
Research Article
A New Two-Dimensional Mutual Coupled Logistic Map and Its
Application for Pseudorandom Number Generator

Xuan Huang,1 Lingfeng Liu ,2 Xiangjun Li ,2 Minrong Yu,2 and Zijie Wu 2

1School of Software & Communication Engineering, Jiangxi University of Finance and Economics, Nanchang, 330013, China
2School of Software, Nanchang University, Nanchang, 330029, China

Correspondence should be addressed to Lingfeng Liu; vatanoilcy@163.com and Xiangjun Li; lxjun alex@163.com

Received 19 March 2019; Accepted 30 April 2019; Published 27 May 2019

Academic Editor: A. M. Bastos Pereira

Copyright © 2019 Xuan Huang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Given that the sequences generated by logistic map are unsecure with a number of weaknesses, including its relatively small key
space, uneven distribution, and vulnerability to attack by phase space reconstruction, this paper proposes a new two-dimensional
mutual coupled logistic map, which can overcome these weaknesses. Our two-dimensional chaotic map model is simpler than
the recently proposed three-dimensional coupled logistic map, whereas the sequence generated by our system is more complex.
Furthermore, a new kind of pseudorandom number generator (PRNG) based on the mutual coupled logistic maps is proposed for
application. Both statistical tests and security analysis show that our proposed PRNG has good randomness and that it can resist
all kinds of attacks. The algorithm speed analysis indicates that PRNG is valuable to practical applications.

1. Introduction

Chaos is a popular phenomenon in the natural and social
world. Some interesting nonlinear dynamical characteristics
of chaotic system, including sensitivity to initial condition
and parameter, topological transitivity, pseudorandomness,
and wide spectrum,, leading the chaotic systems to be
widely used in many different kinds of fields, such as spread
spectrum communication, numerical simulation, error con-
trol coding, and cryptography [1–3]. In such applications,
the pseudorandom number sequence (PRNS) with good
security performances is necessary. Traditional methods for
generating PRNS are mainly based on the linear congruential
method or linear feedback shift registers. However, the inner-
linear construction of these methods will make a greater risk
by correlation attack [4] and algebraic attack [5]. Therefore,
an improvedmethod for generating PRNS is to use nonlinear
source. The chaotic system is with rich nonlinear dynamics,
which is regarded as an important pseudorandom source in
the design of PRNG recently.

The first chaos-based PRNG was proposed by Oishi and
Inoue in 1982 [6]. Since then, a large number of chaotic

PRNGs have been proposed [7–18]. In [7], Szczepanski
and Kotulski propose a chaotic PRNG by applying discrete
chaotic dynamical systems, whose idea is exploiting the
property of extreme sensitivity of trajectories to small changes
of initial conditions. Li et al. propose a chaotic PRNG
based on a coupled map lattice, which is adopted as a
prototype of a spatiotemporal chaotic system [8]. Francois et
al. proposed a secure PRNG three-mixer, whose principle of
the method consists in mixing three chaotic maps produced
from an input initial vector [9]. Hu et al. proposed a PRNG
based on the Chen chaotic system by combining three
coordinates of chaotic orbit [10]. In [11], a PRNG based
on nonstationary logistic map, whose control parameter
is driven by a dynamic algorithm, is proposed. Moreover,
Wang et al. proposed a PRNG based on z-logistic map [12];
Kocarev et al. analyzed the application of a chaotic piecewise-
linear one-dimensional map as RNG [13, 14]; Wang et al.
proposed a PRNG by using piecewise logistic chaotic map
[15]. Two PRNGs based on logistic chaotic maps intended
for stream cipher applications are proposed in [16] and so
forth.
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Among all the chaos-based PRNGs, the one-dimensional
chaotic map is most widely used, especially for logis-
tic map. Logistic map is described by a simple mathe-
matical function, which is quite easy to implement by
both algorithm and circuits. However, some researches
show that the sequences generated by logistic map are
not secure with some weaknesses [19], including the
following.

(1) Relatively small key space: logistic map has only one
control parameter, and the state variable is one-dimensional,
which makes the key space small.

