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The nonstationary components and noises contained in the bearing vibration signal make it particularly difficult to extract fault
features, and minimum entropy deconvolution (MED), maximum correlated kurtosis deconvolution (MCKD), and fast spectral
kurtosis (FSK) cannot achieve satisfactory results. However, the filter size and period range ofmultipoint optimalminimumentropy
deconvolution adjusted (MOMEDA) need to be set in advance, so it is difficult to achieve satisfactory filtering results. Aiming at
these problems, a parameter adaptive MOMEDA feature extraction method based on grasshopper optimization algorithm (GOA)
is proposed. Firstly, the multipoint kurtosis (MKurt) of MOMEDA filtered signal is used as the optimization objective, and the
optimal filter size and periodic initial value whichmatched with the vibration signal can be determined adaptively throughmultiple
iterations of GOA. Secondly, the periodic impact contained in the vibration signal is extracted by the optimized MOMEDA, and
the fault features in the impact signal are extracted by Hilbert envelope demodulation. Finally, the simulation signal and bearing
signal are processed by the proposed approach. The results show that the introduction of GOA not only solves the problem of
parameter selection in MOMEDA, but also achieves better performance compared with other optimization methods. Meanwhile,
the feasibility and superiority of the approach are fully proved by comparing it with the three methodsMED,MCKD, and FSK after
parameter optimization. Therefore, this approach provides a novel way and solution for fault diagnosis of the rolling bearing, gear,
and shaft.

1. Introduction

The bearing is an important rotating part widely used in
manufacturing, transportation, aerospace, and other fields,
and one of the most vulnerable rotating components. Bear-
ing failure may cause catastrophic damage to the rotating
machinery and lead to serious loss of life and property.
Therefore, bearing health monitoring and fault diagnosis are
particularly important [1]. At present, the time-frequency
analysis technology is the most popular feature extraction
method. However, the bearing vibration signal contains
complex background noise and interference components,
and satisfactory feature extraction results cannot be obtained
by using the traditional time-frequency analysis methods [2].
Therefore, it is of great significance to explore the simple and
effective feature extraction methods.

The fault impact and vibration source can be extracted
from the vibration signal by Hilbert envelope demodulation
[3]. However, thismethod is only applicable to the single AM-
FM signal. Therefore, signal preprocessing is required before
demodulation. Signal decomposition and mode selection are
themost commonly used preprocessingmethods.The empir-
ical mode decomposition (EMD) [4] is the most classical
method. In order to prevent mode mixing caused by the dis-
continuous signal in the screening process, ensemble empir-
ical mode decomposition (EEMD) [5], complete ensemble
empirical mode decomposition adaptive noise (CEEMDAN)
[6], and other methods were proposed. Zhou et al. [7] first
decomposed the bearing signal into several modes by EEMD,
then extracted the weighted permutation entropy (PE) of the
previous modes, and diagnosed the bearing faults through
SVMensemble classifier. Lv et al. [8] decomposed the bearing
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signal by CEEMDAN and calculated the improvedmultivari-
ate multiscale sample entropy of the effective modes, and the
method realizes the bearing early fault diagnosis. Inspired
by EMD, Smith et al. proposed local mean decomposition
(LMD) [9]. In order to improve its mode mixing problem,
a variety of improved methods have been proposed, such as
ensemble local mean decomposition (ELMD) [10], complete
ensemble local mean decomposition (CELMD) [11], etc.
Zhang et al. [12] proposed a weak fault diagnosis method
based on mask signal and LMD, which can not only suppress
the modal mixing of LMD but also effectively extract the
fault features. Wang et al. [13] decomposed the bearing signal
by ELMD and then selected the effective product functions
(PF) according to kurtosis and finally extracted the fault pulse
information by using fast spectral kurtosis (FSK). Recently,
variational mode decomposition (VMD) [14], empirical
wavelet transform (EWT) [15], and other methods have been
used for signal decomposition. Wang et al. [16] proposed an
improved VMD based on PE and white noise, which can
adaptively select themode number of VMD and is insensitive
to noise. Zhang et al. [17] proposed an adaptive VMD based
on grasshopper optimization algorithm (GOA), which can
adaptively determine the parameters of VMD according
to the signal characteristics, and the decomposition per-
formance of the algorithm is improved. Wang et al. [18]
proposed the sparsity guided EWT, which can automatically
establish the Fourier segments required by empirical wavelet
transform. Luo et al. [19] proposed the autoregressive EWT,
which detects the boundaries of the autoregressive power
spectrum by Burg algorithm. This method avoids the error
boundary caused by white noise and nonstationary signal.
Through these methods, the signal is decomposed into many
subsignals in different frequency bands. Then, some indica-
tors are often used to determine sensitive modes, including
correlation coefficient, kurtosis, energy, and entropy. Further-
more, FSK [20], cyclostationary analysis (CA) [21], stochastic
resonance (SR) [22], and other signal processing methods
have also received increasing attention.

The deconvolution method is another effective signal
processing method, which can extract the impact compo-
nents contained in the vibration signal. Minimum entropy
deconvolution (MED) and maximum correlation kurtosis
deconvolution (MCKD) are the most popular deconvolution
methods. Endo et al. usedMED to diagnose the fault of rotat-
ing machinery for the first time [23]. Li et al. [24] determined
the filter size of MED by constructing the power spectral
kurtosis index and then extracted the impact components
in the filtered signal by time-delay feedback mono-stable
stochastic resonance. Abboud et al. [25] enhanced the impact
component of the signal through MED, then constructed
the optimal frequency band by FSK, and finally extracted
fault features by Hilbert envelope demodulation. Although
mechanical faults can be detected by MED, the MED filter
is not necessarily the optimal filter. In addition, the periodic
impact signals contained in the vibration signal cannot be
efficiently extracted by MED. Mcdonald et al. [26] proposed
MCKD, which can extract a series of fault impacts from
the vibration signal. Wan et al. [27] calculated the period of
MCKD according to the estimated characteristic frequency

and then extracted the early fault features contained in the
filtered signal by FSK. The period and filter size of MCKD
need to be set in advance, so themethod lacks adaptability. In
2017, McDonald et al. [28] proposed the multipoint optimal
minimum entropy deconvolution adjusted (MOMEDA).The
method does not require the iterative solution in the filtering
process, and it can extract the periodic fault impact according
to the multipoint kurtosis (MKurt) in the period range [29].
Wang et al. [30] successfully extracted the multiple impact
components from the simulation signal and gearbox vibra-
tion signal byMOMEDA. Zhu et al. [31] extracted the impact
components from the bearing signal by MOMEDA and
then extracted the fault features by Teager energy operator
(TEO). Wang et al. [32] analyzed the variable speed signal
by MOMEDA and resampling order analysis technology
and achieved good results. Since the early fault features of
the gearbox are often submerged by strong noise, Wang
et al. [33] first used MED to suppress the noise and then
extracted the composite fault features from the denoised
signal by MOMEDA. Cai et al. [34] first used the ELMD
and correlation coefficients to obtain the sensitivemodes, and
they used the combined product function method (CPF) to
recombine the PFwith the same period. Finally, periodic fault
impacts in the combined signal were extracted byMOMEDA.
Thus, the MOMEDA has been increasingly used in periodic
impact extraction and fault diagnosis.

