Deviations for Jumping Times of a Branching Process Indexed by a Poisson Process

Yanhua Zhang 1 and Zhenlong Gao 2

1 School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China
2 School of Statistics, Qufu Normal University, Qufu 273165, China

Correspondence should be addressed to Zhenlong Gao; gzlkygz@163.com

Received 25 January 2019; Accepted 9 May 2019; Published 23 May 2019

Academic Editor: Fazal M. Mahomed

Copyright © 2019 Yanhua Zhang and Zhenlong Gao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Consider a continuous time process \(Y_t = Z_{N_t}, t \geq 0 \), where \(\{Z_n\} \) is a supercritical Galton–Watson process and \(\{N_t\} \) is a Poisson process which is independent of \(\{Z_n\} \). Let \(\tau_n \) be the \(n \)-th jumping time of \(\{Y_t\} \), we obtain that the typical rate of growth for \(\{\tau_n\} \) is \(n/\lambda \), where \(\lambda \) is the intensity of \(\{N_t\} \).

1. Statements of the Main Results

The model of Poisson randomly indexed branching process (PRIBP) \(\{Y_t = Z_{N_t}, t \geq 0\} \) was introduced by [1] to study the evolution of stock prices and its statistical investigation was done in [2].

In a recent manuscript [3] the authors there consider the asymptotic properties of \(\log Y_t \). Let \(\{p_k, k \geq 0\} \) be the offspring distribution of the branching process with mean \(m = \sum_k k p_k \in (1, \infty) \); we distinguish between the Shr"oder case and the B"ottcher case depending on whether \(p_0 + p_1 > 0 \) or \(p_0 + p_1 = 0 \). In B"ottcher case, it was proved in [3] that \(\log Y_t \) have similar asymptotic results to the Poisson process \(\{N_t\} \). But differences appeared in Shr"oder case; see [4]. For subcritical and critical PRIBP one can see [5, 6] for details.

In this paper, we deal with the asymptotic theory for the jumping times of PRIBP defined as follows. For any \(\omega \), define

\[
\tau_{\infty} (\omega) = \inf \left\{ t : t > 0; \lim_{s \uparrow t} Y_s (\omega) = \infty \right\},
\]

\[
\{ \tau_{\infty} < \infty \} = \bigcup_{l=1}^{\infty} \{ \tau_l < \infty \}.
\]

where \(\inf \emptyset = \infty \); then

Note that \(\{Z_n\} \) is independent of \(\{N_t\} \); one has

\[
P (\tau_{\infty} < l) \leq P (Y_l = \infty) = \sum_n P (Z_n = \infty) P (N_l = n)
\]

\[
= 0,
\]

and thus \(P (\tau_{\infty} = \infty) = 1 \). Define \(\tau_0 = 0 \) and \(\{\tau_n, n \geq 1\} \) as the successive times of jump of the PRIBP \(\{Y_t, t \geq 0\} \).

In B"ottcher case, the jumping times of \(\{Y_t\} \) coincide with that of \(\{N_t\} \). Let \(\{T_n\} \) be the successive times of jump of \(\{N_t\} \); then both \(\tau_n \) and \(T_n \) have a gamma distribution with parameters \(n \) and \(\lambda \). But when \(p_0 + p_1 > 0 \), at the jumping time of \(N_t \), PRIBP can have no jump, since an individual can replicate himself at this time. So the jumping times of \(\{Y_t\} \) are likely to be delayed; see Figure 1 for example. In the path of Figure 1, \(\tau_1 = T_1 \) and \(\tau_2 = T_3, \ldots \).

Although \(\tau_n \geq T_n \) for all \(n \), the growth rate of \(\tau_n \) is not too fast as that of \(T_n \). In fact, the typical growth rate of \(T_n \) is \(n/\lambda \) by the law of large numbers and we can show that the typical growth rate of \(\tau_n \) is

\[
\sum_{k=1}^{n} \frac{1}{\lambda (1 - p_k^l)} \leq \frac{n}{\lambda} + \frac{1}{\lambda (1 - p_1^l)},
\]

and see the proof of Theorem 1. Thus, for almost all the path of Shr"oder case PRIBP, \(\tau_n/n \) has a limit \(\lambda^{-1} \) when \(n \rightarrow \infty \).
In the rest of this paper, we always assume that our branching process belongs to the Shröder case, $p_0 = 0$ and $Z_0 = 1$.

