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In this investigation, an exact method based on the first-order shear deformation shallow shell theory (FSDSST) is performed
for the free vibration of functionally graded sandwich shallow shells (FGSSS) on Winkler and Pasternak foundations with general
boundary restraints. Vibration characteristics of the FGSSS have been obtained by the energy function represented in the orthogonal
coordinates, in which the displacement and rotation components consisted of standard double Fourier cosine series and several
closed-form supplementary functions are introduced to eliminate the potential jumps and boundary discontinuities. Then, the
expansion coefficients are determined by using Rayleigh-Ritz method. The proposed method shows good accuracy and reliability
by comprehensive investigation concerning free vibration of the FGSSS. Numerous new vibration results for FGSSS on Winkler
and Pasternak foundations with various curvature types, geometrical parameters, and boundary restraints are provided, which
may serve as benchmark solutions for future research. In addition, the effects of the inertia, shear deformation, and foundation
coefficients on free vibration characteristic of FGSSS are illustrated.

1. Introduction

The functionally graded (FG) materials are widely used in
aerospace, automobile, and civil engineering due to con-
tinuous variation of material properties along the thickness
direction [1–7]. As is known to us, the FG shallow shells-
structures, i.e., FG plate, FG circular cylindrical shallow shell,
FG spherical shallow shell, and FG hyperbolic paraboloidal
shallow shell, have attracted considerable attention for its
high strength and stiffness [8–12]. It is noticed that the
FG shallow shells are unavoidably suffered from dynamic
loads, which can lead to fatigue wear and structural damage
[13–15]. Therefore, it is essential to study the free vibration
characteristics of FG shallow shell structures.

Recently, extensive research efforts focused on vibration
of FG shallow shells have beenmade by various shell theories,

such as classical shallow shell theory (CSST) [16], first-order
shear deformation theory (FSDT) [17], and higher-order
shear deformation theory (HSDT) [18]. Furthermore, numer-
ous calculation methods, i.e., Ritz method, finite element
method (FEM), generalized differential quadrature method,
and wave propagation approach, have also been developed
[19–27].

Most of the above researches are limited to the classi-
cal boundary restraints (clamped, free, simply supported,
and shear-diaphragm supported), which requires constant
modification of the solution procedure according to the
variation of the boundary restraints [28–30]. However, in
practical engineering applications, the boundary restraints
are not always in certain classical case. There are many
possible boundaries such as nonuniform boundaries, elastic
edge boundaries, and point-supported boundaries [31–34].
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Consequently, an efficient and accurate method for vibration
analysis of FG shallow shells with general boundary restraints
including classical and elastic edge boundaries is needed. On
the other hand, among the FG shallow shells, the existing
results of FG sandwich shallow shells (FGSSS) are too scarce
for the comparative studies and engineering applications [35–
37]. Talebitooti et al. [38] studied the sound transmission
across FG laminated sandwich cylindrical shells by using
three-dimensional elasticity theory. Hao et al. [39] investi-
gated the nonlinear forced vibrations and natural frequency
of FG doubly curved shallow shells with a rectangular base
based on the third-order shear deformation theory. Sofiyev
[40] presented a modified form of FSDT to solve the bucking
problem of FG sandwich truncated conical shells. Trinh and
Kim [41] employed the fourth-order Runge-Kutta method to
obtain analytical closed-form solutions for thin FGSSS with
double curvature testing on elastic bases.

Therefore, this paper presents an exactmethod for the free
vibration of FGSSS on Winkler and Pasternak foundations
based on first-order shear deformation shallow shell theory
(FSDSST). Regardless of boundaries, the standard double
Fourier cosine series and several closed-form supplementary
functions are introduced to describe the displacement and
rotation components of FGSSS so as to eliminate the possible
jumps and boundary discontinuities. The current results
are checked by comparing with those results published in
other literature. Numerous new vibration results for FGSSS
with different curvature types, geometrical parameters, and
boundary restraints resting on Winkler and Pasternak foun-
dations are presented. The results show that vibration fre-
quencies of FGSSS are strongly influenced by the boundaries.
Furthermore, the effect of inertia, shear deformation, and
foundation coefficients on free vibration characteristic is
comprehensively investigated by comparing FSDSST with
CSST.

2. Materials and Methods

2.1. Model Description and Material Properties. The basic
configuration of FGSSS in rectangular planform is depicted
in Figure 1. Herein, the length, width, and total thickness are
represented by a, b, and h, respectively.The FGSSS considered
here are characterized by the middle surface, which can be
obtained by [45]

𝑧 = −( 𝑥22𝑅𝑥 + 𝑦22𝑅𝑦 + 𝑥𝑦𝑅𝑥𝑦) (1)

where 𝑅𝑥 and 𝑅𝑦 denote the radii of curvature in the direc-
tions of x and y, respectively. 𝑅𝑥𝑦 is the corresponding radius
of twist. In this work, we set𝑅𝑥, 𝑅𝑦, and 𝑅𝑥𝑦 as constants. The
x and y coordinates are parallel to boundaries so that 𝑅𝑥𝑦 is
infinity. Herein, three types of independent springs including
translational, rotational, and torsional springs are used to
realize the given boundaries of FGSSS by setting the stiffness
of the springs (x=0, a, y=0, b) as various values, which are𝐾𝑥𝜑, 𝐾𝑦𝜑 , 𝑘𝑢𝜑, 𝑘V𝜑, and 𝑘𝑤𝜑 (𝜑 = 𝑥0, 𝑥1, 𝑦0, 𝑦1), respectively.
For instance, the free boundary can be easily generated by
setting the spring stiffness values into zero, and the stiffness

z,w

a

b

o
x, u

KW
KS

kw
k

kx ky

K
y


ku

Kx


y, 

Figure 1: Boundary restraints, linear Winkler and Pasternak foun-
dation for a FGSSS.

values are set to infinite (a larger number, 1015 N/m) to
achieve a clamped boundary restraint. On the other hand,
for the elastic foundations, 𝐾𝑊 and 𝐾𝑆 are denoted as linear
Winkler foundation and Pasternak foundation coefficients,
respectively.

In this analysis, different curvature types of FGSSS mod-
els, namely, plate (𝑅𝑥 = 𝑅𝑦 = 𝑅𝑥𝑦 = ∞), circular cylindrical
shell (𝑅𝑥 = 𝑅, 𝑅𝑦 = 𝑅𝑥𝑦 = ∞), spherical shell (𝑅𝑥 = 𝑅𝑦 =𝑅, 𝑅𝑥𝑦 = ∞), and hyperbolic paraboloidal shell (𝑅𝑥 = −𝑅𝑦 =𝑅, 𝑅𝑥𝑦 = ∞), are shown in Figure 2.

Typically, FG layers of shallow shell are made from a
mixture of metal and ceramic materials in different propor-
tions. The effective material properties are assumed to vary
continuously through the thickness and can be obtained:

𝐸 (𝑧) = (𝐸𝑐 − 𝐸𝑚) 𝑉𝑐 (𝑧) + 𝐸𝑚 (2a)𝜌 (𝑧) = (𝜌𝑐 − 𝜌𝑚)𝑉𝑐 (𝑧) + 𝜌𝑚 (2b)𝜇 (𝑧) = (𝜇𝑐 − 𝜇𝑚) 𝑉𝑐 (𝑧) + 𝜇𝑚 (2c)

where E, 𝜌, and 𝜇 represent Young’s modulus, mass density,
and Poisson ratio, respectively, and the subscripts c and m
represent the ceramic and metal phase, respectively. 𝑉𝑐(𝑧)
is the volume fraction of ceramic constituent. As shown in
Figure 3, the representative FGSSS are considered in this
work: Type 1 is composed of FG face sheets and homoge-
neous middle layer (Figure 3(a)); Type 2 has homogeneous
face sheets and FG middle layer (Figure 3(b)). 𝑉𝑐(𝑧) of FG
sandwich shallow shell in the thickness direction is expressed
as

Type 1-1: 𝑉𝑐 =
{{{{{{{{{{{{{
( 𝑧 − 𝑧1𝑧2 − 𝑧1)𝑝1 𝑧 ∈ [𝑧1, 𝑧2]1 𝑧 ∈ [𝑧2, 𝑧3]( 𝑧 − 𝑧4𝑧3 − 𝑧4)𝑝3 𝑧 ∈ [𝑧3, 𝑧4]
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Figure 2: Types of curvatures for FGSSS on rectangular planforms: (a) plate; (b) circular cylindrical shell; (c) spherical shell; (d) hyperbolic
paraboloidal shell.
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Figure 3: The material variation along the thickness of the FGSSS: (a) Type 1: FG face sheets and homogeneous middle layer; (b) Type 2:
homogeneous face sheets and FG middle layer.