(2) Uneven distribution: the distribution of the sequences
generated by logistic map is “U” like, which is not
uniform.

(3) Easily be attacked by phase space reconstruction:
although the trajectory of logistic map looks compli-
cated, once we reconstruct the trajectories into a space
with higher dimension, the structure becomes simple and
evident.

Therefore, logistic map cannot be used to construct
PRNG before addressing all these weaknesses. In order
to overcome these weaknesses, two kinds of method have
been provided. References [20, 21] overcome the weak-
nesses by constructing parameter-varied logistic map. How
to vary the parameter is the most important key to this
kind of method. If the parameters are varying in a sim-
ple way, the parameter-varying chaotic map can still be
predicted based on wavelet neural network and multi-
wavelets neural network [22]. Else, if the parameters are
varying in a complicated way, the implement cost will
be greatly increased. Another method is coupling multiple
logistic maps. Reference [19] proposed three-dimensional
coupled logistic maps to overcome the weaknesses of logistic
map.

Motivated by [19], in this paper, we propose a new two-
dimensional mutual coupled logistic map to overcome the
weaknesses of logistic map.The experiment results show that
this new map can enlarge the key space, can resist the phase
space reconstruction attack, and has a uniform distribution.
Our two-dimensional chaotic map is simpler than the three-
dimensional coupled logistic map in [19], while the generated
sequence of our system is more complex, which has been
evaluated by using both approximate entropy (ApEn) and
permutation entropy (PE). Furthermore, we propose a new
kind of PRNG based on the mutual coupled logistic maps
for application. Both statistical tests and security analysis
show that our proposed PRNG is with good randomness
and is capable of resisting all kinds of attacks. The algorithm
speed analysis shows that the PRNG is valuable to practical
applications.

The rest of this paper is organized as follows. The
new two-dimensional mutual coupled logistic map and
its dynamical performances are provided in Section 2.
In Section 3, a new kind of PRNG is introduced. The
statistical tests for PRNG are presented in Section 4.
The security and algorithm speed analysis are presented
in Section 5. Finally, Section 6 concludes the whole
paper.

2. The New Mutual Coupled Logistic Map and
Its Performances

To overcome the security weaknesses of logistic map, in this
section, we construct the following mutual coupled logistic
map, whose mathematical model can be described as

𝑥𝑖+1 = 𝑎 ⋅ (10
3 − 1) ⋅max {𝑥𝑖, 𝑦𝑖} ⋅ (1 −max {𝑥𝑖, 𝑦𝑖})

𝑦𝑖+1 = 𝑏 ⋅ (10
3 − 1) ⋅ √𝑥𝑖𝑦𝑖 (1 − √𝑥𝑖𝑦𝑖)

mod1

(1)

where 𝑥𝑖 and 𝑦𝑖 are the state variables of maps 𝑋 and 𝑌,
respectively. 𝑎 and 𝑏 are the control parameters of maps 𝑋
and 𝑌, respectively, 3.6 ≤ a, b ≤ 4. By mutual coupling of two
logistic maps, (1) becomes two-dimensional. This coupled
model is proposed based on the following considerations.

(1)The subsystems of the coupledmodel shouldmaintain
the form of logistic map.

(2) Gain 103 – 1 and modular operation are used to
improve the distribution characteristics of the original logis-
tic map.

(3) The coupled term max{𝑥𝑖, 𝑦𝑖} and (𝑥𝑖𝑦𝑖)1/2 are used
to make the states of xi+1 and yi+1 be affected by both 𝑥𝑖 and
𝑦𝑖, which can improve the complexity of the original logistic
map.