We are interested in the decay rates about the probabilities of

$$
\{ \omega : \left| \frac{\tau_n(\omega)}{n} - \frac{1}{\lambda} \right| > \delta \} \quad \text{(5)}
$$

for some positive δ. Typically, there are three classes of δ to be chosen.

The first one is that $\delta = a \sqrt{n}$ for some fixed $a > 0$. In this case, the event in (5) is said to be a normal deviation event. The decay rate of its probability can be characterized by the following central limit theorem.

Theorem 1.\{\(\tau_n\)\} satisfies the law of large number and the central limit theorem; that is,\(\frac{\tau_n}{n} \overset{a.e.}{\to} \frac{1}{\lambda}\) and $\lambda \sqrt{n}(\frac{\tau_n}{n} - \frac{1}{\lambda}) \overset{d}{\to} N(0, 1)$ when $n \to \infty$, where $N(0, 1)$ is standard normal distribution.

Next, if $\delta = a$ for some fixed $a > 0$, the event in (5) is said to be a large deviation event whose probability has an exponential convergence rate by the following large deviation principle.

Theorem 2 (LDP). For any measurable subset B of \mathbb{R},

\[
-\inf_{x \in B^c} \Lambda^* (x) \leq \liminf_{n \to \infty} \frac{1}{n} \log P \left(\frac{\tau_n}{n} \in B \right) \leq \limsup_{n \to \infty} \frac{1}{n} \log P \left(\frac{\tau_n}{n} \in B \right) \leq -\inf_{x \in B} \Lambda^* (x),
\]

where B^c denotes the interior of B, \overline{B} its closure, and

\[
\Lambda^* (x) = \begin{cases}
\lambda (1 - p_1) x + \log p_1, & x \geq (\lambda p_1)^{-1}; \\
\lambda x - \log (\lambda x) - 1, & (\lambda p_1)^{-1} > x > 0; \\
\infty, & x \leq 0.
\end{cases}
\]

Remark. By Cramér’s theorem (see Theorem 2.2.3 of [7]), T_n/n satisfies the large deviation principle with rate function

$$
\Psi (x) = \begin{cases}
\lambda x - \log (\lambda x) - 1, & x > 0; \\
\infty, & x \leq 0.
\end{cases}
$$

By Theorem 2, the rate function of $\frac{\tau_n}{n}$ coincides with that of T_n/n for $x \leq (\lambda p_1)^{-1}$, but differences appeared for large x; see Figure 2 for example.

If $\delta = \delta_n \to \infty$ and $\delta_n = o(\sqrt{n})$ as $n \to \infty$, we call the event in (5) a moderate deviation event. Let $\{a_n, n \geq 0\}$ be a family of positive numbers satisfying

$$
\frac{a_n}{n} \to 0
$$

and

$$
\frac{a_n}{\sqrt{n}} \to \infty
$$

as $n \to \infty$.

As in the case of large deviation principle, based on the Gärtner-Ellis theorem (see [7], page 44), we have the following moderate deviation principle.

Theorem 3 (MDP). For any measurable subset B of R,

$$
-\inf_{x \in B^c} \lambda^2 x^2 \leq \liminf_{n \to \infty} \frac{n}{a_n^2} \log P \left(\frac{\tau_n - \lambda^{-1} n}{a_n} \in B \right)
\]

$$
\leq \limsup_{n \to \infty} \frac{n}{a_n^2} \log P \left(\frac{\tau_n - \lambda^{-1} n}{a_n} \in B \right)
\]

$$
\leq -\inf_{x \in B^c} \frac{\lambda^2 x^2}{2}.
\]