In the deconvolution algorithm, a measure of a signal
(also known as a norm) is first defined, and then a filter is
constructed to maximize the norm of the filtered signal [28].
The norms of MED, MCKD, and MOMEDA are kurtosis,
correlation kurtosis (CK), and multipoint kurtosis (MKurt),
respectively. In the methods, MED and MCKD, the filter size
and the number of iterations affect the norm of the filtered
signal. In addition, the period is the main factor influencing
the filtering effect of the MCKD. Therefore, the parameter
optimization of deconvolution algorithms is particularly
important, and the existing methods are mostly based on
kurtosis. Cheng et al. [35] optimized the filter parameters
of MED by particle swarm optimization (PSO) and then
successfully extracted fault features by optimized MED.
Instance et al. [36] optimized the filter size and the number
of iterations of MED by shuffled frog leaping algorithm
(SFLA), and the method avoids the subjectivity of artificially
selected parameters. Miao et al. [37] estimated the period
of MCKD by calculating the autocorrelation of envelope
signals and improved the resampling process of MCKD. The
above methods improve the filtering performance of MED
and MCKD and provide the new idea and way for the
parameter optimization problemofMOMEDA.Thefilter size
and periodic initial value seriously affect the filtering results
ofMOMEDA.Meanwhile, the effects of these two parameters
on the filtering results are nonlinear and complicated, and the
satisfactory filtering results cannot be obtained by selecting
random parameters. Therefore, the parameter optimization
of MOMEDA is of great significance. Nowadays, many
novel optimization methods are attracting attention, such
as bat algorithm (BA), flower pollination algorithm (FPA),
and cuckoo search algorithm (CS), etc. Saremi et al. [38]
proposed the GOA in 2017 and compared it with a variety
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of optimization algorithms. The results show that GOA has
outstanding advantages in optimizing the unimodal function,
multimodal function, and compound function. Zhang et al.
[17] optimized the mode number and penalty factor of VMD
by GOA, which not only improved the performance of VMD
but also improved the effects of feature extraction. Barman et
al. [39] optimized the kernel function and penalty factor of
support vector machine (SVM) by GOA and then used the
model to predict the power load in the local climate.

To solve the parameter selection problem of MOMEDA,
a parameter adaptive MOMEDA method based on GOA
is proposed, which combines the advantages of GOA and
MOMEDA effectively. Firstly, the algorithm parameters are
initialized according to the signal characteristics. Then, we
optimize MOMEDA parameters by GOA algorithm. In each
iteration, the impact component contained in the mixed
signal is extracted by MOMEDA, and the opposite of the
MKurt is served as the objective function to optimize the
filter parameters. Finally, the optimizedMOMEDA is used to
extract the impact component from the signals, and the fault
feature is extracted through Hilbert envelope demodulation.
In order to prove the validity of the proposed approach,
the method is used to analyze the simulation signal, Case
Western Reserve University (CWRU) bearing dataset [40],
and National Aeronautics and Space Administration (NASA)
bearing dataset [41]. To highlight the advantages of GOA,
the algorithm is compared with PSO, SFLA, and gray wolf
optimization algorithm (GWO) [42], and then the proposed
approach is compared with the MOMEDA methods with
fixed parameters. Finally, the proposed approach is compared
with the three methods, MED, MCKD, FSK after parameter
optimization. The structure of the paper is shown in Fig-
ure 1(b).

Themain contents of the paper are as follows.Theories of
MOMEDA and GOA are introduced briefly in Section 2.The
process of optimizing MOMEDA filter parameters is intro-
duced in Section 3. The validity of the proposed approach
is verified by simulation signal in Section 4. In Section 5,
the validity and reliability of the approach are validated
by CWRU dataset and NASA dataset. In Section 6, the
experimental process and preliminary conclusions are dis-
cussed. The conclusions of the experiment are summarized
in Section 7.

2. A Brief Review of the Diagnostic Techniques

2.1. MOMEDA. The response signal can be expressed as
follows [33, 34, 43]:

𝑦 (𝑛) = ℎ (𝑛) ∗ 𝑥 (𝑛) + 𝑒 (𝑛) , (1)

where 𝑦(𝑛) is the vibration signal, 𝑥(𝑛) is the impact compo-
nent, ℎ(𝑛) is the system frequency response function, and 𝑒(𝑛)
is the background noise. In order to reconstruct the impact
component, the deconvolution process is as follows:

𝑥 (𝑛) = 𝑓 (𝑛) ∗ 𝑦 (𝑛) = 𝐿∑
𝑙=1

𝑓𝑙𝑦𝑘+𝐿−1. (2)

In (2), 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝑁 − 𝐿, where 𝑁 represents the
signal length and 𝐿 represents the filter size. In view of the

characteristics of the periodic impact signal, the multipoint
D-norm is introduced in this method, as shown below.

𝑀𝑢𝑙𝑡𝑖 𝐷 − 𝑁𝑜𝑟𝑚 = 𝑀𝐷𝑁(→𝑦, →𝑡 ) = 1→𝑡 
→𝑡 𝑇→𝑦→𝑦 . (3)

𝑀𝑂𝑀𝐸𝐷𝐴 = max
→
𝑓

𝑀𝐷𝑁(→𝑦, →𝑡 ) = max
→
𝑓

→𝑡 𝑇→𝑦→𝑦 , (4)

where→𝑡 represents a constant vector and it is used to describe
the position andweight of the target impact.Theoptimal filter
can be obtained by solving the maximum of multipoint D-
norm, and the deconvolution process also obtains the optimal
solution at this time. In order to calculate the extreme value
of (4), we first calculate the derivative of the filter coefficients→𝑓 = (𝑓1, 𝑓2, ⋅ ⋅ ⋅ , 𝑓𝐿).

𝑑
𝑑→𝑓 (

→𝑡 𝑇→𝑦→𝑦 ) =
𝑑
𝑑→𝑓

𝑡1𝑦1→𝑦 +
𝑑
𝑑→𝑓

𝑡2𝑦2→𝑦 + ⋅ ⋅ ⋅
+ 𝑑
𝑑→𝑓

𝑡𝑁−𝐿𝑦𝑁−𝐿→𝑦 .
(5)

𝑑
𝑑→𝑓

𝑡𝑘𝑦𝑘→𝑦 =
→𝑦−1 𝑡𝑘→𝑀𝑘 − →𝑦−3 𝑡𝑘𝑦𝑘𝑋0→𝑦. (6)

→𝑀𝑘 = [𝑥𝑥+𝐿−1, 𝑥𝑥+𝐿−2, ⋅ ⋅ ⋅ , 𝑥𝑘]𝑇 . (7)

Therefore, (5) can be transformed into the following form.

𝑑
𝑑→𝑓 (

→𝑡 𝑇→𝑦→𝑦 )
= →𝑦−1 (𝑡1→𝑀1 + 𝑡2→𝑀2 + ⋅ ⋅ ⋅ 𝑡𝑁−𝐿→𝑀𝑁−𝐿)
− →𝑦−3 →𝑡 𝑇→𝑦𝑋0→𝑦.

(8)

The equation 𝑡1→𝑀1 + 𝑡2→𝑀2 + ⋅ ⋅ ⋅ 𝑡𝑁−𝐿→𝑀𝑁−𝐿 = 𝑋0→𝑡 is
used to simplify the formula above, and (5) is equivalent to
the following formula.

→𝑦−1𝑋0→𝑡 − →𝑦−3 →𝑡 𝑇→𝑦𝑋0→𝑦 = →0 . (9)

Then, the equation (→𝑡 𝑇→𝑦/‖→𝑦‖2)𝑋0→𝑦 = 𝑋0→𝑡 can be
obtained. Since →𝑦 = 𝑋0𝑇→𝑓 , assuming (𝑋0𝑋0𝑇)−1 exists, the
following formula can be obtained.

→𝑡 𝑇→𝑦→𝑦2
→𝑓 = (𝑋0𝑋0𝑇)−1𝑋0→𝑡 . (10)

The special solution of (10) is a set of optimal filters, and
the optimal filters can be expressed as follows.
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Calculate the fitness of each search agent
T=the best search agent
while (m<Max number of iterations M)

Update c using Eq. (18) 
for each search agent

Normalize the distances between grasshoppers in [1,4]
Update the position of the current search agent by Eq . (17)
Bring the current search agent back if it goes outside boundaries

end for
Update T, if there is a better solution
m=m+1

end while
Return T

Initialize maximum number of iterations M, cＧ；Ｒ and cＧＣＨ

Initialize the swarm Xi(1, 2, · · · , n)

(a) The implementation process of GOA
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→𝑓 = (𝑋0𝑋0𝑇)−1𝑋0→𝑡 . (11)

𝑋0 =
[[[[[[[[[
[

𝑥𝐿 𝑥𝐿+1 𝑥𝐿+2 ⋅ ⋅ ⋅ 𝑥𝑁𝑥𝐿−1 𝑥𝐿 𝑥𝐿+1 ⋅ ⋅ ⋅ 𝑥𝑁−1𝑥𝐿−2 𝑥𝐿−1 𝑥𝐿 ⋅ ⋅ ⋅ 𝑥𝑁−2... ... ... d
...