Type 1-2: 𝑉𝑐 =
{{{{{{{{{{{{{
( 𝑧 − 𝑧1𝑧1 − 𝑧2)𝑝1 𝑧 ∈ [𝑧1, 𝑧2]0 𝑧 ∈ [𝑧2, 𝑧3]( 𝑧 − 𝑧3𝑧4 − 𝑧3)𝑝3 𝑧 ∈ [𝑧3, 𝑧4]

(3a)

Type 2-1: 𝑉𝑐 = {{{{{{{{{
1 𝑧 ∈ [𝑧1, 𝑧2]( 𝑧 − 𝑧3𝑧2 − 𝑧3)𝑝2 𝑧 ∈ [𝑧2, 𝑧3]0 𝑧 ∈ [𝑧3, 𝑧4]

Type 2-2: 𝑉𝑐 = {{{{{{{{{{{
0 𝑧 ∈ [𝑧1, 𝑧2]
( 𝑧 − 𝑧2𝑧3 − 𝑧2)𝑝2 𝑧 ∈ [𝑧2, 𝑧3]1 𝑧 ∈ [𝑧3, 𝑧4]

(3b)

where the subscripts 𝑝1, 𝑝2, and 𝑝3 are the gradient index
used to determine the FG materials and only take nonneg-
ative values. Typical values for metal and ceramic used in
the FG layer of shallow shells are listed in Table 1. Type 1-1
and Type 1-2 FGSSS are composed of FG face sheets and
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Figure 4: Variation of volume fraction Vc through the thickness in various types: (a) Type 1-1; (b) Type 1-2; (c) Type 2-1; (d) Type 2-2.
homogeneous middle layer, while Type 2-1 and Type 2-2
FGSSS are composed of homogeneous face sheets and FG
middle layer. It is found that the bilayered FGSSS can be
acquired assigning appropriate ratios of thickness for each
layer. And the thickness of each layer from bottom to top is
expressed by the combination of three numbers; for instance,
“2-3-2” denotes that h1: h2: h3=2:3:2. To describe the behavior
of (3a) and (3b), the volume fractions 𝑉𝑐(𝑧) in the direction
of thickness for the FGSSS with various gradient index p are
shown in Figure 4.

2.2. Stress-Strain Relations and Stress Resultants. To describe
the shell clearly, u, v, and𝑤 represent the displacements in the
x, y, and z directions, and t is the time variable, respectively.

Table 1: Main materials properties of the used FG layer.

Material Properties
E (GPa) 𝜇 𝜌 (kg/m3)

Metal (Al) 70 0.3 2702
Ceramic (Al2O3) 380 0.3 3800

The assumed displacement field for the FGSSS based on the
FSDSST can be given by𝑈(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢 (𝑥, 𝑦, 𝑡) + 𝑧𝜙𝑥 (𝑥, 𝑦, 𝑡)𝑉 (𝑥, 𝑦, 𝑧, 𝑡) = V (𝑥, 𝑦, 𝑡) + 𝑧𝜙𝑦 (𝑥, 𝑦, 𝑡)𝑊 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑤 (𝑥, 𝑦, 𝑡) (4)
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where 𝜙𝑥 and 𝜙𝑦 represent the rotations of the reference
surface to the y and x axes, respectively. For the FGSSS the
strains can be defined as{𝜀𝑥 𝜀𝑦 𝛾𝑥𝑦}T = {𝜀0𝑥 + 𝑧𝜒𝑥 𝜀0𝑦 + 𝑧𝜒𝑦 𝛾0𝑥𝑦 + 𝑧𝜒𝑥𝑦}T

= {𝜕𝑢𝜕𝑥 𝜕V𝜕𝑦 𝜕𝑢𝜕𝑦 + 𝜕V𝜕𝑥}T

+ 𝑧{𝜕𝜙𝑥𝜕𝑥 𝜕𝜙𝑦𝜕𝑦 𝜕𝜙𝑥𝜕𝑦 + 𝜕𝜙𝑦𝜕𝑥 }T

(5)

{𝛾𝑥𝑧 𝛾𝑦𝑧}T = {𝛾0𝑥𝑧 𝛾0𝑦𝑧}T
= {𝜕𝑢𝜕𝑧 + 𝜕𝑤𝜕𝑥 𝜕V𝜕𝑧 + 𝜕𝑤𝜕𝑦 }T

= {𝜙𝑥 + 𝜕𝑤𝜕𝑥 𝜙𝑦 + 𝜕𝑤𝜕𝑦 }T

(6)

where the normal and shear strains in the directions of x,
y, and z are 𝜀𝑥 𝜀𝑦 and 𝛾𝑥𝑦. 𝛾𝑥𝑧 and 𝛾𝑦𝑧 are transverse shear
strains. According to generalized Hooke’s law [46], the stress-
strain relations of the shallow shells can be written as

{{{{{{{{{{{{{{{{{

𝜎𝑥𝜎𝑦𝜏𝑦𝑧𝜏𝑥𝑧𝜏𝑥𝑦

}}}}}}}}}}}}}}}}}
= [[[[[[[[[

𝑄11 (𝑧) 𝑄12 (𝑧) 0 0 𝑄16 (𝑧)𝑄12 (𝑧) 𝑄22 (𝑧) 0 0 𝑄26 (𝑧)0 0 𝑄44 (𝑧) 𝑄45 (𝑧) 00 0 𝑄45 (𝑧) 𝑄55 (𝑧) 0𝑄16 (𝑧) 𝑄26 (𝑧) 0 0 𝑄66 (𝑧)
]]]]]]]]]

{{{{{{{{{{{{{{{{{

𝜀𝑥𝜀𝑦𝛾𝑦𝑧𝛾𝑥𝑧𝛾𝑥𝑦

}}}}}}}}}}}}}}}}}

(7)

where the material elastic stiffness coefficients 𝑄𝑖𝑗(𝑧) are
defined in terms of the materials properties as

𝑄11 (𝑧) = 𝐸 (𝑧)1 − (𝜇 (𝑧))2𝑄44 (𝑧) = 𝐺23 (𝑧)
𝑄12 (𝑧) = 𝐸 (𝑧) 𝜇 (𝑧)1 − (𝜇 (𝑧))2𝑄55 (𝑧) = 𝐺13 (𝑧)
𝑄22 (𝑧) = 𝐸 (𝑧)1 − (𝜇 (𝑧))2𝑄66 (𝑧) = 𝐺12 (𝑧)

(8)

It should be noted that 𝐺12(𝑧) = 𝐺13(𝑧) = 𝐺23(𝑧) =𝐸(𝑧)/(2 + 2𝜇(𝑧)). By carrying the integration of stresses over

the plate thickness, the force and moment resultants are
obtained as

(𝑁𝑥,𝑁𝑦, 𝑁𝑥𝑦)T = ∫ℎ/2
−ℎ/2

[𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦] 𝑑𝑧 (9a)

(𝑀𝑥,𝑀𝑦,𝑀𝑥𝑦)T = ∫ℎ/2
−ℎ/2

[𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦] 𝑧 𝑑𝑧 (9b)

(𝑄𝑥, 𝑄𝑦)T = ∫ℎ/2
−ℎ/2

[𝜏𝑥𝑧, 𝜏𝑦𝑧] 𝑑𝑧 (9c)

where𝑁𝑥, 𝑁𝑦, 𝑁𝑥𝑦 are the normal and shear forces,𝑀𝑥 , 𝑀𝑦,
and𝑀𝑥𝑦 are the bending and twisting moments. 𝑄𝑥, 𝑄𝑦 are
the transverse shear forces. Performing the integration in
(9a), (9b), and (9c) yields

[[[[
𝑁𝑥𝑁𝑦𝑁𝑥𝑦

]]]]
= [[[

𝐴11 𝐴12 𝐴16𝐴12 𝐴22 𝐴26𝐴16 𝐴26 𝐴66
]]](𝜕𝑢𝜕𝑥 , 𝜕V𝜕𝑦 , 𝜕𝑢𝜕𝑦 + 𝜕V𝜕𝑥)T

+ [[[
𝐵11 𝐵12 𝐵16𝐵12 𝐵22 𝐵26𝐵16 𝐵26 𝐵66

]]](𝜕𝜙𝑥𝜕𝑥 , 𝜕𝜙𝑦𝜕𝑦 , 𝜕𝜙𝑥𝜕𝑦 + 𝜕𝜙𝑦𝜕𝑥 )T

(10)

[[[[
𝑀𝑥𝑀𝑦𝑀𝑥𝑦

]]]]
= [[[

𝐵11 𝐵12 𝐵16𝐵12 𝐵22 𝐵26𝐵16 𝐵26 𝐵66
]]](𝜕𝑢𝜕𝑥 , 𝜕V𝜕𝑦 , 𝜕𝑢𝜕𝑦 + 𝜕V𝜕𝑥)T

+ [[[
𝐷11 𝐷12 𝐷16𝐷12 𝐷22 𝐷26𝐷16 𝐷26 𝐷66

]]](𝜕𝜙𝑥𝜕𝑥 , 𝜕𝜙𝑦𝜕𝑦 , 𝜕𝜙𝑥𝜕𝑦 + 𝜕𝜙𝑦𝜕𝑥 )T

(11)

[𝑄𝑥𝑄𝑦] = 𝜅[𝐴44 𝐴45𝐴45 𝐴55](𝜕𝑢𝜕𝑧 + 𝜕𝑤𝜕𝑥 , 𝜕V𝜕𝑧 + 𝜕𝑤𝜕𝑦 )T
(12)

where 𝜅denotes the shear correction coefficient and is usually
taken as 5/6. The stiffness coefficients 𝐴 𝑖𝑗, 𝐵𝑖𝑗, and 𝐷𝑖𝑗 can be
obtained as

{𝐴 𝑖𝑗, 𝐵𝑖𝑗, 𝐷𝑖𝑗} = 3∑
𝑘=1

∫𝑧𝑘+1
𝑧𝑘

𝑄(𝑘)𝑖𝑗 {1, 𝑧, 𝑧2} 𝑑𝑧 (13)

2.3. Energy Functions and Governing Equations. A modified
Fourier version based on Rayleigh-Ritzmethod is performed.
The Rayleigh-Ritz method is a powerful tool in the field of
vibration analysis, in which the undetermined coefficients
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in the displacement can be obtained by minimizing the
Lagrangian energy function expression or making them
equal to zero [47].Then, a series of equations can be summed
up in matrix form as a standard characteristic equation,
which can be easily solved to obtain the desired frequencies
andmodes.TheLagrangian energy function of the FGSSS can
be written as