The rest of the paper is organized as follows. In Section 2, we prove the law of the large number and the central limit
for any nonnegative real numbers $t_0 < t_1 < \cdots < t_{n-1} < s < t + s$ and nonnegative integers $i_0 \leq i_1 \leq \cdots \leq i_{n-1} \leq i \leq j$, define

$$A = \{ Y(s) = i, Y(t_{n-1}) = i_{n-1}, \ldots, Y(t_0) = i_0 \}. \quad (11)$$

For any nonnegative integers $k_0 \leq k_1 \leq \cdots \leq k_{n-1} \leq k_i \leq k_{i+1}$, define

$$B(k_0, \ldots, k_{n-1}, k_i, k_k) = \{N(t_0) = k_0, \ldots, N(t_{n-1}) = k_{n-1}, N(s) = k_k, N(t + s) = k_{i+1}\}. \quad (12)$$

Since Poisson process $\{N_t\}$ is independent of the Galton-Watson process $\{Z_n\}$,

$$P(Y(t + s) = j \mid A) = \sum_{k_0, \ldots, k_{n-1}, k_i, k_{k+1}} P(B(k_0, \ldots, k_{n-1}, k_i, k_{k+1})) \cdot P(Z_{k_i+1} = j \mid Z_{k_i} = i, Z_{k_{i-1}} = i_{n-1}, \ldots, Z_{k_0} = i_0). \quad (13)$$

Note that the Galton-Watson process is a Markov chain with n-step transition probabilities $P_n(i, j)$, and summing k_0, \ldots, k_{n-1}, one has

$$P(Y(t + s) = j \mid A) = \sum_{k_0, \ldots, k_{n-1}} P(N(s) = k_k, N(t + s) = k_{k+1}) \cdot P(Z_{k_i+1} = j \mid Z_{k_i} = i) \quad (14)$$

$$= \sum_{k_0, \ldots, k_{n-1}} P(N(s) = k_k, N(t + s) = k_{k+1}) P_{k_i+1-k_k}(i, j)$$

$$= E(P_{N(t+s)-N(t)}(i, j)) = E(P_{N(t)}(i, j)).$$

Similarly,

$$P(Y(t + s) = j \mid Y(s) = i) = E(P_{N(t)}(i, j)) = P(Y(t + s) = j \mid A), \quad (15)$$

which means that PRIBP is a homogenous continuous time Markov chain.

Next, note that N_t has a Poisson distribution with parameter $\lambda t > 0$; we have

$$E(P_{N(t)}(i, i)) = e^{-\lambda t} + \sum_{n \geq 2} \lambda^n P(N(t) = n), \quad (16)$$

which implies $q_i = \lambda(1 - p^i)$.

Proof of Theorem 1. Define $X_n(\omega) = Y(\tau_n(\omega))(\omega)$; then $\{X_n\}$ is a homogenous discrete-time Markov chain. Define $\rho_n = \tau_n - \tau_{n-1}$ for $n \geq 1$; then the conditional distribution of ρ_n relative to $X_1, X_2, \ldots, X_{n-1}$ equals exponential distribution with parameter $q_{X_{n-1}}$, where $q_i = \lambda(1 - p^i)$, see page 259 of [8] for example. So

$$\tau_n = \tau_n - \sum_{k=1}^{n} \frac{1}{\lambda (1 - p^k)} \rho_k - \frac{1}{\lambda (1 - p^1)} \frac{1}{\lambda (1 - p^1)}$$

is a square-integrable martingale adapted to the σ fields $\sigma(X_1, X_n)$. Consequently, there exists a random variable Z such that $\tau_n^{1/2} \xrightarrow{a.e.} Z$, see page 2 of [9]. Note that $X_{n-1} \geq n$; one has

$$n^{1/2} \leq \sum_{k=1}^{n} \frac{1}{\lambda (1 - p^k)} \leq n \leq \frac{1}{\lambda (1 - p^1)}$$

which implies that $\tau_n^{1/2} \xrightarrow{a.e.} \lambda^{-1}$ as $n \to \infty$.