Note that this coupledmodel is not irreplaceable.The gain
103 – 1 can be replaced by another coefficient. Distribution
characteristics are generally better for a larger gain. In
addition, the coupled terms can also be replaced by other
forms, e.g., min{𝑥𝑖, 𝑦𝑖}, (𝑥𝑖 + 𝑦𝑖)/2. Therefore, a more general
model can be written as

𝑥𝑖+1 = 𝑎 ⋅ 𝑘 ⋅ ℎ1 (𝑥𝑖, 𝑦𝑖) ⋅ (1 − ℎ1 (𝑥𝑖, 𝑦𝑖))

𝑦𝑖+1 = 𝑏 ⋅ 𝑘 ⋅ ℎ2 (𝑥𝑖, 𝑦𝑖) ⋅ (1 − ℎ2 (𝑥𝑖, 𝑦𝑖))

mod1

(2)

where 𝑘 is the gain coefficient and ℎ1(𝑥𝑖, 𝑦𝑖) and ℎ2(𝑥𝑖, 𝑦𝑖)
are two coupled functions. Although the coupled model
appears simple, the weaknesses of the logistic map have
been greatly improved. Next, we will show that the new
two-dimensional chaotic map is with good dynamical and
complexity performances. In the numerical analysis, the x-
dimensional variable of (1) is selected. For the 𝑦-dimensional
variable, similar results are omitted here to avoid redundancy.

2.1. Key Space Analysis. For the logistic map, only one
parameter and one-dimensional initial condition can be
selected as the secret key. Let the largest precision be 10−16.
The key space of the logistic map approximately equals
0.4∗1032 ≈ 2105, which is less than the secure requirement 2128
of cryptographic application. While for the mutual coupled
logistic map described by (1), both parameters 𝑎, 𝑏 and initial
conditions 𝑥0, 𝑦0 can be selected as the secret key, with whose
key space is about 0.16∗1064 ≈ 2210. Therefore, we can see
that the key space of (1) has increased greatly, which is large
enough to resist brute-force attack.
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2.2. Distribution Diagram. As shown in Figure 1(a), the
distribution of the sequences generated by logistic map is
“U” like (not uniform) with a bad statistical property, and
it can be attacked by some statistical analysis. Set a = b =
3.999, and the initial conditions 𝑥0 and 𝑦0 are randomly
selected; the distribution of the generated sequences of our
two-dimensional mutual coupled logistic map is shown in
Figure 1(b). Evidently, Figure 1(b) indicates that the generated
sequence by (1) is uniformly distributed. However, other
two-dimensional logistic maps are not uniformly distributed.
Figure 1(c) shows the histogram of the two-dimensional
logistic map in [23]. The distribution of this map is obviously
not uniform.

2.3. Trajectories and Phase Space. Let a = b = 3.999. Ran-
domly choose the initial values of the logistic map and (1).
Figure 2 shows the trajectories of these two chaotic maps.
From Figure 2 we can find that these two trajectories are both
disorganized with what appears as good randomness. How-
ever, once we reconstruct the trajectories into a space with
an increased dimension, the structures differ. In the phase
space reconstruction technology, delay time and embedding
dimension are two key parameters. For the best reconstruc-
tion, in this experiment, we set delay time at 1 and the
embedding dimension at 3 according to the autocorrelation
function and false neighbormethod.The reconstructed phase
spaces are shown in Figure 3. From Figure 3(a) we have that
the reconstructed phase space of logisticmap has a significant
structure, whereas the reconstructed phase space of mutual
coupled logisticmap is still disorganized without a significant
structure. Therefore, our mutual coupled logistic map can
resist the phase space reconstruction attack. Moreover, for
other delay times and embedding dimensions, the phase
space is still disordered without a significant structure for the
mutual coupled logistic map, which we do not repeat here.

2.4. Complexity Analysis. In this section, the approximate
entropy (ApEn) and permutation entropy (PE) are used to
evaluate the complexity of the generated sequences. Compar-
isons to the generated sequences in [19] are also presented
here. We set 𝑎 = 𝑏 in these two tests.

2.4.1. ApEn Analysis. ApEn is a well-known complexity
measure for time-series proposed by Pincus in [29]. The
ApEn of the generated sequences by logistic map, (1) and
the intertwining logistic map in [19] are shown in Figure 4.
Figure 4 shows that our mutual coupled logistic map has
the largest ApEn value with different parameters, which
implies that our mutual coupled logistic map can signifi-
cantly improve the complexity of the logistic map. Moreover,
our system is also more complex than the intertwining
logistic map in [19] in this sense, although with a lower
dimension. The two-dimensional logistic map in [23] will
be chaotic when the control parameter 𝑟 is in the interval
[1.1, 1.19]. The ApEn of this map ranges from 0.260919
to 0.626634 with the increase of parameter 𝑟, which is
significantly much lower than our mutual coupled logistic
map.