𝐿 = 𝑇 − 𝑈𝑠 − 𝑈𝑠𝑝 − 𝑈𝑓 +𝑊𝑒 (14)

The strain energy 𝑈𝑠 for the FGSSS during vibration is
given in an integral form by

𝑈𝑠 = 12 ∫𝑎0 ∫𝑏0 {𝑁𝑥𝜀0𝑥 + 𝑁𝑦𝜀0𝑦 + 𝑁𝑥𝑦𝛾0𝑥𝑦 +𝑀𝑥𝜒𝑥+𝑀𝑦𝜒𝑦 +𝑀𝑥𝑦𝜒𝑥𝑦 + 𝑄𝑥𝛾0𝑥𝑧 + 𝑄𝑦𝛾0𝑦𝑧} 𝑑𝑦𝑑𝑥 (15)

Substituting (5), (6), and (10)-(12) into (15), it can be
written in terms of displacements and rotations components
as

𝑈𝑠
= 12 ∫𝑎0 ∫𝑏0 {𝐴11 (𝜕𝑢𝜕𝑥)2 + 𝐴22 (𝜕V𝜕𝑦)2
+ 56𝐴44 (𝜙𝑥 + 𝜕𝑤𝜕𝑥 )2 + 56𝐴55 (𝜙𝑦 + 𝜕𝑤𝜕𝑦 )2 + 𝐴66 (𝜕𝑢𝜕𝑦
+ 𝜕V𝜕𝑥)2 + 2𝐴12 (𝜕𝑢𝜕𝑥)(𝜕V𝜕𝑦) + 2𝐴16 [(𝜕𝑢𝜕𝑥)(𝜕𝑢𝜕𝑦)
+ (𝜕𝑢𝜕𝑥)( 𝜕V𝜕𝑥)] + 2𝐴26 [( 𝜕V𝜕𝑥)(𝜕V𝜕𝑦)
+ (𝜕𝑢𝜕𝑦)(𝜕V𝜕𝑦)] + 53
⋅ 𝐴45 [(𝜙𝑥 + 𝜕𝑤𝜕𝑥 )(𝜙𝑦 + 𝜕𝑤𝜕𝑦 )] + 2𝐵11 (𝜕𝑢𝜕𝑥)
⋅ (𝜕𝜙𝑥𝜕𝑥 ) + 2𝐵22 (𝜕V𝜕𝑦)(𝜕𝜙𝑦𝜕𝑦 ) + 2𝐵66 (𝜕𝑢𝜕𝑦
+ 𝜕V𝜕𝑥)(𝜕𝜙𝑥𝜕𝑦 + 𝜕𝜙𝑦𝜕𝑥 ) + 2𝐵12 [(𝜕𝑢𝜕𝑥)(𝜕𝜙𝑦𝜕𝑦 )
+ (𝜕V𝜕𝑦)(𝜕𝜙𝑥𝜕𝑥 )] + 2𝐵16 [(𝜕𝑢𝜕𝑥)(𝜕𝜙𝑥𝜕𝑦 )
+ (𝜕𝑢𝜕𝑥)(𝜕𝜙𝑦𝜕𝑥 ) + (𝜕𝑢𝜕𝑦)(𝜕𝜙𝑥𝜕𝑥 )
+ ( 𝜕V𝜕𝑥)(𝜕𝜙𝑥𝜕𝑥 )] + 2𝐵26 [(𝜕V𝜕𝑦)(𝜕𝜙𝑥𝜕𝑦 )
+ (𝜕V𝜕𝑦)(𝜕𝜙𝑦𝜕𝑥 ) + (𝜕𝑢𝜕𝑦)(𝜕𝜙𝑦𝜕𝑦 )
+ (𝜕V𝜕𝑥)(𝜕𝜙𝑦𝜕𝑦 )] + 𝐷11 (𝜕𝜙𝑥𝜕𝑥 )2 + 𝐷22(𝜕𝜙𝑦𝜕𝑦 )2 + 𝐷66 (𝜕𝜙𝑥𝜕𝑦

+ 𝜕𝜙𝑦𝜕𝑥 )2 + 2𝐷12 (𝜕𝜙𝑥𝜕𝑥 )(𝜕𝜙𝑦𝜕𝑦 ) + 2𝐷16 [(𝜕𝜙𝑥𝜕𝑦 )(𝜕𝜙𝑥𝜕𝑥 )
+ (𝜕𝜙𝑥𝜕𝑥 )(𝜕𝜙𝑦𝜕𝑥 )] + 2𝐷26 [(𝜕𝜙𝑥𝜕𝑦 )(𝜕𝜙𝑦𝜕𝑦 )
+ (𝜕𝜙𝑦𝜕𝑥 )(𝜕𝜙𝑦𝜕𝑦 )]}𝑑𝑦𝑑𝑥

(16)

The kinetic energy T, external work𝑊𝑒, and deformation
strain energy Usp of the FGSSS can be seen in [48]. Addition-
ally, the strain energy based on the Winkler and Pasternak
foundations is

𝑈𝑓
= 12 ∫𝑎0 ∫𝑏0 {𝑘𝑊𝑤2 + 𝑘𝑆 (𝜕𝑤𝜕𝑥 )2 + 𝑘𝑆 (𝜕𝑤𝜕𝑦 )2}𝑑𝑦𝑑𝑥 (17)

The governing equations for the FGSSS can be written in
matrix form by combining (5), (6), and (10)-(12) based on
Hamilton’s principle:

((
(

[[[[[[[[[

𝐿11 𝐿12 𝐿13 𝐿14 𝐿15𝐿12 𝐿22 𝐿23 𝐿24 𝐿25−𝐿13 −𝐿23 𝐿33 𝐿34 𝐿35𝐿14 𝐿24 −𝐿34 𝐿44 𝐿45𝐿15 𝐿25 −𝐿35 𝐿45 𝐿55
]]]]]]]]]

− 𝑤2 [[[[[[[[[

−𝐼0 0 0 −𝐼1 00 −𝐼0 0 0 −𝐼10 0 −𝐼0 0 0−𝐼1 0 0 −𝐼2 00 −𝐼1 0 0 −𝐼2
]]]]]]]]]
))
)

[[[[[[[[[

𝑢
V𝑤𝜙𝑥𝜙𝑦
]]]]]]]]]

= [[[[[[[[[

−𝑝𝑥−𝑝𝑦−𝑝𝑧−𝑚𝑥−𝑚𝑦
]]]]]]]]]

(18)

The coefficients of the linear operator 𝐿 𝑖𝑗 are given in
Appendix A.

2.4. Admissible Displacement Functions. In this subsection,
the free vibration of FGSSS on the Winkler and Pasternak
foundation with general boundary restraints are considered.
The displacement and rotation components of FGSSS con-
sisted of standard double Fourier cosine series and sev-
eral closed-form supplementary functions are introduced to
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remove the potential jumps and boundary discontinuities,
which can be expressed as

𝑢 (𝑥, 𝑦, 𝑡) = { 𝑀∑
𝑚=0

𝑁∑
𝑛=0

𝐴𝑚𝑛 cos 𝜆𝑚𝑥 cos 𝜆𝑛𝑦
+ 2∑
𝑙=1

𝑁∑
𝑛=0

𝑎𝑛𝑙 𝜁𝑎𝑙 (𝑥) cos𝜆𝑛𝑦
+ 2∑
𝑙=1

𝑀∑
𝑚=0

𝑏𝑚𝑙 𝜁𝑏𝑙 (𝑦) cos𝜆𝑚𝑥} 𝑒𝑖𝑤𝑡
(19)

V (𝑥, 𝑦) = { 𝑀∑
𝑚=0

𝑁∑
𝑛=0

𝐵𝑚𝑛 cos 𝜆𝑚𝑥 cos𝜆𝑛𝑦
+ 2∑
𝑙=1

𝑁∑
𝑛=0

𝑐𝑛𝑙 𝜁𝑎𝑙 (𝑥) cos 𝜆𝑛𝑦
+ 2∑
𝑙=1

𝑀∑
𝑚=0

𝑑𝑚𝑙 𝜁𝑏𝑙 (𝑦) cos 𝜆𝑚𝑥} 𝑒𝑖𝑤𝑡
(20)

𝑤 (𝑥, 𝑦, 𝑡) = { 𝑀∑
𝑚=0

𝑁∑
𝑛=0

𝐶𝑚𝑛 cos 𝜆𝑚𝑥 cos 𝜆𝑛𝑦
+ 2∑
𝑙=1

𝑁∑
𝑛=0

𝑒𝑛𝑙 𝜁𝑎𝑙 (𝑥) cos 𝜆𝑛𝑦
+ 2∑
𝑙=1

𝑀∑
𝑚=0

𝑓𝑚𝑙 𝜁𝑏𝑙 (𝑦) cos 𝜆𝑚𝑥} 𝑒𝑖𝑤𝑡
(21)

𝜙𝑥 (𝑥, 𝑦) = { 𝑀∑
𝑚=0

𝑁∑
𝑛=0

𝐷𝑚𝑛 cos 𝜆𝑚𝑥 cos 𝜆𝑛𝑦
+ 2∑
𝑙=1

𝑁∑
𝑛=0

𝑔𝑛𝑙 𝜁𝑎𝑙 (𝑥) cos 𝜆𝑛𝑦
+ 2∑
𝑙=1

𝑀∑
𝑚=0

ℎ𝑚𝑙 𝜁𝑏𝑙 (𝑦) cos 𝜆𝑚𝑥} 𝑒𝑖𝑤𝑡
(22)