Next, we prove $\lambda t^{1/2} \sqrt{n} \xrightarrow{d} N(0, 1)$. Let $\eta_{n,i} = \lambda n^{-1/2}[\rho_i - (\lambda(1 - p^i))^{-1}]$, F_{i-1} be the σ-field generated by X_1, \ldots, X_{i-1}; by Hölder’s inequality, one has

$$E(\eta_{n,i}^3 | F_{i-1})$$

$$\leq \left[E(\eta_{n,i}^3 | F_{i-1}) \right]^{2/3} \left[E(\eta_{n,i}^3 | F_{i-1}) \right]^{1/3}, \quad (19)$$

where I_{A} is the indicator function of A.

Note that the conditional distribution of ρ_n relative to $\rho_1, \ldots, \rho_{n-1}$ equals exponential distribution with parameter $\lambda(1 - p_{X_{n-1}})$; one has

$$E(\eta_{n,i}^3 | F_{i-1})$$

$$= (\lambda n)^{-3/2} E \left[\left| \rho_i - (\lambda(1 - p^i))^{-1} \right|^3 | F_{i-1} \right]$$

$$\leq 4n^{-3/2} \left(\lambda^{1/2} (1 - p^i)^{-3} \right) a.s.$$. \quad (20)
According to (22), (23), and Corollary 3.1 of [9], one has
\[\sum_{i=1}^{n} E \left(\eta_{n,i}^2 \mid \mathcal{F}_{t-i} \right) \leq Cn^{-1/3} \text{ a.e.} \]
(22)

By formulas (19)-(21) we have
\[\sum_{i=1}^{n} E \left(\eta_{n,i}^2 f(\eta_{n,i}) \mid \mathcal{F}_{t-i} \right) \leq Cn^{-1/3} \text{ a.e.} \] (23)

According to (22), (23), and Corollary 3.1 of [9], one has \(\lambda r_n / \sqrt{n} \to N(0,1) \). Note that
\[\frac{\lambda r_n}{\sqrt{n}} - \lambda \sqrt{n} \left(\frac{r_n}{n} - \lambda^{-1} \right) \]
(24)
\[= \sqrt{n} - \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \left(1 - p_i X_i^{(n)} \right)^{-2} \to 1 \] (25)

and the central limit theorem follows from Theorem 6 in page 39 of [10]. \(\square \)

3. Large Deviation Principle

Let us begin with some lemmas to show the conditions of Gärtner-Ellis Theorem (see Appendix) are satisfied. Define \(\Lambda_n(\theta) = \log E[e^{\theta r_n/n}] \).

Lemma 5. For any \(\theta \in \mathbb{R} \), \(\Lambda(\theta) = \lim_{n \to \infty} (1/n) \Lambda_n(n\theta) \) exists and satisfies
\[\Lambda(\theta) = \begin{cases} \log \lambda - \log (\lambda - \theta), & \theta < \lambda (1-p_1) ; \\ +\infty, & \theta \geq \lambda (1-p_1). \end{cases} \] (26)

Particularly, \(0 \in D_\Lambda = \{ \theta : \Lambda(\theta) < \infty \} \).

Proof. Note that \(r_n = p_1 + \cdots + p_n \), where the conditional distribution of \(p_n \) relative to \(p_1, \ldots, p_{n-1} \) is the same as that relative to \(X_0, X_1, \ldots, X_{n-1} \) and equals exponential distribution with parameter \(\lambda(1-p_1^{X_{n-1}}) \) (see page 259 of [8]); one has
\[E \left[e^{\theta r_n} \right] = E \left[e^{\theta \sum_{i=1}^{n} r_i} \right] \]
(27)
\[= \left. E \left[e^{\theta \sum_{i=1}^{n} r_i} \mid r_1, \ldots, r_{n-1} \right] \right] \]
(28)
\[= E \left[e^{\theta \sum_{i=1}^{n} r_i} \right] E \left[e^{\theta r_1} \mid r_1, \ldots, r_{n-1} \right] \]
(29)
\[= E \left[e^{\theta \sum_{i=1}^{n} r_i} \right] E \left[e^{\theta r_1} \mid X_0, \ldots, X_{n-1} \right] \]