2.4.2. PE Analysis. PE is a natural complexity measure for
time-series introduced in [30]. Furthermore, it is easier
to implement and computationally much faster than other
comparable methods, in addition to being robust to noise
[31]. Figure 5 compares the PE of the logistic, mutual coupled
logistic, and intertwining logisticmaps in [19]. FromFigure 5,
we can conclude that ourmutual coupled logisticmap ismore
complex than the logistic and the intertwining logistic maps
in [19] in this sense. Furthermore, the PE value of the mutual
coupled logistic map is always larger than 0.99 with different
parameter 𝑎, which indicates that the generated sequences
have good randomness. Comparedwith the two-dimensional
logistic map in [23], the PE of this map varies from 0.4674 to
0.8141 with the increase of parameter 𝑟, which is also lower
than our mutual coupled logistic map.

Remark 1. Coupling multiple logistic maps is an effective
method for improving the performances of a logistic map.
For a good coupling strategy, the following three conditions
should be satisfied.

(1) Performances.The coupled logistic maps should overcome
the weaknesses mentioned in the Introduction and increase
the dynamical complexity. As shown by the numerical
experiments, our coupled logistic map can overcome such
weaknesses, and it is more complex than the intertwining
logistic map in [19] and the improved logistic map in [11].

(2) Costs. Coupling with more dynamical systems or a more
complicated system generally increases dynamical complex-
ity. However, it will also increase the implementation costs.
Only two simple logistic maps are coupled in our model
to improve its performance, which only requires much less
implementation costs than other schemes, such as [11, 20].

(3) Universality. This paper proposed a general coupled
logisticmodel. In this model, the gain coefficient and coupled
functions are both variable, whereas only a specific model is
proposed in other schemes.

In summary, compared with other recently proposed
schemes, our mutual coupled logistic map has great advan-
tages in performances, costs, and universality.

3. The New PRNG

As presented in Section 2, the mutual coupled logistic map
(1) is with good performances. In this Section, a new kind of
PRNG is proposed based on (1), which can be described as
follows:

𝑏𝑖 = floor (256 ⋅ 𝑥𝑖) ⊕ floor (256 ⋅ 𝑦𝑖) (3)

where 𝑥𝑖 and 𝑦𝑖 are the state variables of (1), and sequence {𝑏𝑖}
is the final bit sequence. According to (3), we can generate
8 bits for every one time of iteration, which can increase
the productivity of random numbers. Some details will be
analyzed in Section 5.4.Themain frame of this kind of PRNG
is shown in Figure 6, and Figure 7 depicts the mathematical
model diagram of our PRBG.
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Figure 1: The distribution diagram for (a) logistic map; (b) mutual coupled logistic map; (c) two-dimensional logistic map in [23].
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Figure 2: The trajectories of (a) logistic map; (b) mutual coupled logistic map.
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Figure 3: Phase space reconstruction for (a) logistic map; (b) mutual coupled logistic map.
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Figure 4: Approximate entropy comparison.

4. Statistical Tests

In this Section, several statistical tests are used to evaluate
the randomness of sequences {𝑏𝑖}.The parameters 𝑎 and 𝑏 are
selected as a = b = 3.999 through the whole statistical tests.

4.1. Frequency Spectral Analysis. Frequency spectral analysis
is used to test whether the center frequency exists or not in the
bit sequence. If there is a center frequency in a sequence, it is
periodic and cannot be regarded as ideal random sequence.
The frequency spectrum of sequence 𝑥(𝑛) can be calculated
by

𝑥𝑝 (𝑛) =
𝑁

∑
𝑛=1

𝑥 (𝑛) 𝑒−𝑗(2𝜋/𝑁)(𝑘−1)(𝑛−1) (4)

where 𝑁 denotes the sequence length and 𝑘 is the rank of
harmonic, with 0 ≤ 𝑘 ≤ 𝑁.
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Figure 5: Permutation entropy comparison.