𝜙𝑦 (𝑥, 𝑦) = { 𝑀∑
𝑚=0

𝑁∑
𝑛=0

𝐸𝑚𝑛 cos 𝜆𝑚𝑥 cos𝜆𝑛𝑦
+ 2∑
𝑙=1

𝑁∑
𝑛=0

𝑖𝑛𝑙 𝜁𝑎𝑙 (𝑥) cos 𝜆𝑛𝑦
+ 2∑
𝑙=1

𝑀∑
𝑚=0

𝑗𝑚𝑙 𝜁𝑏𝑙 (𝑦) cos 𝜆𝑚𝑥} 𝑒𝑖𝑤𝑡
(23)

where 𝜆𝑚 = 𝑚𝜋/𝑎, 𝜆𝑛 = 𝑛𝜋/𝑏. M and N are truncation
numbers with respect to variables x and y. 𝐴𝑚𝑛, 𝐵𝑚𝑛, 𝐶𝑚𝑛,𝐷𝑚𝑛, and 𝐸𝑚𝑛 represent the Fourier expansion coefficients of
the cosine Fourier series, respectively. 𝑎𝑛𝑙 , 𝑏𝑚𝑙 , 𝑐𝑛𝑙 , 𝑑𝑚𝑙 , 𝑒𝑛𝑙 , 𝑓𝑚𝑙 ,𝑔𝑛𝑙 , ℎ𝑚𝑙 , 𝑖𝑛𝑙 , and 𝑗𝑚𝑙 are the corresponding supplement coeffi-
cients. The auxiliary polynomial functions 𝜁𝑎𝑙 (𝑥) and 𝜁𝑏𝑙 (𝑦)

are introduced to remove all the potential discontinuities
associated with the first-order derivatives at the boundaries,
which can be expressed as follows:

𝜁𝑎1 (𝑥) = 𝑥 (𝑥𝑎 − 1)2
𝜁𝑎2 (𝑥) = 𝑥2𝑎 (𝑥𝑎 − 1)
𝜁𝑏1 (𝑦) = 𝑦 (𝑦𝑏 − 1)2
𝜁𝑏2 (𝑦) = 𝑦2𝑏 (𝑦𝑏 − 1)

(24)

It can be verified that

𝜁𝑎1 (0) = 1,
𝜁𝑎1 (0) = 𝜁𝑎1 (𝑎) = 𝜁𝑎1 (𝑎) = 0
𝜁𝑎2 (𝑎) = 1,
𝜁𝑎2 (0) = 𝜁𝑎2 (𝑎) = 𝜁𝑎2 (0) = 0
𝜁𝑏1 (0) = 1,
𝜁𝑏1 (0) = 𝜁𝑏1 (𝑏) = 𝜁𝑏1 (𝑏) = 0
𝜁𝑏2 (𝑏) = 1,
𝜁𝑏2 (0) = 𝜁𝑏2 (𝑏) = 𝜁𝑏2 (0) = 0

(25)

Alternately, all the expansion coefficients in (19)-(23)
are treated equally and independently as the orthogonal
coordinates and solved from the Rayleigh-Ritz method. The
vibration characteristic equation can be summed up:

(K − 𝜔2M)G = 0 (26)

where the coefficient eigenvector G = [G𝑢,GV,G𝑤,G𝜙𝑥 ,
G𝜙𝑦]T is the unknown expansion coefficient that appears in
the series expansions and can be determined by

G𝑢 = [𝐴00, 𝐴01, ⋅ ⋅ ⋅ , 𝐴𝑚0, 𝐴𝑚1, ⋅ ⋅ ⋅ 𝐴𝑚𝑛, ⋅ ⋅ ⋅ , 𝐴𝑀𝑁, 𝑎01 , ⋅ ⋅ ⋅ ,𝑎𝑛𝑙 , ⋅ ⋅ ⋅ , 𝑎𝑁2 , 𝑏01 , ⋅ ⋅ ⋅ , 𝑏𝑚𝑙 , ⋅ ⋅ ⋅ , 𝑏𝑀2 ]
GV = [𝐵00, 𝐵01, ⋅ ⋅ ⋅ , 𝐵𝑚0, 𝐵𝑚1, ⋅ ⋅ ⋅ 𝐵𝑚𝑛, ⋅ ⋅ ⋅ , 𝐵𝑀𝑁, 𝑐01 , ⋅ ⋅ ⋅ , 𝑐𝑛𝑙 ,⋅ ⋅ ⋅ , 𝑐𝑁2 , 𝑑01, ⋅ ⋅ ⋅ , 𝑑𝑚𝑙 , ⋅ ⋅ ⋅ , 𝑑𝑀2 ]
G𝑤 = [𝐶00, 𝐶01, ⋅ ⋅ ⋅ , 𝐶𝑚0, 𝐶𝑚1, ⋅ ⋅ ⋅ 𝐶𝑚𝑛, ⋅ ⋅ ⋅ , 𝐶𝑀𝑁, 𝑒01, ⋅ ⋅ ⋅ , 𝑒𝑛𝑙 ,⋅ ⋅ ⋅ , 𝑒𝑁2 , 𝑓01 , ⋅ ⋅ ⋅ , 𝑓𝑚𝑙 , ⋅ ⋅ ⋅ , 𝑓𝑀2 ]
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Table 2: The corresponding elastic restraint parameters for various boundaries.

Boundary type Restraint parameters
F 𝑘𝑢𝑥0 = 𝑘V𝑥0 = 𝑘𝑤𝑥0 = 𝐾𝑥𝑥0 = 𝐾𝑦𝑥0 = 0, 𝑁𝑥 = 𝑁𝑥𝑦 = 𝑄𝑥 = 𝑀𝑥 = 𝑀𝑥𝑦 = 0
C 𝑘𝑢𝑥0 = 𝑘V𝑥0 = 𝑘𝑤𝑥0 = 𝐾𝑥𝑥0 = 𝐾𝑦𝑥0 = 107𝐷, 𝑢 = V = 𝑤 = 𝜙𝑥 = 𝜙𝑦 = 0
S 𝑘𝑢𝑥0 = 𝑘V𝑥0 = 𝑘𝑤𝑥0 = 𝐾𝑦𝑥0 = 107𝐷, 𝐾𝑥𝑥0 = 0, 𝑢 = V = 𝑤 = 𝑀𝑥 = 𝜙𝑦 = 0
SD 𝑘V𝑥0 = 𝑘𝑤𝑥0 = 𝐾𝑦𝑥0 = 107𝐷, 𝑘𝑢𝑥0 = 𝐾𝑥𝑥0 = 0
E1 𝑘𝑤𝑥0 = 𝐾𝑥𝑥0 = 𝐾𝑦𝑥0 = 107𝐷, 𝑘𝑢𝑥0 = 𝑘V𝑥0 = 15𝐷, 𝑤 = 𝜙𝑥 = 𝜙𝑦 = 0, 𝑢 ̸= 0, V ̸= 0
E2 𝑘𝑢𝑥0 = 𝑘V𝑥0 = 𝐾𝑥𝑥0 = 𝐾𝑦𝑥0 = 107𝐷, 𝑘𝑤𝑥0 = 10𝐷, 𝑢 = V = 𝜙𝑥 = 𝜙𝑦 = 0, 𝑤 ̸= 0
E3 𝑘𝑢𝑥0 = 𝑘V𝑥0 = 𝑘𝑤𝑥0 = 107𝐷, 𝐾𝑥𝑥0 = 𝐾𝑦𝑥0 = 5𝐷, 𝑢 = V = 𝑤 = 0, 𝜙𝑥 ̸= 0, 𝜙𝑦 ̸= 0

Table 3: Comparison of non-dimensional frequency parameters 𝜛 = 𝜔𝑏2/ℎ√𝜌𝑚/𝐸𝑚 of simply supported square FG sandwich plates with
homogeneous middle layer.

h/a p Theory
𝜛

1-0-1 1-1-1 1-2-1 2-1-2 2-2-1 1-8-1

0.01

0.5
3D [42] 1.48244 1.56046 1.61915 1.52355 1.59031 1.76357

RPT [43] 1.48241 1.56042 1.61912 1.52353 1.59030 1.76354

Present 1.48248 1.56023 1.61913 1.52358 1.59034 1.76359

5
3D [42] 0.96563 1.06309 1.19699 0.99903 1.13020 1.56988

RPT [43] 0.96564 1.06309 1.19697 0.99903 1.13019 1.56985

Present 0.96566 1.06313 1.19697 0.99907 1.13024 1.56980

10
3D [42] 0.95042 1.01237 1.14408 0.95934 1.08065 1.54164

RPT [43] 0.95044 1.01236 1.14406 0.95937 1.08065 1.54162

Present 0.95041 1.01234 1.14408 0.95935 1.08065 1.54166

0.1

0.5
3D [42] 1.44614 1.52131 1.57668 1.48608 1.54926 1.71130

RPT [43] 1.44423 1.51921 1.57450 1.48408 1.54710 1.70901

Present 1.44485 1.51975 1.57461 1.48415 1.54750 1.70920

5
3D [42] 0.94476 1.04532 1.17567 0.98103 1.10983 1.52993

RPT [43] 0.94598 1.04465 1.17396 0.98184 1.10881 1.52792

Present 0.94552 1.04434 1.17355 0.98142 1.10874 1.52805

10
3D [42] 0.92727 0.99523 1.12466 0.94078 1.06104 1.50333

RPT [43] 0.92838 0.99550 1.12313 0.94296 1.06090 1.50138

Present 0.92836 0.99550 1.12313 0.94295 1.06080 1.50137

0.2

0.5
3D [42] 1.35358 1.42178 1.46940 1.39053 1.44535 1.58186

RPT [43] 1.34743 1.41508 1.46251 1.38410 1.43843 1.57476

Present 1.35015 1.41682 1.46368 1.38515 1.43901 1.57592

5
3D [42] 0.89086 0.99798 1.11900 0.93362 1.05607 1.42845

RPT [43] 0.89462 0.99545 1.11318 0.93594 1.05228 1.42197

Present 0.89504 0.99561 1.11285 0.93480 1.05496 1.42372

10
3D [42] 0.86833 0.94984 1.07290 0.89228 1.00949 1.40568

RPT [43] 0.87178 0.95033 1.06754 0.89918 1.00848 1.39932

Present 0.86963 0.95012 1.06950 0.89541 1.00887 1.40105
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Table 4: Comparisons of nondimensional frequency parameters 𝜛 = 𝜔𝑏2/ℎ√𝜌0/𝐸0 for Type 1-1 and FGSSS with completely free boundary
restraints, respectively (a=b, h/b=0.1, and Rxy=∞).