If \(\theta < \lambda (1-p_1) \), we have
\[E \left(e^{\theta r_n} \mid X_0, \ldots, X_{n-1} \right) = \frac{\lambda (1-p_1^{X_{n-1}})}{\lambda (1-p_1^{X_{n-1}}) - \theta}. \] (30)

If \(\theta \leq 0 \), note that \(X_{n-1} \geq n \); by (27) one has
\[\frac{\lambda (1-p_1^{X_{n-1}})}{\lambda (1-p_1^{X_{n-1}}) - \theta} \leq E \left(e^{\theta r_n} \mid X_0, \ldots, X_{n-1} \right) \leq \frac{\lambda}{\lambda - \theta}. \] (31)

By (26), (28) and induction, we have
\[\frac{\lambda (1-p_1^{X_{n-1}})}{\lambda (1-p_1^{X_{n-1}}) - \theta} \leq E \left(e^{\theta r_n} \mid X_0, \ldots, X_{n-1} \right) \leq \frac{\lambda}{\lambda - \theta} \] (32)

which means \(\Lambda(\theta) = \log \lambda - \log (\lambda - \theta) \).

If \(0 < \theta < \lambda (1-p_1) \), note that \(X_{n-1} \geq n \); by (27) one has
\[\frac{\lambda}{\lambda - \theta} \leq E \left(e^{\theta r_n} \mid X_0, \ldots, X_{n-1} \right) \leq \frac{\lambda (1-p_1^{X_{n-1}})}{\lambda (1-p_1^{X_{n-1}}) - \theta}. \]

We can get \(\Lambda(\theta) = \log \lambda - \log (\lambda - \theta) \) similarly.

If \(\theta \geq \lambda (1-p_1) \), note that \(X_0 = Z_0 = 1 \) and the conditional distribution of \(p_1 \) relative to \(X_0 \) equals exponential distribution with parameter \(\lambda(1-p_1) \); one has
\[E \left[e^{\theta r_n} \right] \geq E \left[e^{\theta r_1} \right] = E \left[E \left(e^{\theta r_1} \mid X_0 \right) \right] = +\infty, \] (33)

for all \(n \geq 1 \). Thus \(\Lambda(\theta) = +\infty \). \(\square \)

Lemma 6. Let \(\Lambda^* \) be the Fenchel-Legendre transform of \(\Lambda \); then
\[\Lambda^* (x) = \sup_{\theta \in \mathbb{R}} \{ \theta x - \Lambda (\theta) \} \]
(34)
\[= \begin{cases} \lambda (1-p_1) x + \log p_1, & x \geq (\lambda p_1)^{-1} ; \\ \lambda x - \log (\lambda x) - 1, & \lambda p_1^{-1} > x > 0 ; \\ +\infty, & x \leq 0. \end{cases} \] (35)

In addition, the set of exposed points (see Appendix) of \(\Lambda^* \) is \(\mathcal{E} > (0,+\infty) \).

Proof. By Lemma 5, if \(x \leq 0 \),
\[\Lambda^* (x) = \sup_{\theta \in \Lambda(1-p_1)} \{ \theta x - \log \Lambda + \log (\Lambda - \theta) \} \]
(36)
\[= \lim_{\theta \to +\infty} \left(\theta x - \log \Lambda + \log (\Lambda - \theta) \right) = +\infty. \]

Next, if \(\lambda p_1^{-1} > x > 0 \), then \(\lambda^{-1} < \lambda (1-p_1) \) and
\[\Lambda^* (x) = \sup_{\theta \in \Lambda(1-p_1)} \{ \theta x - \log \Lambda + \log (\Lambda - \theta) \} \]
(37)
\[= \theta_0 x - \log \lambda + \log (\lambda - \theta_0) \]
(38)
\[= \lambda x - \log (\lambda x) - 1. \]
Finally, if \(x \geq (\lambda p_1)^{-1} \), then \(\lambda - x^{-1} \geq \lambda (1 - p_1) \). Note that
\[
\frac{d (\theta x - \log \lambda + \log (\lambda - \theta))}{d \theta} = x - \frac{1}{\lambda - \theta} > 0
\]
for all \(\theta < \lambda (1 - p_1) \); we have
\[
\Lambda^* (x) = \sup_{\theta : \lambda (1 - p_1)} \{ \theta x - \log \lambda + \log (\lambda - \theta) \}
\]
\[
= \lambda (1 - p_1) x + \log p_1.
\]
Equation (32) follows from (33), (34), and (36).