𝑥1 𝑥2 𝑥3 ⋅ ⋅ ⋅ 𝑥𝑁−𝐿+1

]]]]]]]]]
]𝐿 𝑏𝑦 𝑁−𝐿+1

. (12)

Then, the original impact signal can be reconstructed by
the formula →𝑦 = 𝑋0𝑇→𝑓 .
2.2. GOA. GOA is a new bionic algorithm, which simulates
the foraging behavior of the grasshoppers [38]. The behavior
of grasshoppers has the following characteristics: the nymphs
move slowly and the step size of movement is small, while the
adults move fast in a wide range of parameter space. There-
fore, the search mechanism of the GOA algorithm consists of
two tendencies: exploration and exploitation. The algorithm
optimizes the objective function by judging the repulsion
region, comfort zone, and attraction region formed between
the grasshoppers. GOA has the advantages of few parameters
and high convergence accuracy. The mathematical model of
GOA [38] is as follows.

(1) The Initialization of the Population. The grasshoppers
random behavior can be represented by the following model.

𝑋𝑖 = 𝑆𝑖 + 𝐺𝑖 + 𝐴 𝑖, (13)

𝑆𝑖 = 𝑁∑
𝑗=1,𝑗 ̸=𝑖

𝑠 (𝑑𝑖𝑗) 𝑑𝑖𝑗
𝐺𝑖 = −𝑔𝑒𝑔
𝐴 𝑖 = 𝑢𝑒𝑤,

(14)

where 𝑋𝑖 represents the location of the 𝑖-th grasshopper,𝑆𝑖 refers to the social interaction, 𝐺𝑖 represents the gravity
force of the 𝑖-th grasshopper, and 𝐴 𝑖 represents the wind
advection. In (14),𝑁 represents the number of grasshoppers,𝑑𝑖𝑗 represents the distance between the 𝑖-th and the 𝑗-th
individual, and 𝑑𝑖𝑗 = |𝑥𝑗 − 𝑥𝑖|, 𝑑𝑖𝑗 = (𝑥𝑗 − 𝑥𝑖)/𝑑𝑖𝑗 represents a
unit vector. The 𝑠 function is shown in (15), which represents
the social forces. 𝑔 represents the gravitational constant, and𝑒𝑔 represents a unit vector pointing to the earth. 𝑢 is a
constant drift, and 𝑒𝑤 represents a unit vector towards the
wind direction.

𝑠 (𝑟) = 𝑓𝑒−𝑟/𝑙 − 𝑒−𝑟, (15)
where𝑓 represents the intensity of attraction and 𝑙 represents
the attractive length scale.

(2) Location Update. Substituting 𝑆𝑖, 𝐺𝑖, and 𝐴 𝑖 in (13), the
specific position of the 𝑖-th grasshopper is as follows.

𝑋𝑖 = 𝑁∑
𝑗=1,𝑗 ̸=𝑖

𝑠 (𝑥𝑗 − 𝑥𝑖) 𝑥𝑗 − 𝑥𝑖𝑑𝑖𝑗 − 𝑔𝑒𝑔 + 𝑢𝑒𝑤. (16)

Equation (16) shows that the grasshoppers move quickly
to the comfort zone, at which point the swarm has not found
a specified point. Therefore, the model needs to be improved
before solving optimization problems. Actually, the model
is considered in free space, and the gravity need not be
considered (no 𝐺𝑖 component). At the same time, we assume
that thewind direction is the same as the target direction (𝑇𝑑).
An improved version of (16) is as follows:

𝑋𝑑𝑖 = 𝑐( 𝑁∑
𝑗=1,𝑗 ̸=𝑖

𝑐𝑢𝑏𝑑 − 𝑙𝑏𝑑2 𝑠 (𝑥𝑑𝑗 − 𝑥𝑑𝑖 ) 𝑥𝑗 − 𝑥𝑖𝑑𝑖𝑗 )
+ 𝑇𝑑,

(17)

where 𝑢𝑏𝑑 and 𝑙𝑏𝑑 are the upper and lower boundaries of
the D-dimensional search space, respectively. 𝑇𝑑 represents
the optimal solution found so far in the target direction. The
outer 𝑐 adjusts the exploration and exploitation of the swarm
near the target. Inner 𝑐 reduces the interaction between
grasshoppers as the iteration number increases.

(3) Balance of Search Ability. The parameter 𝑐 is used to
balance the exploration and exploitation of the swarm,
which decreases linearly with the increase of iteration. This
mechanism reduces the comfort zone and thus enhances the
exploitation ability.

𝑐 = 𝑐max − 𝑚𝑐max − 𝑐min𝑀 , (18)

where 𝑐max and 𝑐min are the upper and lower boundaries of𝑐, respectively, and they take 1 and 0.00004 in this paper.𝑚 represents the current iteration, and 𝑀 represents the
maximum number of iterations.

3. Parameter Adaptive MOMEDA Method
Based on GOA

Kurtosis can characterize the distribution density of the
impact signal, and it has been widely used in signal pro-
cessing. MKurt is based on kurtosis; it not only inherits the
characteristics of the kurtosis but also extends its definition
to multiple pulses at controlled locations [28, 33]. Therefore,
MKurt can not only provide location information of fault, but
also indicate the energy and period of the fault signal [29].
Meanwhile, a larger MKurt characterizes a larger proportion
of the periodic impacts [33].

𝑀𝐾𝑢𝑟𝑡 = (∑𝑁−𝐿𝑛=1 𝑡𝑛2)
2∑𝑁−𝐿𝑛=1 (𝑡𝑛𝑦𝑛)4

(∑𝑁−𝐿𝑛=1 𝑡𝑛8 (∑𝑁−𝐿𝑛=1 𝑦2𝑛)2) . (19)

So we expect to get the maximum of MKurt and the
parameters of MOMEDA when the maximum is reached
in this paper. Since the intention of GOA is to search for
the minimum of the objective function [17], the opposite of
MKurt is used as the objective function in this paper.

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = min
𝛾={𝐿,𝑇𝑖}

{−𝑀𝐾𝑢𝑟𝑡}
𝐿 ∈ [1, 500] , 𝑇𝑖 ∈ [50, 150] , (20)
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where 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 is the objective function and 𝛾 = (𝐿, 𝑇𝑖) is a
set of parameters that need to be optimized. 𝐿 is a positive
integer within range 𝐿 ∈ [1, 500], and𝑇𝑖 takes a value in range𝑇𝑖 ∈ [50, 150]. The steps of the approach are as follows:(1) Input the signal 𝑥(𝑡), and initialize the ranges of
the MOMEDA parameters. Meanwhile, initialize the GOA
parameters and grasshoppers swarm.(2) Extract the periodic impact signal by using
MOMEDA, and calculate the fitness of the impact signal.
Save the best fitness and corresponding position 𝑇𝑑 for each
iteration of GOA.(3) If the current iteration𝑚 is less than themaximum𝑀,
the decreasing coefficient 𝑐 is updated by (18).(4) For each swarm, normalize the distances between
individuals in [1, 4], and update the location of the search
agent by (17).(5) If there is a better solution, update the best fitness
and corresponding position 𝑇𝑑. Then, determine if the stop
criterion is reached (𝑚 ≥ 𝑀). If yes, the iteration is
terminated. Else, let 𝑚 = 𝑚 + 1, and the iteration will be
continued.(6)Obtain the best fitness and the corresponding param-
eters of MOMEDA.(7)Extract the periodic impact signal by usingMOMEDA
with the optimized parameters.(8) Extract fault features from impact signal by using
Hilbert envelope demodulation.

4. Simulations and Comparisons

To verify the feasibility of the approach, we analyzed
the bearing simulation signal [44] by using the proposed
method. Meanwhile, all the experiments were completed by
using MATLAB R2014a under the environment of Intel(R)
Core(TM) i5-5200U CPU @ 2.20GHz 2.19GHz, 8GRAM.

