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Tunnel settlement commonly occurs during the tunnel construction processes in large cities. Existing forecasting methods
for tunnel settlements include model-based approaches and artificial intelligence (AI) enhanced approaches. Compared with
traditional forecasting methods, artificial neural networks can be easily implemented, with high performance efficiency and
forecasting accuracy. In this study, an extended machine learning framework is proposed combining particle swarm optimization
(PSO) with support vector regression (SVR), back-propagation neural network (BPNN), and extreme learning machine (ELM) to
forecast the surface settlement for tunnel construction in two large cities of China P.R. Based on real-world data verification, the
PSO-SVR method shows the highest forecasting accuracy among the three proposed forecasting algorithms.

1. Introduction

Accurate tunnel surface settlement prediction is crucial for
construction companies to prevent unexpected disasters,
such as tunnel collapse and landslide. For tunnel construc-
tions in large cities, such as metro trains constructions,
a precaution alarm of the tunnel settlement helps reduce
the risks with affecting nearby people’s activities, possible
building damage and environment pollution [1]. For rural
area tunneling, especially for mountain tunneling, tunnel
settlement monitoring prevents landslide that usually can
cause construction workers injuries or deaths [2].

Two types of tunnel settlement forecasting methods are
available in the literature, namely, model-based methods
and artificial intelligence (AI) enhanced methods. Model-
based methods build physical or mathematical models based
on physics theories and verify the model using physical

simulations [3, 4]. However, some physics or mathematical
theories are hard to apply directly to real-world situations due
to various dependent parameters and, in many cases, serious
assumptions have to be made for the physical model can be
applied, which may become invalid from time to time.

The fast development of artificial intelligence (AI) pro-
vides another option for tunnel settlement prediction. Avail-
able AI enhancedmethods include pattern sequence forecast-
ing (PSF) [5], support vector regression (SVR) [6], artificial
neural networks (ANN) [7], and deep learning neural net-
works (DLNN) [8]. Between them, the PSF, SVR, and ANN
are usually applied to small data analysis, whereas the DLNN
methods are more popular for big data analysis and able to
provide accurate forecasting results while a long history of the
time series data is available.

Two difficulties arise for tunnel settlement forecasting
using data-driven methods. First, the time period of tunnel
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construction is limited, whichmakes it impossible to collect a
long history of data, e.g., up to several years.Moreover, tunnel
settlements are usually expected to be fixed within a short
period of time, which again makes the collected time series
data in short length. Second, the tunnel construction com-
pany usually only records relative height of the measuring
points, which makes the collected time series data in univari-
ate form.Univariate time series data forecasting is reported to
be more difficult than multivariate data forecasting problems
[9]. The above two difficulties make the DLNN methods,
such as the long short-termmemory (LSTM) neural network
and its extensions, not suitable for the tunnel settlement
forecasting, since for small size data, the DLNN methods
usually produce less accurate forecasting results compared
with conventional neural networks, such as back-propagation
neural network (BPNN), SVR, and extreme learningmachine
(ELM) [10].

In this study, an extended AI enhanced approach that
combines the traditional machine learning techniques with
particle swarm optimization (PSO) is proposed. A real-
word tunnel surface settlement dataset is employed to verify
the performance of the proposing method. In overall, the
work that we described in this paper contributes to both
the scientific and industrial areas with the following three
points:

(1) Utilizing machine learning techniques for tunnel set-
tlement forecasting. Tunnel settlement forecasting is
a realistic issue in real-world civilization process.
However, not many works have been done in this
area; especially when the AI enhanced techniques
have been rapidly developed, the essentialness of fully
utilizing the historical data in tunnel construction
process must be emphasized.

(2) Univariate time series data forecasting with small data
size. The tunnel settlement data, which was employed
in this study, was recorded by a metro tunnel con-
struction company located in Shanghai. For each
measured tunnel surface point, a time series dataset
of size 100 is provided. Moreover, the construction
company only records the height of each measured
point.However, it is evident that the tunnel settlement
is affected by multiple external factors, such as the
environmental elements and civilization works. The
univariate and small data size properties make the
forecasting problem increasingly challenging.

