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As the beginning of the 21st century was marked by a strong development in data science and, consequently, in computer
networks, models for designing preventive actions against intruding, data stealing, and destruction became mandatory. Following
this line, several types of epidemiological models have been developed and improved, considering different operational ap-
proaches. +e development of the research line using traditional SIR(Susceptible, Infected, Removed) model for data networks
started in the 1990s. In 2005, an epidemiological compartmental model containing antidotal nodes, SIRA (Susceptible, Infected,
Removed, Antidotal), was introduced to study how the antivirus policies affect the network reliability.+e idea here is to study the
consequence of quarantine actions in a network by modifying the SIRA model, introducing quarantine nodes generating the
SIQRA (Susceptible, Infected, Quarantine, Removed, Antidotal) model. Analytical and numerical approaches result in parameter
conditions for the existence and stability of disease-free and endemic equilibrium points for two different cases: saturation and
nonsaturation of the quarantine population block. Based on these results, operational actions can be planned to improve the
network reliability.

1. Introduction

A substantial development occurred in data network tech-
nology, providing accurate and fast public and private fa-
cilities. +is has changed the way of data transfer in society,
creating a strong dependence on the communication ser-
vices at all levels of relations. Computers, laptops, and smart
phones are an integral part of human life, with a large
universe of different types of connections emerging, facili-
tating daily tasks and improving personal relations.

Unfortunately, there are people and groups using their
intelligence to develop hate and bad intentions, creating
programs, such as viruses and worms, to invade and to
destroy processes, causing collective and individual harmful
effects. +e power of destruction and the capacity of
propagation of the viruses and malwares have increased over
the years representing important threats to society and to
corporative networks [1–3].

Consequently, there are twomain concerns related to the
propagation of computer virus and malwares: estimating the

economic losses [4–8] and developing security and safety
strategies [9]. +us, a new important branch of computer
science has been developed, cybernetic security, having as
one of its approaches to build mathematical models, related
to the dynamic operation of the systems [10].

+is mathematical approach to computer virus propa-
gation was inspired by biology and was divided into two
levels: microscopic and macroscopic [1, 11]. +e micro-
scopic level is related to the development of antivirus
software. Antivirus software is a program capable of
detecting threats and preventing damages in the machine.
Besides, the spread of virus through the network is avoided
as a consequence of the antivirus action [12, 13].

+e macroscopic level is based on the classical model of
disease propagation [14–16], whose dynamics can indicate
the possible infection process and show how to establish
policies and strategies to reduce risk, combining param-
eters as strategies of control [17, 18]. +e classical epide-
miological macroscopic model SIR, proposed by Kermack
and McKendrick, is the basis for the development of
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macroscopic models, providing a dynamic model dividing
the individuals of a population into three compartments
containing the susceptible individuals (S), the infected (I),
and the removed (R) ones [14, 15, 19].

Adapting the SIR model to computer populations, two
different strategies were developed: deterministic
[11, 13, 20–23] or stochastic [12, 24–26]. Regarding the
mathematical treatment of time, discrete [27] and contin-
uous [28, 29] models appeared.

Based on the classical SIR model, the deterministic
SIRA model was developed, considering constant pop-
ulation [2, 18, 30]. In this case, robust conditions for
disease-free equilibrium stability, depending on the node
recovery rate, were derived, considering that antidotal
nodes are part of the network. Improving the SIRA model,
mortality and variable population were considered in the
descriptions, allowing new robust parameter relations for
disease-free equilibrium that seem to be useful to design
data networks [31].

Models taking delays and quarantine into account in the
classical SIR model [32] show interesting operational actions
to be taken to improve reliability, with bifurcation diagrams
indicating parameters values to be avoided [33, 34]. Re-
cently, models including quarantine compartments seem to
avoid virus and malware propagation in data networks
[35, 36] and to prevent attacks in sensor networks
[22, 23, 37, 38].