𝑥 (𝑡) = 𝑦0𝑒−2𝜋𝑓𝑛𝜉𝑡 ∗ sin(2𝜋𝑓𝑛 ∗ √1 − 𝜉2𝑡) , (21)

where the natural frequency 𝑓𝑛 = 3000𝐻𝑧, damping
coefficient 𝜉 = 0.1, shift constant 𝑦0 = 2.5, impact period 𝑇 =0.00625𝑠 (characteristic frequency theoretical value 𝑓𝑐ℎ𝑡ℎ𝑒 =160𝐻z), data length 𝑁 = 4096, and sampling frequency𝑓𝑠 = 12𝐾𝐻𝑧. Moreover, the 5 dB noise is mixed into the
original signal.

The waveforms of the simulation signal and noisy signals
are given in Figure 2. In Figure 2(b), the frequency 𝑓𝑐ℎ𝑡ℎ𝑒 =160𝐻z and its harmonics are especially obvious. In Figures
2(c) and 2(d), the characteristic frequency of the noisy
signal and harmonics are submerged by noise. Although the
noisy signal is similar to the actual bearing fault signal, the
waveforms of the noisy signal are more complex [44].

Then, we analyze the noisy signal by the proposed
approach. Here, the search agents 𝑆𝐴𝑛 = 100, the maximum
number of iterations 𝑀 = 10, and the ranges of filter size
and the periodic initial value are 𝐿 ∈ [1, 500] and 𝑇𝑖 ∈[50, 150], respectively. As shown in Figure 3, along with
the increasing of iterations, the grasshopper swarms tend to
converge towards the best locations, and the convergent curve

gradually converges to the minimum. When the number of
iterations 𝑚 = 9, the MKurt (𝑀𝐾𝑢𝑟𝑡 = 0.31328) reaches
the maximum, and the optimal parameters 𝛾 = (𝐿, 𝑇𝑖) =(386, 75.00464) of MOMEDA are obtained.Then, the impact
signal in the noisy signal is extracted by the optimized
MOMEDA, and the envelope of the impact component is
given in Figure 4. The actual value of the characteristic
frequency 𝑓𝑐ℎ = 161.1Hz is approximate to 𝑓𝑐ℎ𝑡ℎ𝑒 = 160𝐻z,
and its harmonics are particularly obvious. Therefore, the
proposed approach is feasible in extracting the features from
the noisy signal.

In order to explore the effect of nonoptimal parameters
on the results, we compared four sets of MOMEDAmethods
with fixed parameters. As shown in Figures 5(a) and 5(b),
when the filter size 𝐿 of MOMEDA is the optimal value 𝐿 =386 obtained by GOA and periodic initial value 𝑇𝑖 = 50,
the frequency 240.2Hz and its harmonics can be observed
clearly. Meanwhile, when 𝑇𝑖 = 90, the frequency 134.8Hz and
its harmonics are obvious. However, the frequency 240.2 Hz
is far greater than the theoretical value of the characteristic
frequency (𝑓𝑐ℎ𝑡ℎ𝑒 = 160𝐻z), and the frequency 134.8 Hz is
far less than the theoretical value. Therefore, the improper
selection of periodic initial value could lead to incorrect
diagnostic results. As shown in Figures 5(c) and 5(d), when𝑇𝑖 of MOMEDA is set to the optimal value 𝑇𝑖 = 75.00464, the
frequency 158.2Hz and its harmonics can be observed clearly,
and these frequencies are approximate to 𝑓𝑐ℎ𝑡ℎ𝑒 = 160𝐻z and
its harmonics. Meanwhile, the spectral peaks of the envelope
spectrum are more obvious when 𝐿 = 900.

Figure 5 shows that the selection of filter size and periodic
initial value has a great impact on the feature extraction
results. Therefore, it is important to choose an effective
optimization method. Next, we discuss the optimization per-
formance of PSO, SFLA, GWO, and GOA. For comparison
purposes, themaximumnumber of iterations and population
numbers of all algorithms are set to 50 and 20, and the other
parameters are the default values. The -6db noise is mixed
into the original signal, and the waveforms of the noisy signal
are shown in Figures 2(e) and 2(f).

As shown in Figure 6 and Table 1, the optimal fitness (-
0.075004) obtained by PSO is greater than that obtained by
GOA when the number of iterations is 29, and the results
show that the optimization precision of PSO is not high.
Moreover, the convergence speed of PSO is slow and the
algorithm is time-consuming. The convergence speed of the
SFLA is fast, and the iterations take little time. However,
the optimal fitness (-0.0746) obtained by SFLA is greater
than that of other algorithms, which indicates that the
optimization precision of the SFLA is lower than that of
other methods. The GWO has high convergence accuracy,
but its convergence speed is very slow and the optimal
fitness is obtained through 49 iterations. Compared with the
above methods, the convergence speed of GOA is very fast.
The optimal parameters are obtained when the number of
iterations is 25. Moreover, the optimal fitness obtained by
GOA is minimal. It can be concluded that GOA is not only
simple in calculation, but also high in convergent speed and
accuracy. The GOA has outstanding advantages compared
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Figure 2: Noisy signals and their frequency domain.
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Figure 3: Optimization results of MOMEDA.
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Figure 4: The envelope of the impact signal.

with other optimization algorithms, so we optimized the
parameters of the MOMEDA by using GOA in this paper.

To highlight the advantage of the approach, the method
is compared with the methods with the optimal parameters,
such as MED, MCKD, and FSK. Since the norms of MED,
MCKD, and MOMEDA are based on kurtosis, the optimal
filter size 𝐿 = 386 obtained by GOA is used as the filter
size of MED and MCKD, and the optimal periodic initial
value 𝑇𝑖 = 75.00464 is taken as the period of MCKD. The
number of iterations of MED and MCKD is both set to
30. Compared with the method in the literature [27], the
method has good adaptability. According to the characteristic
of the noisy signal, the decomposition level of FSK is 4. In
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Table 1: The optimization results of algorithms.

Index PSO SFLA GWO GOA
Fitness -0.075004 -0.07468 -0.07616 -0.076541
Time (s) 356.8335 294.9474 369.3333 321.8644
Convergence 29 27 49 25
Best 𝐿 500 478 494 494
Best 𝑇𝑖 75.0050 72.2673 74.7739 74.99123
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Figure 5: The effect of nonoptimal parameters on the results.

Figures 7(a) and 7(b), the characteristic frequencies obtained
by MED are submerged in irrelevant frequency components.
Although the frequency 158.2Hz and its harmonics obtained
by MCKD can be observed, these frequencies are ambiguous
due to the interference of irrelevant frequencies. Similarly,
the frequency 159.2Hz and its harmonics can be obtained by
FSK, but many interference frequencies exist in the envelope
spectrum. From the comparison between Figures 4 and 7,
the proposed approach has an outstanding advantage in the
feature extraction of the noisy signal.

5. Case Studies

5.1. Case 1: Vibration Signal Analysis of CWRU Bearings.
The data are derived from CWRU bearing dataset [40].
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Figure 6: Convergence curves of optimization algorithms.

The bearing test rig is given in Figure 8 [44], and it is
composed of four parts: a 2 hp motor, a decoder or a torque
sensor, a dynamometer, and a controller. The sensors are
fixed on the motor, and the motor speed is 1797rpm (the
rotational frequency 𝑓𝑟 = 1797/60Hz = 29.95Hz), the 6205-
2RSJEMSKF bearing parameters are listed in Table 2. The
sampling frequency 𝑓𝑠 = 12𝐾𝐻𝑧, and the experimental data
length 𝑁 = 2048. We use the inner ring, outer ring, and
rolling element signals to prove the feasibility of the proposed
approach. The fault diameter of these three bearing compo-
nents is 0.007 inches (0.01778 cm). Based on the parameters
listed in Table 2 and the formulas in literature [45], we can
calculate the corresponding characteristic frequencies and
they are listed in Table 3.

5.1.1. Parameter Initialization. The parameters of MOMEDA
include filter size 𝐿, window function 𝑊𝑖𝑛𝑑𝑜𝑤, periodic
initial value 𝑇𝑖, and periodic final value 𝑇𝑓. Next, we discuss
the effect of different parameters on the MKurt of the filtered
signal. The effect of window function on MKurt is not
discussed in this paper, and we use a rectangular window in
all the tests [28].