(3) Extended machine learning approaches are proposed.
The proposed forecasting method modifies the tra-
ditional machine learning techniques, such as SVR,
BPNN, and ELM, to make them more suitable for
tunnel settlement forecasting. A PSO process is added
to search for the optimal parameters for various
classifiers. In the experiment phase, a comparative
analysis is performed to justify the effectiveness of the
proposed method.

2. Literature Review

In general, there are two approaches for time series data
forecasting, namely, model-based method and data-driven
method.Model-basedmethods utilize mathematical of phys-
ical models to perform simulation and usually require multi-
variate data to be recorded. The extra variables excluding the
tunnel surface point heights may include underground water
pumping, soil quality measurements, and other assumptions.
The forecasting accuracy depends on the validity of the
physical assumptions. Shi et al. [11] investigated the soil
movement responding to the tunnel excavation in clays
through simulations.The soil movements are themain causes
of tunnel settlements. Chakeri et al. [12] designed a FLAC3D
(Fast Lagrange Analysis of Continua in 3 Dimensions) model
to simulate the tunnel excavation process and consequently
investigate the ground surface settlement. The proposed
FLAC3D is finite-difference approach, based on a number
of mathematical assumptions. Strokova [13] surveyed tra-
ditional model-based prediction methods for tunnel settle-
ment during construction process. A finite-element based
software named “Plaxis” and a mathematical model built
based on real-world tunnel settlement data in 2007-2008
at Munich Technical University are utilized for simulation
and performance comparison [14]. In summary, the model-
based methods provide a white-box modeling for the tunnel
settlement problem.The forecasting accuracy ofmodel-based
methods is comparable to data-driven approached methods
while multiple external variables are available with valid
mathematical assumptions.

Data-driven approaches are grey-box or black-box mod-
els that involve a complex internal structure, receive a
preprocessed version of input dataset, and output integrated
forecasting results. Conventional data-driven approaches for
time series data forecasting include autoregressive (AR)
methods [15], artificial neural networks (ANNs) [16], support
vector regression (SVR) [17], deep learning neural networks
(DLNNs) [18], and wavelets methods [19]. Ji et al. [20]
proposed a least square support vector regression (LSSVR)
method for ground surface settlement. Wang et al. [16]
reported that by utilizing an adaptive differential evolution
(ADE) algorithm to overcome the local extreme issues in
optimal weight searching process in BPNN, the traditional
BPNN can outperform most existing forecasting methods,
such as SVR and AR models. Kuremoto et al. [21] proposed
to use a deep belief network with restricted Boltzmann
machines to perform time series data forecasting. Wang et al.
[22, 23] proposed to use extended echo state network (ESN)
to forecast electricity energy consumption in China. Wu and
Gao [24] combined AdaBoost algorithm and long short-
term memory (LSTM) neural network to forecast financial
time series data. Lu et al. [25] introduced another extended
LSTM algorithm combining with the differential evolution
(DE) method for electricity price forecasting. Yan et al. [26]
proposed a multistep forecasting algorithm that integrates
convolutional neural network (CNN) with LSTM to forecast
single household energy consumption.
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Figure 1: A simple linear regressive plane with insensitive loss variable 𝜀.

3. Proposed Algorithm for Tunnel
Settlement Forecasting

3.1. Data Description. Two real-world tunnel settlement
datasets were employed for the study of tunnel settlement
prediction based on various modern machine learning tech-
niques. Both datasets were collected by a local China tunnel
construction company with one of them measuring the tun-
nel surface settlement of the metro train line 3 construction
in Ningbo city, China, and the other one measuring the
tunnel surface settlement of a subway construction in Zhuhai
city, China. Over 700 ground surface sensors were utilized,
measuring the overall settlement on each day during the
tunnel construction period. The recording frequency is once
per day; and the total number of records for each surface
point is around 100, depending on the particular construction
progress conditions.

In the experiment phase, in total 10 measured surface
points were selected and, for each point, 5/6 of the total
recorded length was taken as the training dataset for modern
machine learning prediction models, including BPNN, SVR,
and ELM. The remaining 1/6 of the total recorded length
was used for verification purposes, computing classic error
measurement metrics, including root mean square error
(RMSE), mean square error (MSE), and mean absolute
percentage error (MAPE).