In addition, for any \(\theta < \lambda, \Lambda' (\theta) = (\lambda - \theta)^{-1} \), so the range of \(\Lambda' (\theta) \) for \(\theta < \lambda \) is \((0, +\infty)\), the set of exposed points of \(\Lambda^* \); see Lemma 2.3.9 of [7].

Proof of Theorem 2. Note that for any \(x \leq 0, \Lambda^* (x) = +\infty \) and the set of exposed points \(\mathcal{E} > (0, +\infty) \), then for any open set \(G \),
\[
\inf_{x \in \mathcal{G} \cap \mathcal{E}} \Lambda^* (x) = \inf_{x \in \mathcal{G}} \Lambda^* (x) = \inf_{x \in \mathcal{G}} \Lambda^* (x) .
\]
Consequently, Theorem 2 follows from Lemma 5, Lemma 6, and the Gärtner-Ellis theorem (see Appendix).

4. Moderate Deviation Principle

In this section, we deal with the proof of Theorem 3. Define
\[
\Lambda_n (\theta) = \log E \left[\exp \left\{ \theta \frac{\tau_n - \lambda^{-1} n}{a_n} \right\} \right].
\]

Lemma 7. For each \(\theta \in \mathbb{R} \), one has,
\[
\Delta (\theta) = \lim_{n \to \infty} \frac{n}{a_n^2} \Lambda_n (\theta) = \frac{\theta^2}{2 \lambda^2}.
\]

Particularly, \(0 \in D_\lambda = \{ \theta : \Delta (\theta) < \infty \} \). In addition, let \(\Lambda^* \) be the Fenchel-Legendre transform of \(\Delta \); then
\[
\Lambda^* (x) = \frac{x^2 \lambda^2}{2} ,
\]
and the set of exposed points of \(\Lambda^* \) is \(\mathcal{F} = R \).

Proof. For any \(\theta \in \mathbb{R} \), we have
\[
\Lambda_n (\frac{a_n^2 \theta}{n}) = \log E \left[\exp \left\{ \frac{a_n^2 \theta}{n} \left(\frac{\tau_n - \lambda^{-1} n}{a_n} \right) \right\} \right]
\]
\[
= \log E \left[\exp \left\{ \frac{a_n \theta}{n} \left(\frac{\tau_n - \sum_{i=1}^{n} \frac{1}{\lambda (1 - p_1^{X_{i-1}})} }{1} \right) \right\} \right] \ldots (41)
\]
\[
\ldots (41)
\]
\[
\leq E \left[\exp \left\{ \frac{-\theta a_n}{n \lambda (1 - p_1)} \right\} \right] \leq \frac{\lambda}{-\theta \lambda (1 - p_1)} - a_n \theta / n
\]
\[
\leq E \left[\exp \left\{ \frac{-\theta a_n}{n \lambda (1 - p_1)} \right\} \right] \leq E \left[\exp \left\{ \frac{-\theta a_n}{n \lambda} \right\} \right] \leq \frac{\lambda}{-\theta \lambda (1 - p_1)} - a_n \theta / n
\]
\[
\leq \frac{\lambda}{-\theta \lambda (1 - p_1)} - a_n \theta / n
\]
For any \(\theta \geq 0 \),
According to (45)-(47) and induction, we obtain

\[I_n(\theta) = \frac{n}{\lambda} \exp \left\{ -\theta a_n \right\} \frac{\lambda}{-\theta a_n} \]

\[\leq E \left[\exp \left\{ \frac{\lambda}{n} \right\} \right] \]

\[\leq \prod_{i=1}^{n} \exp \left\{ -\theta a_n \frac{\lambda}{n} \right\} \frac{\lambda}{-\theta a_n} \]

\[= H_n(\theta). \]