The approximate range of MOMEDA parameters can be
determined according to the signal characteristics. Firstly, the
FIR filters with different filter size𝐿 are constructed, the range
of filter size is 𝐿 ∈ [1, 800], and the period interval is𝑇 = [60 :0.1 : 300] (𝑇𝑖 = 60, 𝑇𝑓 = 300). Then, the periodic impacts
are extracted from the different fault signals by these filters.
Finally, theMKurt of these impact signals is obtained, and the
results are shown in Figure 9.
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Figure 7: Comparison of feature extraction methods for the noisy
signal.

The following conclusions can be drawn: (1)The MKurt
of the filtered signals increases with the increase of the filter
size 𝐿. However, none of the four MKurt curves is strictly
monotone increasing function, and the local feature of these
MKurt curves is irregular. Therefore, the filter with a larger
filter size is not necessarily the optimal filter. (2)TheMKurt of
filtered signals in different fault states is different. Therefore,
MKurt can characterize the characteristics of different fault
signals. (3)When the range of filter size is 𝐿 ≤ 500, the three
health statuses of bearings can be effectively distinguished by
calculating the MKurt of the filtered signal. If the filter size is
too large, some information of the periodic impact signalmay
be removed and the length of the filtered signal (𝑁 − 𝐿 + 1)
becomes shorter. In addition, the deconvolution efficiency
of MOMEDA is reduced, and the efficiency of parameter

Table 2: The SKF 6205 bearing parameters.

Ball diameter
(d)

Number of
balls (𝑁)

Pitch
diameter (D)

Contact angle
(𝛼)

7.938mm 9 39mm 0

Table 3: Characteristic frequencies.

Inner ring Outer ring Rolling element
162.1852Hz 107.3648Hz 141.1693Hz

Motor Torque transducer/Encoder Dynamometer

Figure 8: Bearing test rig.

optimization is also reduced. Therefore, the range of filter
sizes is 𝐿 ∈ [1, 500] in this experiment.

Then, we analyze the effect of the periodic initial value 𝑇𝑖
on theMKurt of the filtered signal. Firstly, the FIR filters with
different𝑇𝑖 are constructed, the range of𝑇𝑖 is𝑇𝑖 ∈ [5, 200], the
periodic final value is 𝑇𝑓 = 400, and the filter size is 𝐿 = 400.
Then, the periodic impacts are extracted from the different
fault signals by these filters. Finally, theMKurt of these impact
signals is obtained, and the results are shown in Figure 10.

The following conclusions can be drawn: (1) With the
increase of𝑇𝑖, the change ofMKurt is irregular. (2)TheMKurt
of the filtered signal is large when 𝑇𝑖 is small, the reason is
that the high-frequency noise and high harmonics of the fault
frequencies are mixed into the filtered signal. It can be seen
that a filter with a large 𝑇𝑖 can remove the high-frequency
noise. Therefore, the range of 𝑇𝑖 is 𝑇𝑖 ∈ [50, 150] in this
experiment.

Then, we analyze the effect of the periodic final value 𝑇𝑓
on the MKurt of the filtered signal. Firstly, the FIR filters
with different 𝑇𝑓 are constructed, the range of 𝑇𝑓 is 𝑇𝑓 ∈[200, 600], the periodic initial value is 𝑇𝑖 = 60, and the filter
size is 𝐿 = 400.Then, the periodic impacts are extracted from
the different fault signals by these filters. Finally, the MKurt
of these impact signals is obtained, and the results are shown
in Figure 11.

The results show that the periodic final value 𝑇𝑓 does not
affect the filtering results. Therefore, the optimization of the𝑇𝑓 is not necessary, and the final value𝑇𝑓 = 400 is used for all
experiments. In summary, the number of search agents 𝑆𝐴𝑛 =300, the maximum number of iterations𝑀 = 10, the range
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of filter size 𝐿 ∈ [1, 500], the range of periodic initial value𝑇𝑖 ∈ [50, 150], and periodic final value 𝑇𝑓 = 400.
5.1.2. Inner Ring Signal Analysis of CWRU Bearings. As
shown in Figure 12, the waveforms of the inner ring signal
have a certain regularity, which indicates that the rolling
bearing has failed [44]. However, background noise and
interference frequencies make it difficult to extract the inner
ring fault characteristics directly from the frequency domain
[2]. Therefore, we extract the inner ring fault features by
using the proposed approach. Firstly, the parameters of the
MOMEDA are optimized by GOA algorithm and the results
are shown in Figure 13.

As shown in Figure 13, along with the increasing of
iteration times, the grasshopper swarms tend to converge
towards the best location, and the convergent curve gradually
converges to the minimum. Meanwhile, a large number of
particles are gathered at the right edge of Figure 13(a), and
the results indicate that the optimal target may exist outside
the range of the parameters. In order to ensure the efficiency
of the algorithm and the filtering effect, we only consider
the optimal solution of the algorithm when the filter size is
less than or equal to 500. When the number of iterations
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Figure 12: Inner ring signal and its frequency domain.

𝑚 = 9, the MKurt (𝑀𝐾𝑢𝑟𝑡 = 0.2869) is the maximum,
and the optimal parameters 𝛾 = (𝐿, 𝑇𝑖) = (499, 74.15955)
of MOMEDA are obtained.

Subsequently, the impact component in the inner ring
signal is extracted by the optimizedMOMEDA, and the enve-
lope of the impact signal is given in Figure 14. When the fre-
quencies are 164.1Hz and its multiples, several spectral peaks
can be observed clearly. Moreover, these peak frequencies are
approximate to the fault frequency (162.1852Hz) of inner ring
and its harmonics. Due to the interference of transmission
path and interference noise, there are some slight deviations
between the measured values and the theoretical values.
However, the proposed approach can effectively diagnose the
inner ring fault.

In order to explore the effect of nonoptimal parameters
on the results, we compared four sets of MOMEDAmethods
with fixed parameters. As shown in Figures 15(a) and 15(b),
when the filter size 𝐿 of MOMEDA is set to the optimal
value 𝐿 = 499 obtained by GOA and 𝑇𝑖 = 50, the
frequency 240.2Hz and its harmonics can be observed clearly.
Meanwhile, when 𝑇𝑖 = 90, the frequency 134.8Hz and its
harmonics are obvious. However, the frequency 240.2 Hz
is far greater than the characteristic frequency (162.1852Hz)
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Figure 13: Optimization results of MOMEDA obtained by GOA.
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Figure 14: The envelope of the inner ring impact signal.

of inner ring, and 134.8 Hz is far less than the frequency.
Therefore, the values of these two sets of parameters are not
appropriate. As shown in Figure 15(c), when 𝑇𝑖 of MOMEDA
is set to the optimal value 𝑇𝑖 = 74.15955 and 𝐿 = 20, the
frequency 164.1Hz and its second harmonic can be observed
clearly.However, the envelope spectrum is disturbed by noise,
and its high-order harmonics are not obvious. Therefore, if
the filter size 𝐿 of MOMEDA is too small, the noise in the
signal cannot be removed effectively, and the satisfactory
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Figure 15: The effect of nonoptimal parameters on the results.

effect cannot be obtained. In Figure 15(d), the frequency
164.1Hz and its harmonics can be observed clearly when 𝐿 =900, and there is little interference around these harmonics. It
can be seen that a better filtering effect can be obtained when
the filter size 𝐿 is larger. However, some information of the
periodic impact signal may be removed when 𝐿 is too large
and the optimization process is time-consuming. We can
draw a preliminary conclusion that the periodic initial value
affects the size of the filtered signal characteristic frequency,
and the filter size affects the noise reduction effect.