3.2. Back-Propagation Neural Network. BPNN, as one spe-
cific form of ANN, represents one of themost classicmachine
learning techniques, which is continuously employed and
improved in various application fields [27–29]. The most
critical limitation of BPNN is probably the situation when
it is used dealing with big data. For tremendous size
data, parallelization of the original BPNN is required [29].
However, when the data size is serious small, the BPNN
usually provides high forecasting accuracywithminimal time
required compared with other machine learning techniques.
Over the past few decades, many extensions of BPNN are
proposed. With a preprocessing step, such as the particle
swarm optimization (PSO), the extended BPNN becomes
more suitable for forecasting and prediction under various
working conditions.

3.3. Support Vector Regression. Support vector regression
(SVR) is a state-of-the-art and probably the most commonly
applied machine learning technique for various purposes
in the field of industry engineering, including solar energy
generation optimization [30], traffic flow forecasting [31],
and molecular dynamics forecasting [32]. Inheriting the core
idea from support vector machine (SVM), SVR looks for
a hyperplane in high dimension that best represents the
data pattern. Figure 1 shows a simple linear support vector
regressive plane with insensitive loss variable 𝜀.

LibSVM is an assembled tool-box developed by Chang
and Lin, which provides the easy access to use SVR and
SVM [25]. For a given set of training data, Tr = {(𝑥𝑖, 𝑦𝑖)},
where 𝑥

𝑖
is the training input and 𝑦

𝑖
is the objective output

value. LibSVM is able to find the objective function f (x) with
specified three important parameters: K, C, and 𝛾. K stands
for the kernel function that maps the low dimensional input
data into high dimensional feature space. C and 𝛾 can be
optimized by the PSO algorithm.

3.4. Extreme Learning Machine. Extreme learning machine
(ELM), proposed by Huang et al. in 2004 and 2006 [33, 34],
is reputable by its fast learning speed with low computa-
tional resources and simultaneously providing competitive
classification results [35–37]. ELM was well known as a
single-layer feed-forward neural network (NN) and also has
been extended to non-NN forms. Compared to other neural
networks in the literature, such as BPNN, multilayer neural
networks and SVM, ELM is much faster in terms of train-
ing efficiency and provides higher generalized classification
accuracy in many proven cases.

The traditional ELM algorithm maps the input data
samples with the recognized pattern using one single layer of
neurons. For any testing sample x, the ELM functionmapping
can be expressed by

𝑓 (𝑥) =
𝐿

∑
𝑖=1

𝑤 ⋅ ℎ (𝑎, 𝑏, 𝑥) , (1)

where a, b are tuned parameters and w is the weight vector
for hidden neurons, which is fixed during the training phase.
The function f (x) represents the recognized pattern of the
input data samples. The tuning-free feed-forward training
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Figure 2: Rolling window size determines the length of effective source data samples in the training dataset. For all machine learning
techniques, a rolling window size 𝑘must be specified for best prediction performance.

strategy of ELM is equivalent to the process of solving a linear
equation system that requires very low computational cost.

The basic ELM implementation can be found at http://
www.ntu.edu.sg/home/egbhuang/index.html. To achieve the
best result using ELM, two important parameters are required
to be tuned, which are the number of hidden neurons, and
the activation function. The two parameters, again, can be
optimized using PSO algorithm.

3.5. Rolling Window Size Selection. Considering the proper-
ties of the real-world tunnel settlement data, such as short
size, univariate and sparse sampling data points (1 sampling
on each day), we select a suitable rolling window size for
each machine learning technique in its training process.
The univariate training data was reorganized into batches
according to the rolling window size and inserted into the
machine learningmodels to predict the next time stamp value
(Figure 2). The rolling window size is another important
parameter for each machine learning model and basically
determines the length of effective source data samples in the
training dataset for prediction, since too old data samples
usually have less significant influence to the prediction
results. According to the data description in Section 3.1, the
suitable rolling window size usually lies in the range from 1 to
20.