Mode

a/R=0.2 a/R=0.5
12×12 13 ×13 14×14 12×12 13×13 14×14

Jin et al.
[44]

Pre-
sent

Jin et al.
[44]

Pre-
sent

Jin et
al. [44]

Pre-
sent

Jin et al.
[44]

Pre-
sent

Jin et al.
[44]

Pre-
sent

Jin et al.
[44]

Pre-
sent

Type 1-1: FG circular cylindrical shallow shell

1 0.903 0.907 0.902 0.905 0.902 0.905 0.901 0.903 0.901 0.902 0.901 0.902
2 1.352 1.361 1.352 1.359 1.352 1.358 1.405 1.411 1.405 1.411 1.405 1.410
3 1.662 1.670 1.662 1.666 1.662 1.659 1.734 1.738 1.734 1.735 1.734 1.735
4 2.279 2.285 2.278 2.281 2.278 2.281 2.272 2.275 2.271 2.276 2.271 2.276

Type 1-1: FG spherical shallow shell

1 0.902 0.905 0.902 0.905 0.902 0.902 0.899 0.904 0.898 0.901 0.898 0.897
2 1.335 1.336 1.335 1.336 1.335 2.334 1.322 1.325 1.322 1.325 1.322 1.325
3 1.696 1.691 1.696 1.694 1.696 1.695 1.900 1.905 1.900 1.905 1.900 1.905
4 2.279 2.284 2.279 2.284 2.279 2.284 2.274 2.276 2.274 2.275 2.274 2.275

Type 1-1: FG hyperbolic paraboloidal shallow shell

1 0.902 0.905 0.902 0.905 0.902 0.905 0.899 0.896 0.899 0.894 0.899 0.894
2 1.399 1.395 1.399 1.395 1.399 1.394 1.634 1.635 1.634 1.637 1.634 1.638
3 1.648 1.645 1.648 1.645 1.648 1.654 1.683 1.687 1.683 1.687 1.683 1.687
4 2.283 2.285 2.282 2.286 2.282 2.286 2.294 2.296 2.293 2.296 2.293 2.297

Type 2-1: FG circular cylindrical shallow shell

1 0.835 0.845 0.835 0.845 0.835 0.844 0.833 0.835 0.833 0.834 0.833 0.834
2 1.249 1.245 1.249 1.245 1.249 1.245 1.302 1.306 1.302 1.308 1.302 1.308
3 1.537 1.550 1.537 1.552 1.537 1.553 1.604 1.612 1.604 1.610 1.604 1.610
4 2.105 2.110 2.105 2.110 2.104 2.108 2.104 2.107 2.104 2.107 2.104 2.109

Type 2-1: FG spherical shallow shell

1 0.835 0.838 0.834 0.835 0.834 0.832 0.830 0.834 0.830 0.835 0.830 0.835
2 1.235 1.241 1.235 1.239 1.235 1.238 1.227 1.231 1.227 1.234 1.227 1.234
3 1.570 1.574 1.570 1.574 1.570 1.574 1.765 1.768 1.765 1.767 1.764 1.767
4 2.106 2.110 2.105 2.110 2.105 2.108 2.105 2.109 2.105 2.114 2.105 2.114

Type 2-1: FG hyperbolic paraboloidal shallow shell

1 0.836 0.841 0.835 0.838 0.835 0.837 0.832 0.835 0.832 0.836 0.832 0.836
2 1.291 1.294 1.291 1.294 1.291 1.294 1.507 1.521 1.507 1.521 1.507 1.520
3 1.522 1.532 1.522 1.537 1.522 1.540 1.555 1.547 1.555 1.549 1.555 1.551
4 2.101 2.104 2.101 2.114 2.104 2.107 2.106 2.115 2.105 2.114 2.105 2.114

G𝜙𝑥 = [𝐷00, 𝐷01, ⋅ ⋅ ⋅ , 𝐷𝑚0, 𝐷𝑚1, ⋅ ⋅ ⋅ 𝐷𝑚𝑛, ⋅ ⋅ ⋅ , 𝐷𝑀𝑁, 𝑔01 , ⋅ ⋅ ⋅ ,
𝑔𝑛𝑙 , ⋅ ⋅ ⋅ , 𝑔𝑁2 , ℎ01, ⋅ ⋅ ⋅ , ℎ𝑚𝑙 , ⋅ ⋅ ⋅ , ℎ𝑀2 ]

G𝜙𝑦 = [𝐸00, 𝐸01, ⋅ ⋅ ⋅ , 𝐸𝑚0, 𝐸𝑚1, ⋅ ⋅ ⋅ 𝐸𝑚𝑛, ⋅ ⋅ ⋅ , 𝐸𝑀𝑁, 𝑖01, ⋅ ⋅ ⋅ , 𝑖𝑛𝑙 ,
⋅ ⋅ ⋅ , 𝑖𝑁2 , 𝑗01, ⋅ ⋅ ⋅ , 𝑗𝑚𝑙 , ⋅ ⋅ ⋅ , 𝑗𝑀2 ]

(27)

K and M represent the stiffness and mass matrix of the
FGSSS, respectively. Both of them are matrices and can be
expressed as [48]

K = [[[[[[[
K𝑢𝑢 K𝑢V K𝑢𝑤 K𝑢𝜙𝑥 K𝑢𝜙𝑦
K𝑢V KVV KV𝑤 KV𝜙𝑥 KV𝜙𝑦
K𝑢𝑤 KV𝑤 K𝑤𝑤 K𝑤𝜙𝑥 K𝑤𝜙𝑦
K𝑢𝜙𝑥 KV𝜙𝑥 K𝑤𝜙𝑥 K𝜙𝑥𝜙𝑥 K𝜙𝑥𝜙𝑦
K𝑢𝜙𝑦 KV𝜙𝑦 K𝑤𝜙𝑦 K𝜙𝑥𝜙𝑦 K𝜙𝑦𝜙𝑦

]]]]]]]
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Table 5: The first four frequencies f (Hz) for Type 1-1 (1-1-1) FGSSS with various boundary restraints and radius-length ratios (p=5, a/b=1,
and h/a=0.1).

𝑅𝑥/𝑅𝑦 𝑅𝑥/a Mode Boundary restraints
SSSS CCCC CFCF SCSC CSDCSD CE1E1E1 SE2SE2 E3E3E3E3

Plate ∞ 1 66.545 79.857 72.148 58.102 75.279 39.310 74.196 21.214
2 93.851 105.51 96.792 73.858 99.082 51.903 98.154 35.150
3 138.47 140.48 123.95 97.593 123.27 71.192 102.21 45.211
4 159.68 173.65 143.54 120.97 135.36 98.115 125.34 59.633

+1

5

1 68.563 80.374 75.156 60.154 78.364 40.151 77.458 23.157
2 97.471 106.35 85.215 79.585 95.544 53.31 90.17 41.405
3 135.54 133.37 98.410 89.361 126.55 79.87 107.01 58.649
4 152.12 159.51 112.12 103.52 135.10 108.81 130.97 61.056

2

1 76.167 87.355 78.124 72.195 83.954 43.486 80.853 25.699
2 90.544 106.05 95.439 80.398 97.610 55.439 98.398 46.378
3 99.202 117.08 106.25 97.403 116.21 86.925 107.403 71.642
4 119.14 139.52 115.58 115.46 130.47 100.54 125.468 76.557

0

5

1 64.479 78.545 67.191 58.235 74.407 36.419 70.435 21.244
2 89.655 96.405 85.366 78.981 89.541 55.661 98.918 45.112
3 105.24 120.94 109.01 99.210 111.24 79.015 119.21 55.880
4 126.50 135.79 122.47 119.58 125.19 95.471 139.58 73.385

2

1 70.571 82.998 73.164 64.771 79.547 39.486 75.761 23.446
2 86.454 89.699 89.101 82.913 85.254 58.212 93.157 47.254
3 102.15 117.20 117.80 100.24 100.30 82.172 109.97 60.351
4 105.85 126.79 128.58 115.38 123.21 90.309 110.58 76.245

-1

5

1 56.152 69.385 59.526 51.402 65.265 32.863 61.626 20.137
2 79.544 89.510 69.624 77.273 84.541 59.784 76.587 37.560
3 100.58 111.34 85.060 94.783 100.24 80.479 92.129 54.783
4 126.24 130.75 115.11 109.23 135.97 92.442 127.66 57.311

2

1 65.931 79.312 68.214 60.109 75.542 38.651 70.721 22.192
2 79.654 95.702 85.824 82.562 89.032 60.082 95.104 45.595
3 98.312 123.54 103.96 95.351 112.33 79.364 107.31 53.102
4 105.29 126.50 120.54 100.33 135.61 87.115 120.25 69.548

M = [[[[[[[[[

M𝑢𝑢 0 0 M𝑢𝜙𝑥 0
0 M𝑢𝑢 0 0 MV𝜙𝑦

0 0 M𝑤𝑤 0 0
M𝑢𝜙𝑥 0 0 M𝜙𝑥𝜙𝑥 0
0 MV𝜙𝑦 0 0 M𝜙𝑦𝜙𝑦

]]]]]]]]]
(28)

The stiffness matrix K and mass matrix M are given in
Appendix B.