To demonstrate the preponderance of the approach, the
method is compared with the methods with the optimal
parameters, such as MED, MCKD, and FSK. Since the norms
of MED, MCKD, and MOMEDA are based on kurtosis, the
optimal filter size 𝐿 = 499 obtained by GOA is used as the
filter size ofMEDandMCKD, and the optimal periodic initial
value 𝑇𝑖 = 74.15955 is taken as the period of MCKD. The
number of iterations of MED and MCKD is both set to 30.
In view of the characteristic of the signal, the decomposition
level of FSK is set to 3. As shown in Figure 16, the three
methods MED, MCKD, and FSK can extract the inner ring
fault frequency and its harmonics. However, the envelope
spectra obtained by these three methods are disturbed by
the irrelevant frequency components, and their harmonic
envelopes are very blurred.Therefore, the proposed approach
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Figure 16: Comparison of feature extraction methods for the inner
ring signal.

has outstanding performance in the feature extraction of the
inner ring.

5.1.3. Outer Ring Signal Analysis of CWRU Bearings. As
shown in Figure 17, the waveforms of the outer ring fault
signal have a certain regularity, which indicates that the
rolling bearing has failed. However, background noise and
irrelevant components make it difficult to extract the outer
ring fault characteristics directly from the frequency domain
[2]. Therefore, we extract the outer ring fault features by
using the proposed approach. Firstly, the parameters of the
MOMEDA are optimized by GOA algorithm and the results
are shown in Figure 18.

As shown in Figures 18(a) and 18(b), along with the
increasing of iteration times, the grasshopper swarms tend to
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Figure 17: Outer ring signal and its frequency domain.
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Figure 18: Optimization results of MOMEDA obtained by GOA.

converge towards the best location, and the convergent curve
gradually converges to the minimum. When the number
of iterations 𝑚 = 7, the MKurt (𝑀𝐾𝑢𝑟𝑡 = 0.5128) is
the maximum, and the optimal parameters 𝛾 = (𝐿, 𝑇𝑖) =(459, 111.4268) of MOMEDA are obtained.

Then, the impact component in the outer ring signal is
extracted by the optimized MOMEDA, and the envelope of
the impact signal is given in Figure 19. When the frequencies
are 105.5Hz and its multiples, several spectral peaks can
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Figure 19: The envelope of the outer ring impact signal.

be observed clearly. Moreover, these peak frequencies are
approximate to the characteristic frequency (107.3648Hz)
of outer ring and its harmonics. Due to the influence of
interference noise, there are some slight deviations between
the measured values and the theoretical values. However, the
proposed approach can effectively diagnose the outer ring
fault of the bearing.

To explore the impact of nonoptimal parameters on the
results, we compared four sets of MOMEDA methods with
fixed parameters. As shown in Figures 20(a) and 20(b), when
the filter size 𝐿 of MOMEDA is set to the optimal value𝐿 = 459 obtained by GOA, 𝑇𝑖 = 50 or 𝑇𝑖 = 90, the
frequencies 240.2Hz, 134.8Hz, and their harmonics can be
observed clearly. However, these frequencies are far greater
than the characteristic frequency (107.3648Hz) of outer ring
and its harmonics. Therefore, the values of these two sets of
parameters are not appropriate. As shown in Figure 20(c),
when 𝑇𝑖 of MOMEDA is set to the optimal value 𝑇𝑖 =111.4268 and 𝐿 = 20, the frequency 105.5Hz can be observed
clearly.However, the envelope spectrum is disturbed by noise,
and its harmonics are submerged by interference frequency
components. Therefore, the feature extraction method will
fail when the filter size is too small. In Figure 20(d), 105.5Hz
and its harmonics can be observed clearly when 𝐿 = 900, and
there is little interference frequency around these harmonics.
It can be seen that a better filtering effect can be obtained
when the filter size is larger. However, some information
of the periodic impact signal may be removed when 𝐿 is
too large and the optimization process is time-consuming.
Meanwhile, the larger the periodic initial value, the smaller
the characteristic frequency of the filtered signal obtained by
MOMEDA.

To demonstrate the superiority of the approach, the
method is compared with the methods MED, MCKD, and
FSK with the optimal parameters. The optimal filter size𝐿 = 459 obtained by GOA is used as the filter size of
MED and MCKD, and the optimal periodic initial value𝑇𝑖 = 111.4268 is taken as the period of MCKD. The
number of iterations of MED and MCKD is both set to 30.
According to the characteristic of the outer ring signal, the
decomposition level of FSK is set to 4. As shown in Figure 21,
the three methods MED, MCKD, and FSK can extract the
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Figure 20: The effect of nonoptimal parameters on the results.

characteristic frequency of outer ring and its harmonics.
However, the envelope obtained by MED contains many
interference frequencies. For the outer ring,MCKD, FSK, and
the proposed approach can achieve good results.

5.1.4. Rolling Element Signal Analysis of CWRU Bearings.
According to the theory of Kumar et al. [46], when the rolling
element fails, the frequency spectrum contains the second
harmonic of the spin frequency. The spin frequency of the
rolling element is generated by impacting the inner ring or
outer ring. In general, the rolling element rotates once and it
produces two impacts.Therefore, the characteristic frequency
of the rolling element usually submerged in interference
frequencies. Ma et al. [44] also proved that the proposed
demodulation approach can obtain good results in the feature
extraction of the inner ring and outer ring, but it has a poor
effect in the feature extraction of the rolling element.

As shown in Figure 22, the regularity and periodicity
of the waveforms are not obvious, and the frequencies
contained in frequency domain waveform are more complex.
In addition, the interference frequencies and noise make
it difficult to extract fault features directly from frequency
domain. Therefore, we extract the fault features by using the
proposed approach. Firstly, the parameters of MOMEDA are
optimized by GOA algorithm and the results are shown in
Figure 23.
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Figure 21: Comparison of feature extraction methods for the outer
ring signal.

As shown in Figure 23, along with the increasing of
iteration times, the grasshopper swarms tend to converge
towards the best location, and the convergent curve gradually
converges to the minimum. When the number of iterations𝑚 = 9, the MKurt (𝑀𝐾𝑢𝑟𝑡 = 0.18179) is the maximum,
and the optimal parameters 𝛾 = (𝐿, 𝑇𝑖) = (494, 85.5723)
of MOMEDA are obtained. Then, the impact component
in the rolling element signal is extracted by the optimized
MOMEDA, and the envelope of the impact signal is given
in Figure 24. When the frequencies are 140.6Hz and its
multiples, several spectral peaks can be observed clearly.
Moreover, these peak frequencies are close to the charac-
teristic frequency (141.1693Hz) of rolling element and its
harmonics. Due to the effect of interference noise, there are
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Figure 22: Rolling element signal and frequency domain.
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Figure 23: Optimization results of MOMEDA obtained by GOA.

some slight deviations between the measured values and
the theoretical values. However, the rolling element fault of
the bearing can be identified accurately by the proposed
approach.

To explore the impact of nonoptimal parameters on the
results, we compared four sets of MOMEDA methods with
fixed parameters. As shown in Figures 25(a) and 25(b), when
the filter size 𝐿 of MOMEDA is the optimal value 𝐿 = 494
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Filter size L=494, periodic initial value Ti=50

240.2

0
0.01
0.02

A
m

pl
itu

de
[Ｇ

/Ｍ
2
]

100 200 300 400 500 600 700 800 9000
Frequency [Hz]

(a)

Filter size L=494, periodic initial value Ti=90

134.8

100 200 300 400 500 600 700 800 9000
Frequency [Hz]

0
0.01
0.02

A
m

pl
itu

de
[Ｇ

/Ｍ
2
]

(b)

Filter size L=20, periodic initial value Ti=85.5723

100 200 300 400 500 600 700 800 9000
Frequency [Hz]

0
2
4

A
m

pl
itu

de
[Ｇ

/Ｍ
2
]

−3× 10

(c)

Filter size L=900, periodic initial value Ti=85.5723

140.6

100 200 300 400 500 600 700 800 9000
Frequency [Hz]

0

0.05

A
m

pl
itu

de
[Ｇ

/Ｍ
2
]

(d)

Figure 25: The effect of nonoptimal parameters on the results.

obtained by GOA and 𝑇𝑖 = 50, the frequency 240.2Hz and its
harmonics can be observed clearly. Meanwhile, when 𝑇𝑖 =90, the frequency 134.8Hz and its harmonics are obvious.
However, these two frequencies and their harmonics are
independent of the fault characteristic frequency. Therefore,
the values of these two sets of parameters are not appropriate.
As shown in Figure 25(c), when 𝑇𝑖 of MOMEDA is set to
the optimal value 𝑇𝑖 = 85.5723 and 𝐿 = 20, the effective
frequency is submerged by the interference frequencies and
the fault features cannot be extracted. So, if the filter size

Table 4: The Rexnord ZA-2115 bearing parameters.