+e main idea to control the virus spread is to keep the
nodes isolated for some time [38, 39].+e word “quarantine”
means this interaction is interrupted. When a node is found
to be infected, it can be quarantined by the detection virus
program. It is then monitored for an interval corresponding
to the inappropriate behavior indicated by the process. If
during this action no wrong behavior is observed, it is
released.

In this work, quarantine concept is applied as an ad-
ditional improvement of the SIRA model and the SIQRA
(Susceptible, Infected, Quarantine, Removed, Antidotal)
model is developed. Two different cases are studied: with and
without interaction between infected and quarantine com-
partments allowing robust relations between parameters for
disease-free equilibrium, providing ideas to improve the
reliability of networks.

It will be shown that, if the quarantine compartment is
introduced with its population not saturated by the number
of infected nodes, i.e., the antivirus detection rate is greater
than the infection rate, the model does not contain nonlinear
terms given by IQ. In this case, the network presents a very
satisfactory behavior, with stable disease equilibrium point
and no endemic possibility. If the saturation term IQ is
present, i.e., the infection rate is greater than the virus
detection capacity, in spite of the benefits given by the
presence of the quarantine population, an endemic equi-
librium appears.

In the next section, hypothesis and equations are pre-
sented, followed by a section deriving equilibrium condi-
tions and the parameters relations for the several
equilibrium situations. Numerical results are shown next,
simulating the network dynamics for some relevant real

cases, followed by the conclusion section giving hints about
the model improvements.

2. SIQRA Model: Hypothesis and Equations

+e model to be studied is a modification to the com-
partmental SIRA [2, 18, 30], improved in [31], adding a
quarantine computer compartment (Q), representing pos-
sible infected machines, which are separated to be evaluated
concerning infection or recovery (Figure 1). Once entering
in the quarantine compartment, after the evaluation, the
machine can either return to the network or be removed. If a
machine returns, it can become either susceptible or
antidotal.

In Figure 1, αIA represents the interaction coefficient
between compartments I and A, related to the vaccination
rate of the network; β, the interaction between S and I, i.e.,
measuring how the infected nodes change the operational
systems of the susceptible ones; σ, the rate of transformation
from R to S, i.e., the recovering capacity of the nodes; and ω,
the rate of transformation from Q to S, giving the rate of
quarantine liberation.

Parameters αSA and αQA represent how the antidotal
nodes actuates over susceptible and quarantine operational
systems, respectively; α is the interaction coefficient between
compartments Q and R, giving an idea of the rate of non-
recovered nodes subjected to quarantine.

Two different quarantine strategies are presented: one
without nonlinear interaction between blocks I and Q, i.e.,
without a saturation term, and other considering that blocks
I and Q interact nonlinearly allowing the onset of endemic
situations. Parameter δ represents either the rate of trans-
formation from I to Q in the model without nonlinear in-
teraction or the interaction between compartments Q and I
in the model with nonlinear IQ term.

2.1. Model without Nonlinear IQ Term. In this case, exam-
ining Figure 1, the state equation representing the model is
given by

_S � − αSASA − βSI + σR + ωQ,

_I � βSI − αIAAI − δI,

_Q � δI − ωQ − αQAQ − αQ,

_R � αQ − σR,

_A � αSASA + αIAAI + αQAQ.

(1)

+e initial conditions are assumed to be S(0) ≥ 0,
I(0) ≥ 0, Q(0) ≥ 0, R(0) ≥ 0, and A(0) ≥ 0. It can be
verified that, for equation (1), the total population T � S +

I + Q + R + A is constant.
As a consequence, the state space is 4-dimensional, and

examining the dynamic equation for _I, no endemic equi-
librium point is verified, i.e., there is no equilibrium point
with I≠ 0. However, two disease-free equilibrium points
(I � 0) are possible, described by using the following
expressions:
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P1 � (S, I, Q, R, A) � (0, 0, 0, 0, A) � (0, 0, 0, 0, T),

P2 � (S, I, Q, R, A) � (S, 0, 0, 0, 0) � (T, 0, 0, 0, 0).
(2)

To study the local stability of these equilibrium points,
the Jacobian matrix, (J), must be calculated [40]:

J �

− αSAA − βI − βS ω σ − αSAS

βI βS − αIAA − δ 0 0 − αIAI

0 δ − ω − αQA − α 0 0

0 0 α − σ 0

αSAA αIAA αQA 0 αSAS + αIAI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3)

Considering the P1 equilibrium point, the Jacobian
matrix, JP1

, is given by

JP1
�

− αSAT 0 w σ 0

0 − αIAT + δ( 􏼁 0 0 0

0 δ − w + αQA + α􏼐 􏼑 0 0

0 0 α − σ 0

αSAT αIAT αQA 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(4)

By using MATLAB R2013a [41], the eigenvalues of JP1
are λ1 � 0, λ2 � − (αIAT + δ), λ3 � − σ, λ4 � − αSAT, and
λ5 � − (α + ω + αQA). +e zero eigenvalue only indicates that
the state space dimension is 4 in spite of the 5-equation
model. +e other eigenvalues are real and negative, for any
parameter combination with physical meaning, implying
that P1 is asymptotically stable.

Repeating the procedure for the equilibrium point P2,
the Jacobian matrix, JP2

, is given by

JP2
�

0 − βT w σ − αSAT

0 (βT − δ) 0 0 0

0 δ − w + αQA + α􏼐 􏼑 0 0

0 0 α − σ 0

0 0 αQA 0 αSAT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

whose eigenvalues are λ1 � 0, λ2 � (αSAT + δ), λ3 � βT − δ,
λ4 � − σ, and λ5 � − (α + ω + αQA).

Again, the zero eigenvalue only indicates that the state
space dimension is 4 in spite of the 5-equation model. For
any parameter combination with physical meaning, one of
the eigenvalues, λ2, is real and positive, indicating that P2 is
unstable.

2.2.ModelwithNonlinear IQTerm. Including the possibility
of saturation for the IQ term is important mainly for small
networks, where the increase of this product could provoke a
time-out situation for the whose system.

In this case, examining Figure 1, the state equation
representing the model is given by

_S � − αSASA − βSI + σR + ωQ,

_I � βSI − αIAAI − δQI,

_Q � δQI − ωQ − αQAQ − αQ,

_R � αQ − σR,

_A � αSASA + αIAAI + αQAQ.

(6)

+e initial conditions are assumed to be S(0) ≥ 0,
I(0) ≥ 0, Q(0) ≥ 0, R(0) ≥ 0, and A(0) ≥ 0. It can be
verified that, for equation (6), the total population T � S +

I + Q + R + A is constant. As a consequence, the state space
is 4-dimensional.

Examining the model equations, it can be concluded that
the system presents three equilibrium points: two disease-
free (I � 0), given by P1 and P2, and one endemic (I≠ 0),
given by P3, with

P1 � (S, I, Q, R, A) � (0, 0, 0, 0, A) � (0, 0, 0, 0, T),

P2 � (S, I, Q, R, A) � (S, 0, 0, 0, 0) � (T, 0, 0, 0, 0),

P3 � (S, I, Q, R, A) � (0, I, 0, 0, 0) � (0, T, 0, 0, 0).

(7)

To study the local stability of these equilibrium points,
the Jacobian matrix, (J), must be calculated [40]:

J �

− αSAA − βI − βS ω σ − αSAS

βI βS − αIAA − δQ δI 0 − αIAI

0 δQ δI − ω − αQA − α 0 0

0 0 α − σ 0

αSAA αIAA αQA 0 αSAS + αIAI

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)
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Figure 1: SIQRA model.

Mathematical Problems in Engineering 3



Considering the P1 equilibrium point, the Jacobian
matrix, JP1

, is given by

JP1
�

− αSAT 0 ω σ 0

0 − αIAT 0 0 0

0 0 − ω − αQA − α 0 0

0 0 α − σ 0

αSAT αIAT αQA 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)

By using MATLAB R2013a [41], the eigenvalues of JP1
are λ1 � 0, λ2 � − σ, λ3 � − αIAT, λ4 � − αSAT, and
λ5 � − (α + ω + αQA).