3. Numerous Results and Discussion

In this section, a comprehensive free vibration analysis for
FGSSS on Winkler and Pasternak foundations with general
boundary restraints is presented. Firstly, the current results
are checked by comparing with those results published in
other literature. Then, the vibration behaviors for FGSSS

on Winkler and Pasternak foundations with various curva-
ture types, distribution types, geometrical parameters, and
boundary restraints are studied. Finally, the influence of
vibration parameters including inertia, shear deformation,
and foundation coefficient on the free vibration is illustrated.

3.1. FGSSS with General Boundary Restraints. In the engi-
neering applications, the letters F, C, S, and SD repre-
sent the completely free, completely clamped, simply sup-
ported, and shear-diaphragm supported boundary restraints,
respectively. Besides the aforementioned classical boundary
restraints, three elastic boundary restraints, denoted by E1,
E2, and E3, are considered in this paper. Taking edge at𝑥=0, for example, the seven boundaries and corresponding
restraint parameters are shown in Table 2.

The reference bending stiffness 𝐷𝑚 = 𝐸𝑚ℎ3/12(1 −𝜇2𝑚). The accuracy and reliability of the current results are
displayed in Tables 3 and 4. Table 3 compares the nondimen-
sional frequency parameters 𝜛 = 𝜔𝑏2/ℎ√𝜌𝑚/𝐸𝑚 of simply
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1st mode 2nd mode 3rd mode 4th mode
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1st mode 2nd mode 3rd mode 4th mode
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Figure 5: Mode shapes for plates with boundary restraints: (a) CCCC; (b) SSSS; (c) SE2SE2.

supported square FG sandwich plates with FG face sheets
and homogeneous middle layer (1-0-1, 1-1-1, 1-2-1, 2-1-2, 2-
2-1, and 1-8-1). The thickness-length ratios are taken to be
h/a=0.01, 0.1, and 0.2.The gradient indexes are given as p=0.5,
5, and 10. Young’s modulus, mass density, and Poisson ratio
are obtained in Table 1. The solutions given by Li et al. [42],
by the 3D solutions and those of Hadji et al. [43], and by the
RPT are provided for the comparisons. The differences are
less than 1.530% and 2.015% for the worst case, respectively.

Meanwhile, The frequency parameters 𝜛 = 𝜔𝑏2/ℎ√𝜌0/𝐸0 (𝜌0 = 1kg/m3, 𝐸0 = 1Gpa) for Type 1-1 and
Type 2-1 FGSSS with completely free boundary restraints are
presented in Table 4. All layers are assumed to be of equal
thickness. The geometrical parameters are given as a=b and
h/b=0.1. The length-radii ratios used for this analysis are
a/R=0.2 and 0.5, and the truncation number is M=N=12,
13, and 14. The frequency results are compared with the
solutions given by Jin et al. [44]. A well agreement can be ob-
tained.

Numerous new results for fundamental frequencies f
(Hz) are presented in Table 5 for Type 1-1 FGSSS with a
variety of general boundary restraints.Thegradient index and
geometrical parameters are given as p=5, a/b=1, h/a=0.1,
Rx/a=2 and 5. And the thickness for each layer is set to
be equal. Young’s modulus, mass density, and Poisson ratio
are showed in Table 1. The boundary restraints including
SSSS, CCCC, CFCF, SCSC, CSDCSD, CE1E1E1, SE2SE2, and
E3E3E3E3 are considered. It is obvious that the values of fun-
damental frequencies corresponding to different boundaries
are quite sensitive to the change of geometrical parameters.
The frequencies of the FGSSS increase with the increase of

radius ratio (Rx/Ry) and the decrease of radius-length ratio
(Rx/a). The first four mode shapes for the plate, circular
cylindrical shallow shell, and spherical shallow shell with
CCCC, SSSS, and SE2SE2 boundaries are depicted in Figures
5, 6, and 7, respectively. The radius-length ratio Rx/a is set as
2.

3.2. FGSSS Resting onWinkler and Pasternak Foundations. In
this subsection, the free vibration of Type 1-2 (1-1-1) FGSSS on
Winkler and Pasternak foundations with general boundary
restraints is investigated. The geometric parameters and
gradient index of the models are a=b=1 m, h/a=0.1, Rx/a=2,
p=0.5 and 5.Winkler coefficient𝐾𝑊 andPasternak coefficient
KS are taken to be 10 and 100. Young’s modulus, mass
density, and Poisson ratio of the structures are obtained in
Table 1. As known in Table 6, numerous new solutions of
fundamental frequencies f (Hz) for the FG sandwich plates,
circular cylindrical, spherical, and hyperbolic paraboloidal
shallow shells on Winkler and Pasternak foundations with
various boundaries (SSSS, CCCC, CFCF, SCSC, CSDCSD,
CE1E1E1, SE2SE2, and E3E3E3E3) are presented.These results
can be used as the benchmark solutions for future research
in this field. From the results, it is clear that the variation
of the Winkler and Pasternak coefficients has the significant
effect on frequencies of the shallow shells. In order to further
explore the influence of foundation coefficients 𝐾W and
KS on the frequency parameter of the FGSSS, the detailed
parametric study will be illustrated in the next subsection.

3.3. Studies on Free Vibration Parameters. In this subsection,
the influence of vibration parameters including inertia, shear
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1st mode 2nd mode 3rd mode 4th mode
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Figure 6: Mode shapes for circular cylindrical shallow shells with boundary restraints: (a) CCCC; (b) SSSS; (c) SE2SE2 .

1st mode 2nd mode 3rd mode 4th mode
(a)

1st mode 2nd mode 3rd mode 4th mode
(b)

1st mode 2nd mode 3rd mode 4th mode
(c)

Figure 7: Mode shapes for spherical shallow shells with boundary restraints: (a) CCCC; (b) SSSS; (c) SE2SE2.

deformation, and foundation coefficient on the free vibration
is illustrated. For CSST, the inertia and shear deformation
are not considered in solving the vibration characteristic of
FG shallow shells. Consequently, the modified FSDSST is
addressed to tackle above problems.

The difference of frequency parameters Ω obtained by
CSST and FSDSST for simply supported Type 1-2 FGSSS
with various thickness ratios and curvature types is shown in

Figure 8. The gradient index and geometric parameters used
are p=2, a/b=1, and Rx/a=2. It is clear that the difference of
frequency parameters grows with the increase of thickness
ratios for all curvature types. Mode shape of (2, 2) displayed
larger errors than that of (1, 1), (2, 1), and (1, 2). Hence, CSST
is not suitable for the FGSSS due to the important role of
inertia and shear deformation in frequency calculation of
high-order mode. Furthermore, the difference of frequency
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Table 6: Fundamental frequencies f (Hz) for Type 1-2 (1-1-1) plate, circular cylindrical spherical and hyperbolic paraboloidal shallow shell
on Winkler and Pasternak foundations with various boundary restraints.

𝐾𝑊 𝐾𝑆 𝜌 Boundary Restraints
SSSS CCCC CFCF SCSC CSDCSD CE1E1E1 SE2SE2 E3E3E3E3

FG sandwich plate

10
10 0.5 69.151 99.615 89.141 94.136 96.018 43.372 77.252 33.384

5 58.754 78.703 68.155 72.151 74.712 39.165 62.801 30.728

100 0.5 77.465 113.40 96.752 102.41 109.86 52.692 84.752 36.832
5 62.938 92.796 78.234 81.182 88.751 45.648 71.867 31.659

100
10 0.5 78.746 115.76 99.268 105.15 110.21 53.701 84.736 36.685

5 62.998 95.398 81.680 85.145 91.327 46.408 71.651 30.625

100 0.5 93.545 131.45 113.04 121.96 128.63 58.310 101.71 38.547
5 73.742 112.72 80.124 96.584 106.23 52.522 78.087 33.201

FG sandwich circular cylindrical shallow shell

10
10 0.5 63.850 87.642 78.359 85.209 83.678 40.214 71.065 29.548

5 54.243 69.245 61.953 69.321 65.251 35.247 56.428 27.651

100 0.5 70.955 102.96 90.145 94.547 98.932 46.367 75.992 31.287
5 58.987 93.970 71.625 78.520 90.240 41.140 70.222 29.748

100
10 0.5 72.568 109.64 92.323 98.336 105.63 46.215 80.571 32.214

5 60.962 94.353 74.254 81.351 89.321 40.162 72.678 28.967

100 0.5 84.647 125.21 103.35 112.42 118.96 50.271 89.524 35.124
5 68.166 110.79 78.547 90.244 106.71 45.214 75.215 31.258