Ball diameter
(d)

Number of
balls (Z)

Pitch
diameter (D)

Contact angle
(𝛼)

8.407 mm 16 71.501 mm 15.17

is too small, the noise in the signal cannot be effectively
removed, and the feature extraction method will completely
fail. In Figure 25(d), 140.6Hz and its harmonics can be
observed clearly when 𝐿 = 900. To sum up, the feature
extraction method will fail when the periodic initial value𝑇𝑖 is not appropriate. In general, the larger 𝑇𝑖, the smaller
the characteristic frequency of the filtered signal. The filter
size 𝐿 affects the noise reduction effect; if 𝐿 is too small, the
interference frequencies and noise in the signal cannot be
removed effectively.

To demonstrate the superiority of the approach, the
method is compared with the methods MED, MCKD, and
FSK with the optimal parameters. The optimal filter size𝐿 = 494 obtained by GOA is used as the filter size of
MED and MCKD, and the optimal periodic initial value𝑇𝑖 = 85.5723 is taken as the period of MCKD. The
number of iterations of MED and MCKD is both set to 30.
According to the characteristics of the rolling element signal,
the decomposition level of FSK is set to 4. As shown in
Figure 26, the envelope spectra obtained by MED, MCKD,
and FSK all contain a large number of unrelated frequency
components, and the effective frequencies are all submerged
in the interference frequencies. For the rolling element signal,
the above three feature extraction methods cannot achieve
satisfactory results. Therefore, it is particularly difficult to
extract the rolling element characteristic frequency compared
with the inner ring and outer ring. However, the proposed
method still achieves good results in the feature extraction of
the rolling element.

5.2. Case 2: Vibration Signal Analysis of NASA Bearings.
To verify the universality and reliability of the proposed
approach, we analyze the NASA bearing dataset [41] by using
the proposed approach. Figure 27 shows the test platform
[47] of NASA, and four lubricated Rexnord ZA-2115 bearings
are fixed on the spindle of the test rig. The spindle rotates
under the drive of the motor, and its speed is 2000 rpm.
Therefore, the rotating frequency of the bearing is 33.33 Hz
(𝑓𝑟 = 2000/60 = 33.33 Hz). The PCB353B33 acceleration
sensors are fixed on the bearing housing, and the signals
are collected by NI DAQ Card 6062E data acquisition card.
The data length N = 20480 and the sampling frequency𝑓𝑠 = 20KHz. In this experiment, the inner ring signal comes
from Bearing 3 of No. 1 dataset, the outer ring signal comes
from Bearing 1 of No. 2 dataset, the rolling element signal
comes from Bearing 3 of No. 1 dataset, and the data length
is 2048. The parameters of Rexnord ZA-2115 bearing are
listed in Table 4. Based on the parameters listed in Table 4
and the formulas in literature [45], we can calculate the
corresponding characteristic frequencies and they are listed
in Table 5.
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Table 5: Characteristic frequencies.
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Figure 26: Comparison of feature extractionmethods for the rolling
element signal.

The structure and operation mode of bearings share
some similarities, and the bearings vibration signals have
a corresponding periodicity. Therefore, the initialization of
parameters in this section is the same as that in Section 5.1.1.

5.2.1. Inner Ring Signal Analysis of NASA Bearings. As shown
in Figure 28, due to the interference of interference frequen-
cies and noise, it is difficult to extract the inner ring fault

Accelerometers Radial load Thermocouples

Bearing 1 Bearing 2 Bearing 3 Bearing 4

Motor

Figure 27: Bearing experiment platform.
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Figure 28: Inner ring signal and its frequency domain.

features. Therefore, we extract the inner ring fault features by
using the proposed method. Firstly, the MOMEDA parame-
ters are optimized by GOA algorithm.

As shown in Figure 29, along with the increasing of
iteration times, the convergent curve gradually converges to
the minimum. When the number of iterations 𝑚 = 3, the
MKurt (𝑀𝐾𝑢𝑟𝑡 = 0.2168) is the maximum, and the optimal
parameters 𝛾 = (𝐿, 𝑇𝑖) = (498, 67.7462) of MOMEDA
are obtained. Then, the impact component in the inner
ring signal is extracted by the optimized MOMEDA, and
the envelope of the impact signal is given in Figure 30(d).
When the frequencies are 293 Hz and its multiples, several
spectral peaks can be observed clearly. Moreover, these peak
frequencies are approximate to the characteristic frequency
(296.91Hz) of inner ring and its harmonics. Due to the
interference of background noise and transmission path,
there are some slight deviations between themeasured values
and the theoretical values. However, the proposed approach
can effectively diagnose the inner ring fault of the bearing.

To demonstrate the superiority of the approach, the
method is compared with the methods with the optimal
parameters, such as MED, MCKD, and FSK. Since the norms
of MED, MCKD, and MOMEDA are based on kurtosis, the
optimal filter size 𝐿 = 498 obtained by GOA is used as the
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Figure 29: Optimization results of MOMEDA obtained by GOA.
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Figure 30: The envelope analysis of impact signals obtained by
MED, MCKD, FSK, and MOMEDA.

filter size ofMEDandMCKD, and the optimal periodic initial
value 𝑇𝑖 = 67.7462 is taken as the period of MCKD. The
number of iterations of MED and MCKD is both set to 30.
In view of the characteristic of the signal, the decomposition
level of FSK is set to 3. The kurtosis of the filtered signal
obtained by FSK is maximum when the decomposition level
is 2. At this point, the central frequency of the filtered signal
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Figure 31: Outer ring signal and its frequency domain.
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Figure 32: Optimization results of MOMEDA obtained by GOA.

is 8750Hz, the bandwidth is 2500Hz, and the envelope of the
filtered signal is given in Figure 30(c). As shown in Figures
30(a) and 30(c), the envelope spectra obtained by MED and
FSK are disturbed by many irrelevant frequencies, and it
is unrealistic to extract the fault characteristic frequency.
In Figure 30(b), although MCKD can extract the inner
ring fault features, the frequency and its harmonics are
disturbed by many irrelevant frequencies. Therefore, the
proposed approach has outstanding advantages in the feature
extraction of the inner ring.

5.2.2. Outer Ring Signal Analysis of NASA Bearings. As
shown in Figure 31, although the waveforms have a certain
regularity, it is difficult to extract fault features directly from
the frequency domain. Therefore, we extract the outer ring
fault features by using the proposed method. Firstly, the
parameters of MOMEDA are optimized by GOA algorithm
and the results are shown in Figure 32.

When the number of iterations 𝑚 = 9, the MKurt
(𝑀𝑘𝑢𝑟𝑡 = 0.2385) is the maximum, and the optimal
parameters 𝛾 = (𝐿, 𝑇𝑖) = (496, 84.7148) of MOMEDA
are obtained. Then, the impact component in the outer ring
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Figure 33: The envelope analysis of impact signals obtained by
MED, MCKD, FSK, and MOMEDA.

signal is extracted by the optimized MOMEDA, and the
envelope of the impact component is given in Figure 33(d).
When the frequencies are 234.4Hz and its multiples, several
spectral peaks can be observed clearly. Moreover, these peak
frequencies are approximate to the outer ring characteristic
frequency (236.4Hz) and its harmonics. Due to the interfer-
ence of interference noise, there are slight deviations between
the measured values and the theoretical values. However, the
proposed approach can effectively diagnose the outer ring
fault.