Similarly, for \(\theta < 0 \), the above inequality should be reversed. According to (18) and \(\log(1+x) = x - x^2/2 + o(x^2) \) as \(x \to 0 \), one has

\[\log I_n(\theta) = -\frac{\theta a_n}{\lambda} \sum_{i=1}^{n} \frac{1}{1-p_i^1} - n \log \left(1 - \frac{\theta a_n}{n\lambda} \right) \]

\[= -\frac{\theta a_n}{\lambda} \left(1 + b_n \right) + \frac{\theta a_n}{\lambda} + \frac{\theta^2 a_n^2}{2n\lambda^2} + o \left(\frac{a_n^2}{n} \right) \]

\[= \frac{\theta a_n b_n}{\lambda} + \frac{\theta^2 a_n^2}{2n\lambda^2} + o \left(\frac{a_n^2}{n} \right), \]

where \(b_n \) belongs to \([0,1/(n(1-p^1_1))]\). Hence,

\[\lim_{n \to \infty} \frac{n}{a_n^2} \log I_n(\theta) = \frac{\theta^2}{2\lambda^2}, \]

and, similarly,

\[\lim_{n \to \infty} \frac{n}{a_n^2} \log H_n(\theta) = \frac{\theta^2}{2\lambda^2}. \]

Equation (39) is followed by (43), (48), (50), and (51). Consequently,

\[\Delta^*(x) = \sup_{\theta \in R} \{ \theta x - \Delta(\theta) \} = \sup_{\theta \in R} \{ \theta x - \frac{\theta^2}{2\lambda^2} \} \]

\[= \frac{\lambda^2 x^2}{2}. \]

In addition, for any \(\theta \in R \), \(\Delta'(\theta) = \theta/\lambda^2 \); so the range of \(\Delta'(\theta) \) is \(R \), which means \(\mathcal{F} = R \); see Lemma 2.3.9 of [7]. \(\square \)

Proof of Theorem 2. Note that the set of exposed points of \(\Delta^* \) is \(R \); Theorem 3 follows from Lemma 7 and the Gärtner-Ellis theorem. \(\square \)

Appendix

The Gärtner-Ellis Theorem

Consider a stochastic process \(\{S_t\}_{t \geq 0} \), where \(S_t \) possesses the law \(\nu_n \) and logarithmic moment generating function \(\Lambda_n(\theta) := \log E(e^{\theta S_n}) \).

Assumption A. For each \(\theta \in R \) and \(0 < b_n \to \infty \), the logarithmic moment generating function, defined as the limit

\[\Lambda(\theta) = \lim_{n \to \infty} \frac{1}{b_n^2} \Lambda_n \left(b_n \theta \right) \]

exists as an extended real number. Further, the origin belongs to the interior of \(\{ \theta : \Lambda(\theta) < \infty \} \).

Definition. Let \(\Lambda^* \) be the Fenchel-Legendre transform of \(\Lambda \). \(y \in R \) is an exposed point of \(\Lambda^* \) if for some \(\theta \in R \) and all \(x \neq y \) it is verified that \(\theta y - \Lambda^*(y) > \theta x - \Lambda^*(x) \). \(\theta \) in the previous equation is called an exposing hyperplane.

Let \(\mathcal{E} \) be the set of exposed points of \(\Lambda^* \) whose exposing hyperplane belongs to the interior of \(\{ \theta : \Lambda(\theta) < \infty \} \). The following lemma is the Gärtner-Ellis theorem in large deviation theory; see [7] page 44.

Lemma A.1. Let Assumption A holds.

(a) For any closed set \(F \),

\[\limsup_{n \to \infty} \frac{1}{b_n} \log \nu_n(F) \leq -\inf_{x \in F} \Lambda^*(x). \]

(b) For any open set \(G \),

\[\liminf_{n \to \infty} \frac{1}{b_n} \log \nu_n(G) \geq -\inf_{x \in G \cap \mathcal{E}} \Lambda^*(x). \]

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Acknowledgments

This research was partially supported by National Natural Science Foundation of China (Grant No. 11601260).

References