FG sandwich spherical shallow shell

10
10 0.5 54.156 69.759 60.297 64.392 64.253 35.157 58.739 25.172

5 46.394 57.443 52.061 54.163 52.360 32.658 49.154 22.698

100 0.5 63.582 95.245 88.570 89.571 93.575 37.687 68.215 26.215
5 48.151 81.524 70.657 76.408 77.074 34.186 53.216 24.154

100
10 0.5 65.696 102.75 85.041 92.019 98.709 39.398 74.155 26.687

5 50.168 88.178 70.992 74.326 84.171 35.187 65.397 25.154

100 0.5 74.963 116.32 95.891 104.45 110.38 44.163 82.357 29.696
5 67.490 105.88 74.126 85.247 101.49 40.352 70.644 27.215

FG sandwich hyperbolic paraboloidal shallow shell

10
10 0.5 34.248 43.435 38.423 40.317 40.457 31.971 36.215 22.198

5 30.157 38.480 34.767 36.051 36.370 28.645 32.367 20.067

100 0.5 45.955 64.016 54.031 57.309 58.036 34.196 50.397 24.548
5 39.221 52.482 45.021 46.322 49.467 30.677 42.255 22.001

100
10 0.5 48.251 69.245 60.652 63.567 63.259 35.672 53.219 25.157

5 38.195 53.522 45.682 49.294 50.245 31.015 41.488 24.695

100 0.5 50.003 82.795 62.052 68.088 78.590 32.359 58.154 28.964
5 41.326 72.278 49.992 53.355 66.048 30.248 45.570 26.175

parameters Ω obtained by CSST and FSDSST for simply
supported FG spherical shallow shellswith different thickness
ratios and anisotropic degrees are plotted in Figure 9. It can
be seen that the difference of frequency parameters increases
with the increase of anisotropic degrees, which suggests that
the effect of inertia and shear deformation is magnified
when anisotropic degrees are taken to be larger values.
However, due to the influence of mode shape and anisotropic
degrees, the difference of frequency parameters for some

FG spherical shallow shells may show a decreasing trend
after reaching a certain thickness ratio. Furthermore, the
variations of frequency parameters Ω versus the foundation
coefficients for simply supported Type 1-2 (1-1-1) FGSSS are
presented in Figure 10. It can be easily obtained that the
change in frequencies parameters is very small when the
Winkler and Pasternak foundation coefficients are less than
105, while when the values of Winkler and Pasternak foun-
dation coefficients are between 105 and 109, the frequencies
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Figure 8: The difference of frequency parameters Ω obtained by CSST and FSDSST for simply supported FGSSS with different thickness
ratios h/a and curvature types: (a) plate; (b) circular cylindrical shallow shell; (c) spherical shallow shell; (d) hyperbolic paraboloidal shallow
shell. (m and n represent the modal number in the direction of x and y, respectively).

parameters increase rapidly, which is a sensitive range. In the
case of greater than 109, the effect of Winkler and Pasternak
foundation coefficients on the frequencies parameters Ω can
be neglected.

4. Conclusions

This paper presents a modified Fourier method for free
vibration of FGSSS on Winkler and Pasternak foundations
based on FSDSST. Vibration characteristics of the shallow
shells have been obtained by the energy function represented

in the orthogonal coordinates, in which the displacement
and rotation components are described as a combining
form of standard double Fourier cosine series and several
closed-form supplementary functions in order to elimi-
nate the potential jumps and boundary discontinuities. The
present method displays better reliability and accuracy.Then,
numerous new results for FGSSS on Winkler and Paster-
nak foundations with various curvature types, geometrical
parameters, and boundary restraints are presented, which
may be used for benchmark solutions in the future re-
search.
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Figure 9: The difference of frequency parameters Ω obtained by CSST and FSDSST for simply supported FG spherical shallow shells with
different thickness ratios h/a and anisotropic degrees Em/Ec: (a) (1, 1); (b) (2, 1); (c) (1, 2); (d) (2, 2).

In addition, a comprehensive investigation concentrated
on the free vibration characteristics of FGSSS is performed.
The results show that the inertia, shear deformation, and
foundation coefficients are verified to affect significantly the
vibration frequencies of FGSSS. The difference of frequency
parameters increases with the increase of anisotropic degrees,
which proves that the effect of inertia and shear deforma-
tion is magnified when anisotropic degrees are taken to

be larger values. And the change in frequencies parame-
ters is small when the Winkler and Pasternak foundation
coefficients are less than 105, while when the values of
Winkler and Pasternak foundation coefficients are between
105 and 109, the frequencies parameters increase rapidly.
In the case of greater than 109, the effect of foundation
coefficients on the frequencies parameters can be neglect-
ed.
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Figure 10: Variation of the frequency parameters versus the foundation coefficients for simply supported FGSSS with various curvature types.
(a) plate; (b) circular cylindrical shallow shell; (c) spherical shallow shell; (d) hyperbolic paraboloidal shallow shell.

Appendix

A. Linear Differential Operator of
the Governing Equation

The coefficients of the linear operator 𝐿 𝑖𝑗 are as follows:
𝐿11 = 𝐴11 𝜕2𝜕𝑥2 + 2𝐴16 𝜕2𝜕𝑥𝜕𝑦 + 𝐴66 𝜕2𝜕𝑦2 − 𝐴55𝑅2𝑥
𝐿12 = 𝐴16 𝜕2𝜕𝑥2 + (𝐴12 + 𝐴66) 𝜕2𝜕𝑥𝜕𝑦 + 𝐴26 𝜕2𝜕𝑦2

− 𝐴45𝑅𝑥𝑅𝑦
𝐿13 = (𝐴11𝑅𝑥 + 𝐴12𝑅𝑦 + 𝐴55𝑅𝑥 ) 𝜕𝜕𝑥

+ (𝐴16𝑅𝑥 + 𝐴26𝑅𝑦 + 𝐴45𝑅𝑥 ) 𝜕𝜕𝑦
𝐿14 = 𝐵11 𝜕2𝜕𝑥2 + 2𝐵16 𝜕2𝜕𝑥𝜕𝑦 + 𝐵66 𝜕2𝜕𝑦2 + 𝐴55𝑅𝑥

𝐿15 = 𝐵16 𝜕2𝜕𝑥2 + (𝐵12 + 𝐵66) 𝜕2𝜕𝑥𝜕𝑦 + 𝐵26 𝜕2𝜕𝑦2 + 𝐴45𝑅𝑥
𝐿22 = 𝐴66 𝜕2𝜕𝑥2 + 2𝐴26 𝜕2𝜕𝑥𝜕𝑦 + 𝐴22 𝜕2𝜕𝑦2 − 𝐴44𝑅2𝑦
𝐿23 = (𝐴12𝑅𝑥 + 𝐴22𝑅𝑦 + 𝐴44𝑅𝑦 ) 𝜕𝜕𝑦

+ (𝐴16𝑅𝑥 + 𝐴26𝑅𝑦 + 𝐴45𝑅𝑦 ) 𝜕𝜕𝑥
𝐿24 = 𝐵16 𝜕2𝜕𝑥2 + (𝐵12 + 𝐵66) 𝜕2𝜕𝑥𝜕𝑦 + 𝐵26 𝜕2𝜕𝑦2 + 𝐴45𝑅𝑦
𝐿25 = 𝐵66 𝜕2𝜕𝑥2 + 2𝐵26 𝜕2𝜕𝑥𝜕𝑦 + 𝐵22 𝜕2𝜕𝑦2 + 𝐴44𝑅𝑦
𝐿33 = 𝐴11𝑅2𝑥 + 2𝐴12𝑅𝑥𝑅𝑦 + 𝐴22𝑅2𝑦 − 𝐴55 𝜕2𝜕𝑥2 − 2𝐴45 𝜕2𝜕𝑥𝜕𝑦

− 𝐴44 𝜕2𝜕𝑦2 + 𝑘𝑤 − 𝑘𝑠( 𝜕2𝜕𝑥2 + 𝜕2𝜕𝑦2)



Mathematical Problems in Engineering 17

𝐿34 = (𝐵11𝑅𝑥 + 𝐴12𝑅𝑦 − 𝐴55) 𝜕𝜕𝑥
+ (𝐵16𝑅𝑥 + 𝐵26𝑅𝑦 − 𝐴45) 𝜕𝜕𝑦

𝐿35 = (𝐵12𝑅𝑥 + 𝐴22𝑅𝑦 − 𝐴44) 𝜕𝜕𝑦
+ (𝐵16𝑅𝑥 + 𝐵26𝑅𝑦 − 𝐴45) 𝜕𝜕𝑥

𝐿44 = 𝐷11 𝜕2𝜕𝑥2 + 2𝐷16 𝜕2𝜕𝑥𝜕𝑦 + 𝐷66 𝜕2𝜕𝑦2 − 𝐴55
𝐿45 = 𝐷16 𝜕2𝜕𝑥2 + (𝐷12 + 𝐷66) 𝜕2𝜕𝑥𝜕𝑦 + 𝐷26 𝜕2𝜕𝑦2 − 𝐴45
𝐿55 = 𝐷66 𝜕2𝜕𝑥2 + 2𝐷26 𝜕2𝜕𝑥𝜕𝑦 + 𝐷22 𝜕2𝜕𝑦2 − 𝐴44

(A.1)

B. Stiffness and Mass Matrix

Submatrices in the stiffness matrix K and mass matrix M are
listed as follows.