3.6. Using Particle Swarm Optimization to Find Optimal
Parameters for Various Machine Learning Techniques. For all
three machine learning techniques that we used in this work,
i.e., BPNN, SVR, and ELM, there are important parameters
to be tuned, which will seriously impact the final forecasting
results [38]. In this study, the PSO is adopted to find the opti-
mal parameters for the three machine learning techniques.
The overall algorithms are denoted as PSO-BPNN, PSO-SVR,
and PSO-ELM.

Compared to the other optimization search algorithms,
such as the genetic algorithm (GA), ant colony algorithm
and differential evolution (DE) algorithm, the PSO algorithm
is more efficient and able to avoid problems of stagnation
behavior and premature convergence [39–41]. Moreover, in
the PSO algorithm, the number of parameters is small and the
real number coding is adopted. Although the PSO algorithm
has shortcomings, such as easy to fall into local extremes,

the convergence speed is affected by inertia weight, etc.
These shortcomings can be resolved by repeated runs and
selecting an appropriate combination of the parameters for
the algorithm [42].

Taking PSO-SVR algorithm as an example, the initial
parameters of PSO include the number of particlesm, inertia
weight w, and two learning constants 𝑐

1
and 𝑐
2
. The search

of the parameters of PSO depends on the mean absolute
percentage error (MAPE) evaluation of SVR results. For a
given set of training data X = {𝑥

𝑖
, 𝑡
𝑖
} with number of samples

n, where 𝑥
𝑖
stands for the actual data and 𝑡

𝑖
stands for

the forecasting result produced by SVR, the MAPE value is
calculated by

𝑀𝐴𝑃𝐸 = 100
𝑛
∙
𝑛

∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑥
𝑖
− 𝑡
𝑖

𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. (2)

First, we set m = 200 and search 𝑤 in the range [0.5, 50],
𝑐
1
and 𝑐
2
in the range [1, 10]. Based on grid search results with

step size 0.1, and with various combinations of parameters for
SVR, we select w = 25, 𝑐

1
= 1.2, and 𝑐

2
= 1.6.

Next, after fixing the parameters of PSO, we look for
the optimal parameter combination of SVR using PSO
(illustrated in Figure 3). Then the optimal values of C, 𝛾, and
k (SVR parameters) are obtained when all particles converge
(Figure 4). The detailed steps of the PSO-SVR algorithm are
listed in Algorithm 1.

The same process can be applied to search for the optimal
parameter combination of BPNN and ELM.

4. Experimental Results

The threemachine learning techniques, namely, BPNN, SVR,
and ELM, combining with PSO parameter optimization algo-
rithm is applied to a real-world tunnel settlement prediction
problem with two datasets collected by a local China tunnel
construction company with one of them measuring the tun-
nel surface settlement of themetro train line 3 construction in
Ningbo city, China, and the other one measuring the tunnel
surface settlement of a subway construction in Zhuhai city,
China. For each tunnel construction project, 5 representative
surface points are selected, which are surface point numbers
184, 191, 192, 220, and 230 for the subway construction in

http://www.ntu.edu.sg/home/egbhuang/index.html
http://www.ntu.edu.sg/home/egbhuang/index.html
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Input: Searching space of vector (C, 𝛾, k), where C ranges from 1 to 10000; 𝛾 ranges from
-100 to 100; and k is the rolling window size, ranges from 1 to 20.
Output:The optimal values of C, 𝛾, k based on MAPE evaluation of SVR.
Step 1: For each particle p, a location vector lp and a velocity vector vp are assigned.
Step 2: For each particle p, the fitness function is evaluated, which is the MAPE value of
SVR using this particular particle’s location vector.
Step 3: At each iteration, if the fitness function is not satisfied, all particles update their
historical optimal location h and global optimal location g according to their current
location and velocity.
Step 4:When the maximum iteration is reached, or the MAPE value is less than a
pre-defined value, the global optimal location g in the search space is outputted.

Algorithm 1: PSO algorithm looking for the optimal parameter set for SVR.