Then, we compared the proposed approach with the
methods MED, MCKD, and FSK with the optimal param-
eters. The optimal filter size 𝐿 = 496 obtained by GOA is
used as the filter size of MED and MCKD, and the optimal
periodic initial value 𝑇𝑖 = 84.7148 is taken as the period
of MCKD. The number of iterations of MED and MCKD is
both set to 30, and the decomposition level of the FSK is set
to 3. The kurtosis of the filtered signal obtained by FSK is
maximum when the decomposition level is 1.5. At this point,
the central frequency of the filtered signal is 1666.666Hz,
the bandwidth is 3333.33Hz, and the envelope analysis of
the filtered signal is shown in Figure 33(c). In Figures 33(a)
and 33(c), the characteristic frequencies and their harmonics
can be observed. However, these frequencies are disturbed
by many interference frequencies. Therefore, it is difficult to
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Figure 34: Rolling element signal and its frequency domain.
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Figure 35: Optimization results of MOMEDA obtained by GOA.

identify the outer ring characteristic frequency throughMED
and FSK. In Figure 33(b), although MCKD can extract the
outer ring characteristic frequency and its harmonics, the
amplitudes of these harmonics are small and the spectral
peaks are not obvious. Therefore, the proposed approach
has outstanding performance in the feature extraction of the
outer ring.

5.2.3. Rolling Element Signal Analysis of NASA Bearings. As
shown in Figure 34, the regularity of the waveforms is not
significant, and the frequencies contained in the frequency
domain waveform are more complex. In addition, the inter-
ference frequencies and noise make it difficult to extract
fault features directly from frequency domain. Therefore,
we extract the fault features by the proposed approach.
Firstly, the parameters of MOMEDA are optimized by GOA
algorithm and the results are shown in Figure 35.

As shown in Figure 35, when the number of iterations𝑚 = 2, the MKurt (𝑀𝑘𝑢𝑟𝑡 = 0.19684) is the maximum,
and the optimal parameters 𝛾 = (𝐿, 𝑇𝑖) = (500, 143.0353)
of MOMEDA are obtained. Then, the impact component
is extracted by the optimized MOMEDA, and the envelope
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Figure 36: The envelope analysis of impact signals obtained by
MED, MCKD, FSK, and MOMEDA.

of the impact signal is given in Figure 36(d). When the
frequencies are 136.7Hz and its multiples, several spectral
peaks can be observed clearly. Moreover, these peak fre-
quencies are approximate to the characteristic frequency
(139.9Hz) of rolling element and its harmonics. Due to the
interference of background noise and transmission path,
there are some slight deviations between themeasured values
and the theoretical values. However, the proposed approach
can effectively diagnose the rolling element fault.

Then, the proposed method is compared with the meth-
ods MED, MCKD, and FSK with the optimal parameters.
The optimal filter size 𝐿 = 500 obtained by GOA is used
as the filter size of MED and MCKD, and the optimal
period initial value 𝑇𝑖 = 143.0353 is taken as the period
of MCKD. The number of iterations of MED and MCKD
is both set to 30, and the decomposition level of FSK is
set to 3. The kurtosis of the filtered signal obtained by
FSK is maximum when the decomposition level is 0. At
this point, the central frequency of the filtered signal is
5000Hz, the bandwidth is 10000Hz, and the envelope of
the filtered signal is given in Figure 36(c). As shown in
Figures 36(a) and 36(c), the envelope spectra obtained by
MED and FSK are disturbed by many irrelevant frequencies,
and it is difficult to extract the rolling element characteristic

frequency through MED and FSK. In Figure 36(b), although
MCKD can extract the characteristic frequency, the deviation
between the peak frequency (146.5Hz) and fault character-
istic frequency (136.7Hz) is large. Therefore, the proposed
approach has excellent performance in the feature extraction
of the rolling element.

6. Discussions

Through the comparison and analysis of several sets of
experiments, the effectiveness and significant advantages of
the proposed method are proved. The experimental process
and preliminary conclusions of this paper are discussed
below.(1) It can be seen from the analysis of the simulation
signal thatMED,MCKD, andFSK cannot achieve satisfactory
results in noisy environments. However, the characteristic
frequencies contained in the noisy signal can be extracted
effectively by the proposed approach. By analyzing the bear-
ing signals come from two different experimental platforms,
the results show that the fault features of the inner ring
and outer ring are obvious, and the fault features are easy
to be extracted. The rolling element with local damage
periodically hits the inner ring and outer ring, which leads
to the coupling effect between the inner and outer ring [44].
In addition, the rolling element vibration signal is affected by
background noise and interference components. Therefore,
the feature extraction of the rolling element is difficult and
the characteristic frequency is not obvious. Nevertheless, the
proposed method still achieves the desired effect, and the
validity and reliability of the method are verified.(2) It is known from the parameter initialization that
the filter size is positively correlated with the MKurt of
the filtered signal, but the MKurt curve is not a strictly
monotone increasing curve.Therefore, there is a local optimal
solution for the filter size. In addition, the change of MKurt
is irregular when the periodic initial value changes, so the
parameter optimization is very difficult. It is known from the
experiments with fixed parameters that a large amount of
noise and interference is removed when the filter size is large,
and the envelope spectra are clear. However, the efficiency
of the algorithm is very low when the filter size is too large,
and the fault impact signal may be removed. The larger
the periodic initial value is, the smaller the characteristic
frequency extracted from the filtered signal is. Comparison
experiments of optimization algorithms show that GOA
method is not only simple in calculation, but also high
in convergent speed and accuracy. From the optimization
process of GOA, it is known that the grasshoppers are widely
distributed in the whole search space at the beginning of
iteration, which ensures the global search scope. At the
end of iteration, the grasshopper swarm approaches the
optimal position and moves slowly, which ensures the local
search accuracy. Therefore, the GOA algorithm guarantees
the reliability of parameter optimization.(3) The optimal parameters of MOMEDA obtained by
GOA are used in MED and MCKD because these three
deconvolution methods are all based on kurtosis norm. The
experimental results demonstrate that MED is only suitable
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for single impact signal. Meanwhile, the envelope spectrum
obtained by MED contains a large number of interference
frequencies. Although MCKD can extract a series of impact
components from the noisy signal, the higher harmonics
obtained by this method are often disturbed by irrelevant
frequencies. In the process of processing the weak noise
signal, FSK can achieve satisfactory results. However, when
the signal contains strong background noise or interference
frequencies, it is sometimes difficult to extract fault features
through FSK. Therefore, for the above three methods, signal
preprocessing is necessary before feature extraction. All
signals have not been preprocessed in this paper, and the
proposed method still achieves satisfactory results.

7. Conclusions

A parameter adaptive MOMEDA feature extraction method
based on GOA is proposed for solving the problem of the
bearing fault diagnosis. The GOA is introduced to determine
the optimal parameters of MOMEDA. The algorithm has
its own unique advantages, and it updates the position of
individual search agent by involving all search agents. In
addition, GOA can adaptively determine the optimal filter
size and periodic initial value of MOMEDA based on the
signal characteristics and effectively avoid the randomness of
artificial adoption. The simulation signal and bearing signals
from two different experimental platforms are analyzed by
the proposed method, satisfactory feature extraction results
can be obtained, and the validity and reliability of themethod
are verified. Therefore, several meaningful contributions of
this paper are as follows: (a) themain parameters affecting the
filtering results and feature extraction results are evaluated;
(b) a new optimization model containing these influence
parameters is constructed; (c) GOA is introduced to deter-
mine the appropriateMOMEDAparameters while extracting
fault features. Through several case studies, some beneficial
conclusions are gained.

(a) The effect of feature extraction is affected by the filter
size and the periodic initial value, and the influences of these
two parameters on the results are different. Therefore, these
influencing factors must be considered comprehensively in
the process of parameter optimization.

(b) The feature extraction effect of the proposed method
is compared with that of MOMEDA with fixed parameters.
The results show that the filter size affects the noise reduction
effect, and the periodic initial value affects the size of the
characteristic frequency.

(c) The proposed approach is compared with the three
methods MED, MCKD, and FSK with optimal parameters.
We found that the feature extraction effect of the proposed
approach is better than that of the other three methods in all
cases, and it meets the requirement of feature extraction for
all fault types.

However, the damage problem of the bearing is com-
plicated in the actual industrial production process, the
fault impact signals are often submerged by noises, and the
composite fault may occur. Therefore, we will collect bearing
data from the industrial environment and analyze these data
by the approach. In addition, the composite fault experiment

and its analysis will be implemented step by step, and the
proposedmethod is expected to address these complex issues.
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