H = [cos𝜆0𝑥 cos𝜆0𝑦, . . . , cos 𝜆𝑚𝑥 cos 𝜆𝑛𝑦, . . . ,
cos𝜆𝑀𝑥 cos 𝜆𝑁𝑦, 𝑃1 (𝑥) cos𝜆0𝑦, . . . , 𝑃𝑙 (𝑥) cos 𝜆𝑛𝑦,. . . , 𝑃2 (𝑥) cos 𝜆𝑁𝑦, 𝑃1 (𝑦) cos 𝜆0𝑥, . . . , 𝑃𝑙 (𝑦) cos 𝜆𝑚𝑥,. . . , 𝑃2 (𝑦) cos 𝜆𝑀𝑥]

{K𝑢𝑢} = ∫𝑎
0
∫𝑏
0
{𝐴11 𝜕HT𝜕𝑥 𝜕H𝜕𝑥 + 𝐴16 𝜕HT𝜕𝑥 𝜕H𝜕𝑦

+ 𝐴16 𝜕HT𝜕𝑦 𝜕H𝜕𝑥 + 𝐴66 𝜕HT𝜕𝑦 𝜕H𝜕𝑦 }𝑑𝑦𝑑𝑥
+ ∫𝑏
0
{𝑘𝑢𝑥0HTH𝑥=0 + 𝑘𝑢𝑥1HTH𝑥=𝑎} 𝑑𝑦

+ ∫𝑎
0
{𝑘𝑢𝑦0HTH𝑦=0 + 𝑘𝑢𝑦1HTH𝑦=𝑏} 𝑑𝑥

{KVV} = ∫𝑎
0
∫𝑏
0
{𝐴22 𝜕HT𝜕𝑦 𝜕H𝜕𝑦 + 𝐴26 𝜕HT𝜕𝑥 𝜕H𝜕𝑦

+ 𝐴26 𝜕HT𝜕𝑦 𝜕H𝜕𝑥 + 𝐴66 𝜕HT𝜕𝑥 𝜕H𝜕𝑥 }𝑑𝑦𝑑𝑥
+ ∫𝑏
0
{𝑘V𝑥0HTH𝑥=0 + 𝑘V𝑥1HTH𝑥=𝑎} 𝑑𝑦

+ ∫𝑎
0
{𝑘V𝑦0HTH𝑦=0 + 𝑘V𝑦1HTH𝑦=𝑏} 𝑑𝑥

{K𝑤𝑤} = ∫𝑎
0
∫𝑏
0
{𝐴44 𝜕HT𝜕𝑦 𝜕H𝜕𝑦 + 𝐴45 𝜕HT𝜕𝑥 𝜕H𝜕𝑦

+ 𝐴45 𝜕HT𝜕𝑦 𝜕H𝜕𝑥 + 𝐴55 𝜕HT𝜕𝑥 𝜕H𝜕𝑥 } 𝑑𝑦𝑑𝑥
+ ∫𝑏
0
{𝑘𝑤𝑥0HTH𝑥=0 + 𝑘𝑤𝑥1HTH𝑥=𝑎} 𝑑𝑦

+ ∫𝑎
0
{𝑘𝑤𝑦0HTH𝑦=0 + 𝑘𝑤𝑦1HTH𝑦=𝑏}𝑑𝑥

{K𝜙𝑥𝜙𝑥} = ∫𝑎
0
∫𝑏
0
{𝐷11 𝜕HT𝜕𝜙𝑥 𝜕H𝜕𝜙𝑥 + 𝐷16 𝜕HT𝜕𝜙𝑥 𝜕H𝜕𝑦

+ 𝐷16 𝜕HT𝜕𝜙𝑦 𝜕H𝜕𝑥 + 𝐷66 𝜕HT𝜕𝑦 𝜕H𝜕𝑦 + 𝐴55HTH}𝑑𝑦𝑑𝑥
+ ∫𝑏
0
{𝑘𝑥𝑥0HTH𝑥=0 + 𝑘𝑥𝑥1HTH𝑥=𝑎} 𝑑𝑦

+ ∫𝑎
0
{𝑘𝑥𝑦0HTH𝑦=0 + 𝑘𝑥𝑦1HTH𝑦=𝑏}𝑑𝑥

{K𝜙𝑦𝜙𝑦} = ∫𝑎
0
∫𝑏
0
{𝐷22 𝜕HT𝜕𝜙𝑦 𝜕H𝜕𝜙𝑦 + 𝐷26 𝜕HT𝜕𝑥 𝜕H𝜕𝜙𝑦

+ 𝐷26 𝜕HT𝜕𝜙𝑦 𝜕H𝜕𝑥 + 𝐷66 𝜕HT𝜕𝑥 𝜕H𝜕𝑥 + 𝐴44HTH}𝑑𝑦𝑑𝑥
+ ∫𝑏
0
{𝑘𝑦𝑥0HTH𝑥=0 + 𝑘𝑦𝑥1HTH𝑥=𝑎} 𝑑𝑦

+ ∫𝑎
0
{𝑘𝑦𝑦0HTH𝑦=0 + 𝑘𝑦𝑦1HTH𝑦=𝑏}𝑑𝑥

{K𝑢V} = ∫𝑎
0
∫𝑏
0
{𝐴12 𝜕HT𝜕𝑥 𝜕H𝜕𝑦 + 𝐴16 𝜕HT𝜕𝑥 𝜕H𝜕𝑥

+ 𝐴26 𝜕HT𝜕𝑦 𝜕H𝜕𝑦 + 𝐴66 𝜕HT𝜕𝑦 𝜕H𝜕𝑥 } 𝑑𝑦𝑑𝑥
{K𝑢𝜙𝑥} = ∫𝑎

0
∫𝑏
0
{𝐵11 𝜕HT𝜕𝜙𝑥 𝜕H𝜕𝜙𝑥 + 𝐵16 𝜕HT𝜕𝜙𝑥 𝜕H𝜕𝑦

+ 𝐵16 𝜕HT𝜕𝑦 𝜕H𝜕𝜙𝑥 + 𝐵66 𝜕HT𝜕𝑦 𝜕H𝜕𝑦 } 𝑑𝑦𝑑𝑥
{K𝑢𝜙𝑦} = ∫𝑎

0
∫𝑏
0
{𝐵12 𝜕HT𝜕𝑥 𝜕H𝜕𝜙𝑦 + 𝐵16 𝜕HT𝜕𝑥 𝜕H𝜕𝑥

+ 𝐵26 𝜕HT𝜕𝜙𝑦 𝜕H𝜕𝜙𝑦 + 𝐵66 𝜕HT𝜕𝜙𝑦 𝜕H𝜕𝑥 } 𝑑𝑦𝑑𝑥
{KV𝜙𝑥} = ∫𝑎

0
∫𝑏
0
{𝐵12 𝜕HT𝜕𝑦 𝜕H𝜕𝜙𝑥 + 𝐵26 𝜕HT𝜕𝑦 𝜕H𝜕𝑦

+ 𝐵16 𝜕HT𝜕𝜙𝑥 𝜕H𝜕𝜙𝑥 + 𝐵66 𝜕HT𝜕𝜙𝑥 𝜕H𝜕𝑦 } 𝑑𝑦𝑑𝑥
{KV𝜙𝑦} = ∫𝑎

0
∫𝑏
0
{𝐵22 𝜕HT𝜕𝜙𝑦 𝜕H𝜕𝜙𝑦 + 𝐵26 𝜕HT𝜕𝜙𝑦 𝜕H𝜕𝑥

+ 𝐵26 𝜕HT𝜕𝑥 𝜕H𝜕𝜙𝑦 + 𝐵66 𝜕HT𝜕𝑥 𝜕H𝜕𝑥 } 𝑑𝑦𝑑𝑥
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{K𝜙𝑥𝜙𝑦} = ∫𝑎
0
∫𝑏
0
{𝐷12 𝜕HT𝜕𝜙𝑥 𝜕H𝜕𝜙𝑦 + 𝐷16 𝜕HT𝜕𝜙𝑥 𝜕H𝜕𝜙𝑥

+ 𝐷26 𝜕HT𝜕𝜙𝑦 𝜕H𝜕𝜙𝑦 + 𝐷66 𝜕HT𝜕𝜙𝑦 𝜕H𝜕𝜙𝑥
+ 𝐴45HTH}𝑑𝑦𝑑𝑥

{K𝑤𝜙𝑥} = ∫𝑎
0
∫𝑏
0
{𝐴45 𝜕HT𝜕𝜙𝑦 H + 𝐴55 𝜕HT𝜕𝜙𝑥 H}𝑑𝑦𝑑𝑥

{K𝑤𝜙𝑦} = ∫𝑎
0
∫𝑏
0
{𝐴44 𝜕HT𝜕𝜙𝑦 H + 𝐴45 𝜕HT𝜕𝜙𝑥 H}𝑑𝑦𝑑𝑥{K𝑢𝑤} = 0{KV𝑤} = 0

M𝑢𝑢 = MVV = M𝑤𝑤 = ∫𝑎
0
∫𝑏
0
𝐼0HTH 𝑑𝑦𝑑𝑥

M𝑢𝜙𝑥 = MV𝜙𝑦 = ∫𝑎
0
∫𝑏
0
𝐼1HTH 𝑑𝑦𝑑𝑥

M𝜙𝑥𝜙𝑥 = M𝜙𝑦𝜙𝑦 = ∫𝑎
0
∫𝑏
0
𝐼2HTH𝑑𝑦𝑑𝑥

(B.1)
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