OutputSupport Vector
Regression

Particle Swarm
Optimization

Data

Data

C, 

Figure 3: Illustrating the steps of finding optimal parameter combination for SVR.
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Table 1: Prediction results of all measurement points.

Point number PSO-SVR PSO-BPNN PSO-ELM
MSE RMSE MAPE % MSE RMSE MAPE % MSE RMSE MAPE %

184 0.000158 0.012562 0.653395 0.072721 0.269669 0.411474 0.246769 0.496759 1.412007
191 0.000381 0.019515 0.120525 0.02051 0.143215 0.611794 0.018798 0.137107 0.642722
192 0.000242 0.015568 1.153007 0.05744 0.239667 11.00573 0.014357 0.119823 3.166807
220 0.002564 0.050634 0.039021 0.398009 0.630879 5.88052 0.39639 0.629595 5.869113
230 0.000128 0.011333 0.141477 0.134172 0.366295 0.757707 0.117423 0.342671 0.969642
554 0.003051 0.055235 1.186884 0.254399 0.504379 1.491434 0.560271 0.748513 2.346384
569 0.001809 0.042533 1.441162 0.378479 0.615206 2.444453 1.046243 1.02286 3.023007
570 0.002652 0.051502 1.116073 0.419282 0.64752 1.932607 0.509027 0.713461 2.194194
571 0.001287 0.035874 0.351681 0.570813 0.755522 0.957628 0.794074 0.891108 1.856434
580 0.003629 0.060241 2.490363 1.560899 1.24936 11.4861 0.509974 0.714125 8.178366
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Figure 5: Prediction result of surface point number 184 from Zhuhai subway tunnel construction. The first 5/6 of the source data is used
to train the machine learning models. The last 1/6 of the source data is used to compare with the prediction results from various machine
learning techniques.

Zhuhai city and surface point numbers 554, 569, 570, 571, and
580 for themetro train line 3 construction in Ningbo city. For
each surface point, 5/6 of the total recorded length will be
taken as the training dataset and the remaining 1/6 was used
for testing purposes, which contains approximately 10 to 20
points.

Figure 5 shows the tunnel settlement prediction for
measuring surface point number 184 for the subway con-
struction in Zhuhai city. The actual surface point height
decreasesmost of the time from -7.5mm to -34mmwith some
unstable movements because of the underground tunnel
construction. In total, there are 75 data points for this
particular measurement point. All three machine learning
models with parameters optimized by PSO were tested with
this measurement point. The first 5/6 of the total dataset
is used for training and looking for the best fits of the
machine learning models. With each trained model, each

rolling window batch will produce predicted value, which is
shown in different colors. The results of BPNN are shown in
blue color; the results of SVR are shown in pink color; and the
results of ELMare shown in green color. Formost of the cases,
PSO-SVR produces the best RMSE, MSE, and MAPE values
according to Table 1, following by BPNN and ELM. Figures
6–9 show the prediction results of surface point numbers 191,
192, 220, and 230, respectively.

Figure 10 shows the tunnel settlement prediction for
measuring surface point number 554 for the metro train
line 3 construction in Ningbo city. Most of the measuring
surface points of this project go up in the first phase of
the construction and drop down in the later phase due
to the underground human interferes. The surface point
movement trend of the first phase is useless for forecasting
the testing time period. This is one important reason that
we introduce the rolling window in Section 3.5. With proper
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Figure 6: Prediction result of surface point number 191 from Zhuhai subway tunnel construction.
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Figure 7: Prediction result of surface point number 192 from Zhuhai subway tunnel construction.

rolling window sizes selected, the proposedmachine learning
framework predicts the tunnel surface point movement
based on the most recent movement history and ignores the
movement history outside the rolling window. Figures 11–14
show the prediction results of surface point numbers 569, 570,
571, and 580, respectively. Experimental results demonstrate
that the proposed approach can well predict tunnel surface
point movement with human interferes.

For all measurement points shown above, we list MSE,
RMSE, and MAPE results of the three machine learning
techniques in Table 1. The experimental results show that the
PSO-SVR can most accurately predict the tunnel settlement
compared with PSO-BP and PSO-ELM. All RMSE values are
less than 0.1 withMAPE values less than 2.5%, which suggests

that the proposed PSO-SVRmethod can be well fitted to real-
world tunnel settlement forecasting problems.

