made in Figure 1.
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MotorReducer

Torque meter

Slip ring

Cutting and Force Measuring Device

Coal-seam structure

Test-bed

Figure 2: Experimental system.

The parameters are as follows: the coal-seam was 2000mm× 800mm × 1750mm. The density of conical pick and
coal-seam is 7800 kg/m3 and 1607.98 kg/m3, respectively. The
elastic modulus of conical pick and coal-seam is 600MPa
and 322.09MPa, respectively. The Poisson ratio of conical
pick and coal-seam is set as 0.25 and 0.25, respectively
[37].

Within our framework, the experimental system was
shown in Figure 2. The experimental system includes test-
bed, motor, reducer, coupling, cutting mechanism, platform,
coal-seam structure, the force-measured device, force sensor,
the signal amplifier, and the DaspV10 intelligent data acquisi-
tion and signal processing system [38, 39].

5.2. The Principle of Force Measurement. The cutting resis-
tance of the pick when cutting the coal-seam is transmitted
through the gear sleeve, and its size is measured by the
force sensor at the back end. The force direction of the
sensor is defined as the axial load Fz in accordance with
the axis of the pick, and the force direction measured is
defined as the radial load Fy perpendicular to the axis of the
pick.

The force state of the pick in the test force measuring
device is shown in Figure 3. Z is the cutting resistance, Y is the
propulsion resistance, f is the friction resistance between the
support structure and the pick sleeve, beta is the tangential
installation angle of the pick, O is the support point of the
pick sleeve, l1 is the distance between the tip of the tooth
and the support point, and l2 is the distance between the
sensor and the support point. According to Figure 3, the
force balance and moment balance equations of the pick are
obtained. 𝑌 cos𝛽 + 𝑍 sin 𝛽 − 𝑓 = 𝐹𝑧(𝑌 sin 𝛽 − 𝑍 cos 𝛽) ⋅ 𝑙1 + 𝐹𝑦𝑙2 = 0𝑙1𝑓 = (𝑙1 + 𝑙2) 𝑓𝑛𝐹𝑦 (43)

l2

l1

f

Fy

l2

0

Z

Y

Fz

Figure 3: The force diagram of pick.

Setting 𝑘𝑙 = 𝑙2/𝑙1, so we have𝑍 = 𝐹𝑧 sin 𝛽 + 𝐹𝑦 (𝑓𝑛 sin 𝛽 (1 + 𝑘𝑙) + 𝑘𝑙 cos𝛽) . (44)𝑓𝑛 and 𝑘𝑙 are called friction coefficient and structural dimen-
sion coefficient, respectively.

Experimental conditions: the installation angle of the
pick is 45∘, the cutting impedance of coal - seam is set
to 180 kN/m, the speed of the cutting arm is set to 40.8
r/min, and the traction speed is set to 0.8m/min. The
measured axial and radial loads of the pick are shown in
Figures 4(a) and 4(b). According to the load curves of
Figures 4(a) and 4(b), the cutting force is converted from
(19) at the sampling discrete points, as shown in Figure 4(c),
and the measured displacement response is shown in
Figure 5.

Under the above experimental conditions, it can be seen
that the cutting force obtained by conversion is similar to
that of axial load, and the radial load has little effect on its
variation. That is to say, the cutting force Z is proportional
to the axial load Fz. Therefore, the measured axial load can
reflect the size and variation of cutting resistance and can be



Mathematical Problems in Engineering 7

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.5

1

1.5

2

2.5

3

3.5

Time (s)

Fo
rc

e (
kN

)

(a) Axial load

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.5

1

1.5

2

2.5

3

3.5

Time (s)

Fo
rc

e (
kN

)

(b) Radial load

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.5

1

1.5

2

2.5

3

3.5

Time (s)

Fo
rc

e (
kN

)

(c) Cutting force

Figure 4: Cutting load and cutting force.

approximately characterized by themeasured axial loadwhen
analyzing the characteristics of cutting resistance.
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Figure 5: The measured displacement response.

5.3. Result Analysis. Adding a random distributed perturba-
tion to displacement response data, we obtain𝑦𝛿 = 𝑦 + 𝜀 randn (size (𝑦)) , (45)

where 𝜀 indicates the noise level of the measurement dis-
placement response and the randn(∙) generates arrays of
random numbers whose elements are normally distributed
with mean 0, variance 𝜎2 = 1, and standard deviation 𝜎 = 1.
randn(size(y)) returns an array of random entries that is of
the same size as 𝑦 [40]. The noise level 𝛿 can be measured
in the sense of root mean square error (RMSE) according
to 𝛿 = 𝑦𝛿 − 𝑦𝑙2 = ( 1𝑁 + 1 𝑁∑

𝑖=0

(𝑦 − 𝑦𝛿)2)1/2 . (46)

This process is known asMorozov’s discrepancy principle [41,
42].

Relative error (RE)

RE = ‖x̂ − x‖‖x‖ . (47)

In order to consider the effect of noise level, we set𝜀 = 0.01, 0.05, 0.1, 0.20. All algorithmic programs are set in
MATLAB7.0 andWindows 7 operating system.The identified
results of dynamic force are achieved by using different
regularization methods in this paper, which are shown in
Figures 6, 7, 8, and 9, respectively.