Let the length of sequence be 20000. Randomly choose
2000 bits from the sequence. The frequency spectral analysis
is shown in Figure 8. From Figure 8 we can see that there is
no center frequency in the spectrum, which implies that the
bit sequence {𝑏𝑖} is not periodic.

4.2. Beker and Piper’s Statistical Tests. Beker and Piper’s
statistical test suite is a classical randomness test suite which
includes frequency test, serial test, poker test, runs test, and
autocorrelation test [32]. Set the confidence level of statistical
tests to be 0.95. Randomly choosing the initial conditions,
the test results are shown in Table 1 and Figure 9, where 𝑇
in Table 1 refers to the threshold. As shown in Table 1, all the
statistical values are smaller than 𝑇, which means that the bit
sequence {𝑏𝑖} has passed all these four tests. Figure 8 shows
that the autocorrelation and cross-correlation of sequence
{𝑏𝑖} are delta function and zero function, respectively, which
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Figure 6: The main frame of our PRBG.
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Figure 8: Frequency spectrum of sequence {𝑏𝑖}.

are consistent with the ideal random sequences’. The results
in Table 1 and Figure 9 indicate that sequence {𝑏𝑖} has
good statistical characteristics and can be regarded as ideal
random.

4.3. NIST Statistical Tests. NIST statistical test suite is strin-
gent and also current industry norm for randomness testing,
which is proposed in [33]. The well-known NIST test suite
contains 16 different tests. The significance level of each test
in NIST is set to 0.01. Sequences are said to pass a test if
the calculated P value > 0.01. In this numerical experiment,
we generate 1000 groups of bit sequence with length as 106
by randomly choosing 1000 groups of initial condition. The
passing ratio and means of P value of each test are shown
in Table 2. From Table 2 we can have that the bit sequence
{𝑏𝑖} has passed all the tests, which implies that the sequence

is with good statistical performances and can be regarded as
true random.

4.4. TestU01 Statistical Tests. TestU01 statistical test suite
[34] is stringent, as well as the current industry norm for
randomness testing. This test suite contains three different
crush type batteries: Small-Crush, Crush, and Big-Crush. In
this test, we just use Small-Crush and Crush batteries based
on the storage space of our computer. When the P-value is
[10−4, 1 – 10−4], it passes the test. The test results are shown
in Table 3. From Table 3, we can obtain our generated bit
sequences have passed all the TestU01 statistical test, which
implies good randomness. While for the chaotic PRBGs in
[24–26], there all are several failures through the TestU01
statistical test, which indicates that this PRBG is competitive
in this sense.

5. Security and Algorithm Speed Analysis

Key space, key sensitivity, and linear complexity are some
necessary conditions for a secure PRNG. Besides security,
the algorithm speed is also important to the applicability of
PRNG.

5.1. Key Space. Let the greatest precision be 10−r. The control
parameters 𝑎 and 𝑏 and initial conditions 𝑥0 and 𝑦0 can
be selected as the secret key. As 3.6 ≤ 𝑎, 𝑏 ≤ 4, 0 < xi,
yi < 1, the key space size of our PRNG approximately equals
0.16∗104r. Let 𝑟 = 16; the key space size is approximately
equal to 2210, which is large enough to withstand brute-force
attack. Furthermore, the key space of our PRNG is also larger
than some recently proposed chaotic PRNGs’ under the same
precision, such as 2188 in [27], which means that our PRNG
is competitive in this sense.
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Figure 9: Correlation analysis: (a) auto-correlation; (b) cross-correlation.

Table 1: Statistical performances.

Frequency Serial Poker test Runs
test test 𝑚 = 2 𝑚 = 3 𝑚 = 4 test

25000 bits 0.62 2.61 2.69 7.24 14.19 1.58
50000 bits 0.33 2.55 2.33 8.03 10.53 1.31
75000 bits 0.29 1.93 1.74 5.99 8.62 1.34
100000 bits 0.07 1.04 1.01 4.20 6.45 1.03
𝑇 3.84 5.99 7.81 14.07 26.00 1.96

Table 2: Results for NIST test suite.