+e zero eigenvalue only indicates that the state space di-
mension is 4 in spite of the 5-equation model. +e other ei-
genvalues are real and negative, for any parameter combination
with physicalmeaning, implying thatP1 is asymptotically stable.

Repeating the procedure for the equilibrium point P2,
the Jacobian matrix, JP2

, is given by

JP2
�

0 − βT ω σ − αSAT

0 βT 0 0 0

0 0 − ω − αQA − α 0 0

0 0 α − σ 0

0 0 αQA 0 αSAT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10)

whose eigenvalues are λ1 � 0, λ2 � αSAT, λ3 � βT, λ4 � − σ,
and λ5 � − (α + ω + αQA).

Again, the zero eigenvalue only indicates that the state space
dimension is 4, in spite of the 5-equation model. For any
parameter combination with physical meaning, one of the ei-
genvalues, λ2, is real and positive, indicating that P2 is unstable.

+e endemic equilibrium point, P3, is characterized by
the presence of infected individuals (I≠ 0) and to perform
calculations, it is supposed that there is no antidotal node in
the network (A � 0).

For P3, the Jacobian matrix, JP3
, is given as follows:

JP3
�

− βT 0 ω σ 0

βT 0 δT 0 − αIAT

0 0 δT − ω − αQA − α 0 0

0 0 α − σ 0

0 0 αQA 0 αIAT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

whose eigenvalues are λ1 � − βT, λ2 � 0,
λ3 � δT − α − ω − αQA, λ4 � − σ, and λ5 � αIAT.

As in the other cases, the zero eigenvalue only indicates
that the state space dimension is 4, in spite of the 5-equation
model. For any parameter combination with physical
meaning, one of the eigenvalues, λ5, is real and positive,
indicating that P3 is unstable.

3. Numerical Experiments

By using the Simulink tool from MATLAB R2013a [41],
model simulations were performed to confirm the analytical

results, showing the possible behaviors of the dynamical
system when quarantine and antidotal compartments are
present. +e total population T � (S + I + Q + R + A) is set
equal toN� 100, to express the results in percentage, and the
time unit is normalized, according to the normalized rates of
interactions.

3.1. Numerical Experiments:Model without the IQ Saturation
Term. To simulate this situation, the parameters and pop-
ulation were chosen to show the stability of the equilibrium
points. Considering αSA � 0.025, β � 0.1, ω � 2, σ � 0.8,
αIA � 0.25, δ � 9, αQA � 0.5, and α � 0.5 for all simulations.

If an infected node is introduced into the network, the
asymptotically stable equilibrium, P1, is reached, as Figure 2
shows, with initial conditions S � 99, I � 1, A � 0, R � 0,
and Q � 0.

If the infected population is high, the introduction of
either an antidotal node (Figure 3(a)) or a quarantine node
(Figure 3(b)) drives the populations to stable equilibrium.

When the network consists only of susceptible and re-
moved computers, it is possible to verify that even the
disease-free unstable equilibrium point, P2, is reachable for
any parameter combination, because the unstable eigen-
vector direction I has been avoided. Figure 4 shows this
situation starting with S � 90 and R � 10 and reaching P2.

3.2. Numerical Experiments: Model with the IQ Saturation
Term. As analytically shown, depending on the initial
condition, the temporal evolution of network ends at three
different points: stable disease-free, unstable disease-free,
and unstable endemic. To show these three cases, the pa-
rameters are set at αSA � 0.025, β � 0.1, ω � 2, σ � 0.8,
αIA � 0.25, δ � 9, αQA � 0.5, and α � 0.5.

If the network starts with only one antidotal machine,
the stable disease-free P1 is always reached, as Figure 5 shows
for the initial condition (S, I, Q, R, A) � (85, 9, 0, 5, 1).
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Figure 2: SIQRA without the IQ term: time evolution reaching P1.
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Another way to capture the disease-free stable equilib-
rium P1 is considering the same parameter values and
starting with a condition without antidotal machines but
with at least a quarantine one. Figure 6 shows the temporal
evolution of the dynamic model for the initial conditions
(S, I, Q, R, A) � (85, 9, 1, 5, 0).