5. Conclusion and Limitation

Aiming at preventing serious damage during the tunnel con-
struction process, this study proposes an extended machine
learning framework combining different machine learning
techniques with PSO to forecast the tunnel surface settlement
based on univariate historical data. By evaluating the partic-
ular form of the real-world tunnel settlement historical data,
three modern machine learning techniques were selected,
including BPNN, SVR, and ELM. The PSO algorithm is
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Figure 8: Prediction result of surface point number 220 from Zhuhai subway tunnel construction.
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Figure 9: Prediction result of surface point number 230 from Zhuhai subway tunnel construction.

adopted to select the globally optimized parameters for each
machine learning technique.

In the experiment phase, two real-world datasets were
used for performance comparisons between different
machine learning techniques. One dataset records the tunnel
surface settlement of a metro train line construction in
Ningbo city, China and the other dataset records the tunnel
surface settlement of a subway construction in Zhuhai city,
China. A comprehensive comparative study is performed,
with MSE, RMSE, MAPE values evaluated for each machine
learning technique. The overall result suggests that the SVR
is most suitable for tunnel settlement forecasting based

on the univariate real-world data, followed by BPNN and
ELM.

The current work has the following limitations. First,
the tunnel settlement data that we used in this study is
relatively a small size dataset, which makes the DLNN
methods, such as long short-termmemory (LSTM) and gated
recurrent unit (GRU), not suitable for this study. As a result,
instead, three representative nondeep learning techniques,
i.e., BPNN, SVR, and ELM, are selected to perform the
simulations. More machine learning techniques have to be
tested in future study. Second, PSO method is employed
to search for the optimal parameter combinations for the
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Figure 11: Prediction result of surface point number 569 of the metro train line 3 construction in Ningbo city.

threemachine learningmethods.More searching algorithms,
such as genetic algorithm (GA), ant colony algorithm, and
differential evolution (DE) algorithm can be adopted and
compared in future study.
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Supplementary Materials

Two real-world tunnel settlement datasets were employed for
the study of tunnel settlement prediction based on various
modern machine learning techniques. Both datasets were
collected by a local China tunnel construction company with
one of them measuring the tunnel surface settlement of

the metro train line 3 construction in Ningbo city (section
code: NBDT), China, and the other one measuring the
tunnel surface settlement of a subway construction in Zhuhai
city (section code: ZHSD), China. Over 700 ground sur-
face sensors were utilized, measuring the overall settlement
on each day during the tunnel construction period. The
recording frequency is once per day and the total number of
records for each surface point is around 100, depending on
the particular construction progress conditions. Individual
attributes descriptions for “TunnelData.cvs”: (1) Index. (2)
Point ID: each monitored point has an ID. (3)Monitor date:
the date when the data was collected. (4)This time change:
relative movement (vertical) from the previous record of
this point. (5) All time change: total movement (vertical)
of this point. (6) Project code: PC0001-PC0008 indicates
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Figure 14: Prediction result of surface point number 580 of the metro train line 3 construction in Ningbo city.

8 projects, where in this paper, we only use data with
PC0001 (Ningbo) and PC0002 (Zhuhai). (7) Section code:
PC0001 corresponds to NBDT, which stands for the tunnel
in Ningbo city, China. PC0002 corresponds to ZHSD, which
stands for the tunnel in Zhuhai city, China. (8) Tunnel code:
one city may have multiple tunnels. These are the IDs
for tunnels. (9) Point code: the code for point (another
ID with alphabets). (10) Point type: types of points. (11)
Ring number: the tunnel was constructed by inserting rings.
These are the IDs for Rings. (12) Depth: this indicates the
depth of the center of ring. (13) Relative direction: the ring
direction. (14) Min distance axis: the minimum distance
between the actual ring axis and the predefined ring axis.
(15) Alarm rule id single: a predefined rule that is used to
alarm when the min distance axis reaches a threshold. (16)
Alarm rule id sum: sum the IDs of all offended rules. (17)
Comments. (Supplementary Materials)
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