Test Index Passing Ratio Means of P value Results
Approximate entropy 0.998 0.34973 Passed
Block frequency 0.999 0.33242 Passed
Cumulative sums 0.999 0.21495 Passed
FFT 0.997 0.41003 Passed
Frequency 0.999 0.42167 Passed
Linear complexity 0.999 0.51674 Passed
Random excursions 0.999 0.30147 Passed
Random excursions variant 0.998 0.29871 Passed
Longest runs of ones 0.996 0.25675 Passed
Overlapping template of all ones 0.998 0.31775 Passed
Rank 0.998 0.19306 Passed
Runs 0.999 0.24879 Passed
Serial 0.997 0.24198 Passed
Universal statistical 0.999 0.41029 Passed
Lempel-Ziv Compression Test 0.999 0.35497 Passed

Table 3: The number of failures in TestU01 test suite.

Battery Parameters Small-Crush Crush
Our PRBG Standard 0 0
Ref. [24] Standard 3 15
Ref. [25] Standard 2 12
Ref. [26] Standard 3 19
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Table 4: Sensitivity test for 𝑎.

Secret key 𝑎 3.999 and 3.999 + 10−16 3.999 + 10−16 and 3.999 + 2×10−16 3.999 + 2×10−16 and 3.999 + 3×10−16

𝐻 50.04% 50.04% 49.98%

Table 5: Sensitivity test for 𝑥0.

Secret key 𝑥0 0.164 and 0.164 + 10−16 0.164 + 10−16 and 0.164 + 2×10−16 0.164 + 2×10−16 and 0.164 + 3×10−16

𝐻 49.98% 50.02% 49.96%

Table 6: Speed comparison of different PRNG.

Different PRNG Speed (Mb/s)
Our PRNG 3.8955
Ref. [27] 0.4844
Ref. [28] 0.2352

5.2. Key Sensitivity. Chaotic sequence is greatly sensitive
to the initial condition and parameter. In this numerical
experiment, we vary the secret keys by only 10−16 to generate
new bit sequences and then compare them by each bit.
Denote 𝐻 as the number of differences. The key sensitivity
test results for 𝑎 and 𝑥0 are shown in Tables 4 and 5,
respectively. These two tables show that the variance ratios of
each bit both approach 50%, which indicate that our PRNG
is extremely sensitive to 𝑎 and 𝑥0. For secret keys 𝑥 and
𝑦0, the results are similar which we omitted here to avoid
redundancy.

5.3. Linear Complexity. Linear complexity is one of the most
important complexity measures for bit sequence. For an ideal
random bit sequence with length 𝑛, the linear complexity
should be close to the 𝑛/2 line. Figure 10 plots the linear
complexity curve of the bit sequence generated by our
PRNG, which indicates that the sequence is with ideal linear
complexity since the curve is extremely close to the 𝑛/2 line.

5.4. Algorithm Speed Analysis. In this paper, the algorithms
are experiment by Matlab R2014a on the computer with
3.3 GHz CPU and 4GB memory. The algorithm speed of
our PRNG and other proposed chaotic PRNGs in [27, 28]
are compared in Table 6. From Table 6 we have that the
speed of our PRNG is about 3.8955MB/s, which is much
faster than the speed of PRNG in [24, 25] under the same
running conditions. This result indicates that our PRNG is
quite applicable for practical use.

6. Conclusions

In this paper, a new two-dimensional mutual coupled logistic
map is proposed, which can overcome the several weaknesses
of logistic map. Dynamical performances indicate that this
new map has a larger key space, a uniform distribution,
and can resist to the phase space reconstruction attack.
Furthermore, the complexity performances show that the
generated sequence of our system is more complex than the
sequence generated by the three-dimensional coupled logistic
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Figure 10: Linear complexity.

map proposed in [19], together with a simpler mathematical
model. For the application, we propose a new kind of PRNG
based on the mutual coupled logistic map. Both statistical
tests and security analysis show that our proposed PRNG is
with good randomness and is capable of resisting all kinds of
attacks. Moreover, the algorithm speed analysis indicates that
the PRNG has a rather high generation efficiency, which is
valuable to practical applications.
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