When the network consists only of susceptible and
removed computers, it is possible to verify that even the
disease-free unstable equilibrium point, P2, is reachable
for any parameter combination, because the unstable

eigenvector direction (I) has been avoided. Figure 7 shows
a temporal evolution starting at S � 90 and R � 10 and
reaching the disease-free equilibrium P2.

Starting without antidotal or quarantine machines, even
one infected node drives the network to collapse at an
endemic equilibrium point. Figure 8 shows a temporal
evolution initial condition (S, I, Q, R, A) � (99, 1, 0, 0, 0),
reaching the endemic equilibrium point P3.
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Figure 3: SIQRA without the IQ term: time evolution reaching P1, starting with high I: (a) Introducing one antidotal, (b) Introducing one
quarantine.
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Figure 4: SIQRA without the IQ term: time evolution reaching P2.
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Figure 5: SIQRA with the IQ term: time evolution reaching P1
starting with an antidotal machine.
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3.3. SimulationswithRealData. In [42], an infection control
model was developed and tested by using data from cy-
bernetic crimes in Japan networks. +e population data S
and I given in [42] was taken to test the SIQRA models,
identifying β with the infection rate and σ with the re-
covering rate.

+e normalization of these practical data to be com-
patible with the time and population scales used here gives
S0 � 23.01, I0 � 76.99, A0 � 0, Q0 � 0, R0 � 0, αSA � 0.025,

β � 7.85.10− 11, ω � 2, σ � 8.890729.10− 4, αIA � 0.25, δ � 9,
αQA � 0.5, and α � 0.5. Simulating the SIQRA model
without the IQ term, the results are shown in Figure 9, with
the final state presenting about 10% of removed machines.

To avoid removing machines, the SIQRA model with IQ

term can be used but demands at least an initial antidotal
machine.Without changing parameters, Figure 10 shows the
results adopting S0 � 22.01, I0 � 76.99, A0 � 1, Q0 � 0, and
R0 � 0.
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Figure 6: SIQRA with the IQ term: time evolution reaching P1
starting with a quarantine machine.
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Figure 7: SIQRA with the IQ term: time evolution reaching P2.
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Figure 8: SIQRA with the IQ term: time evolution reaching P3.
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Figure 9: SIQRA without the IQ term: simulation with real data.
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4. Conclusions

Classical SIR models applied to data communication sys-
tems inspired the first SIRA model, introducing antidotal
nodes that supposedly improve the operational network
robustness [2]. Bifurcations of equilibrium points and
conditions for existence and stability of disease-free equi-
librium points for the SIRA model were derived [18, 30],
suggesting network design strategies.

Recently, the SIRA model showed improvement related
to the practical situation considering variable populations,
deriving network robustness conditions [31]. Here, the SIRA
model was complemented with a quarantine strategy
(SIQRA model), and the simulations indicate that network
performance can be increased in the great majority of the
cases and hypothesis that must be tested in real situations.

+emain results regarding the SIQRAmodel are divided
into two cases: with and without saturation condition.
Saturation is about the behavior of the Q term that depends
on the antivirus program capacity and the infection rate. If
the antivirus detection rate is greater than the infection rate,
there is no saturation. If the infection rate surpasses the
antivirus detection capacity, saturation occurs.

If the Q compartment is not subjected to the possibility
of saturation (no IQ term), the stable disease-free equilib-
rium point exists and is always reached. However, if there is
any possibility of saturation (IQ term present), an initial
antidotal or quarantine node is necessary. If there is neither
initial antidotal nor quarantine node, even a single infected
machine collapses the network.

Testing the models with real data shows that quarantine
is effective to combat infection in data networks. +e
noninclusion of IQ terms, in spite of eliminating infected
nodes, implies the removal of a certain number of machines.
+e inclusion of the term IQ avoids machine removal but
demands the inclusion of either a quarantine or an antidotal
node.
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