Figures 6(a), 6(b), 6(c), and 6(d) illustrate that the
identified force is obtained by adopting various different
regularization methods under 𝜀 = 0.01, respectively. Figures
7(a), 7(b), 7(c), and 7(d) show the identified force by adopting
various different regularization methods under 𝜀 = 0.05,
respectively. The identified force can be seen from Figures
8(a), 8(b), 8(c), and 8(d), which gives that the identified force
under 𝜀 = 0.10, and Figures 9(a), 8(b), 8(c), and 9(d) offer the
identified force by adopting various different methods under𝜀 = 0.20, respectively.
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Figure 6: Identified results (𝜀 = 0.01).
Table 1: Analysis of identification results (𝜀 = 0.01).

Evaluation metrics Tikhonov
regularization

Iterative Tikhonov
regularization Ref. [33] method Present method

RE 0.2719 0.2011 0.1897 0.1832
CC 0.8939 0.9037 0.9145 0.9276
Iterative steps 22 15 10 8

It can be seen from Figures 6, 7, 8, and 9 that the various
different methods can identify the dynamic force. On the
contrary, the effect of dynamic force identification is differ-
ent.

To explore the quality of dynamic force identification by
adopting various different methods, we give the value of RE
and CC and iterative steps, which are shown in Tables 1, 2,
3, and 4. It is easy to see from Table 1 that RE and iterative
steps of Figure 6(d) are smaller than that of Figures 6(a), 6(b),
and 6(c), On the contrary, CC value presents opposite result.
Table 2 shows that RE and iterative steps of Figures 7(a), 7(b),

and 7(c) are larger than that of Figure 7(d), and the CC value
presents opposite result. Table 3 shows that RE and iterative
steps of Figure 8(d) are smaller than that of Figures 8(a), 8(b),
and 8(c), but the CC value is the opposite. Table 4 offers that
RE and iterative steps of Figure 9(d) are smaller than that
of Figures 9(a), 9(b), and 9(c); nevertheless, the CC value
presents opposite result.

Hence, compared with the other methods, we find from
Tables 1–4 that the proposed method has the smallest RE, the
largest CC, and the least iterative steps, so the optimal value
is 𝜀 = 0.01.
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Figure 7: Identified results (𝜀 = 0.05).
Table 2: Analysis of identification results (𝜀 = 0.05).

Evaluation metrics Tikhonov
regularization

Iterative Tikhonov
regularization Ref. [33] method Present method

RE 0.3265 0.2327 0.1994 0.1871
CC 0.7940 0.8138 0.9033 0.9104
Iterative steps 30 22 12 9

Table 3: Analysis of identification results (𝜀 = 0.10).
Evaluation metrics Tikhonov regularization Iterative Tikhonov

regularization Ref. [33] method Present method

RE 0.3994 0.3011 0.2144 0.1957
CC 0.7291 0.8084 0.8996 0.9001
Iterative steps 37 28 14 10
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Figure 8: Identified results (𝜀 = 0.10).
Table 4: Analysis of identification results (𝜀 = 0.20).

Evaluation metrics Tikhonov
regularization

Iterative Tikhonov
regularization Ref. [33] method Present method

RE 0.5673 0.4033 0.2938 0.2011
CC 0.4497 0.5988 0.8177 0.8846
Iterative steps 50 33 20 13

In addition, with the increase of 𝜀, although RE and
iterative steps increase, they do not affect the identification
accuracy; that is to say, the small perturbation of the right-
hand data will not affect the accuracy of the inversion results,
which fully reflects that the present method has a good
stability.

Through the analysis, we draw the following conclusions
that the present method is successful to identify dynamic
force acting on conical pick and coal-seam.

6. Conclusions

In this paper, a novel improved Tikhonov regularization
method is proposed to solve the ill-posed problem. Under
the current framework, a new regularized filter function is
constructed by using the singular systemof compact operator,
and we prove the stability of the proposed method effectively.

An engineering example indicates that the proposed
method has the smallest RE, the largest CC, and the least



Mathematical Problems in Engineering 11

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.5

1

1.5

2

2.5

3

3.5

Time (s)

Fo
rc

e (
kN

)

Reconstructed force Actual force

(a) Tikhonov regularization method

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.5

1

1.5

2

2.5

3

3.5

Time (s)

Fo
rc

e (
kN

)

Reconstructed force Actual force
(b) Iterative Tikhonov regularization method

0 0.05 0.1 0.15 0.2 0.25 0.3
0

1

2

3

4

Time (s)

Fo
rc

e (
kN

)

Reconstructed Force Actual force
(c) Reference [33] method

0 0.05 0.1 0.15 0.2 0.25 0.3
0

1

2

3

4

Time (s)

Fo
rc

e (
kN

)

Reconstructed force Actual force
(d) Present method

Figure 9: Identified results (𝜀 = 0.20).
iterative steps and can obtain an efficient approximation of
the actual force compared with the Tikhonov regularization
method, iterative Tikhonov regularization method, and Ref-
erence [33]method.Meanwhile, the small perturbation of the
right-hand data will not affect the accuracy of the inversion
results, which fully reflects the present method has a good
stability.

Consequently, we can give a new conclusion that the
proposed method can offer a unified stable solution for
solving the ill-posed problem. Furthermore, we are confident
that the proposedmethodwill provide a reference for the next
research work.
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